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New Depth From Focus Filters in Active Monocular
Vision Systems for Indoor 3-D Tracking
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Abstract— In this paper, new methodologies for the estimation
of the depth of a target with unknown dimensions, based on
depth from focus strategies, are proposed. The measurements are
extracted from images acquired with a single camera, resorting to
the minimization of a new functional, deeply rooted on the optical
characteristics of the lens system. The analysis and synthesis of
two complementary filters and a linear parametrically varying
observer are discussed in detail. These estimators use information
present on the boundary of the target, which is assumed to be on
a plane parallel to the camera sensor, and whose dimensions are
considered to remain constant over time. This paper complements
a single pan and tilt camera-based indoor positioning and
tracking system. To assess the performance of the proposed
solutions, a series of indoor experimental tests for a range
of operation of up to ten meters, which included tracking
and localizing a small unmanned aerial vehicle with unknown
dimensions, was carried out. Depth estimates with accuracies on
the order of a few centimeters were obtained.

Index Terms— Complementary filtering, depth from focus,
linear-parameter-varying (LPV) observers, monocular vision
systems, positioning and tracking, sensor fusion.

I. INTRODUCTION

W ITH the development of autonomous robotic vehicles,
localization and tracking have become fundamental

issues that must be addressed to provide autonomous capa-
bilities to a robot. The availability of reliable estimates for the
position of a robot is essential to its navigation and control
systems, which justifies the significant effort that has been put
into this domain [1]–[6].

Successfully exploited techniques have been reported,
such as infrared radiation, ultrasound, radio frequency, and
vision [1]. The indoor tracking system addressed in this paper
is vision based, since this approach has a growing domain
of applicability and leads to interesting results with a very
low investment; see the comprehensive survey on monocular
3-D tracking in [7]. This system estimates in real time the
position, velocity, and acceleration of a target that evolves
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along an unknown trajectory in the 3-D world, as well as its
angular speed. These estimates are obtained using suboptimal
stochastic multiple-model adaptive estimation (MMAE)
techniques that exploit information provided by a single
camera [8].

In monocular configurations, the problem of estimating the
position of a target strongly depends on the accuracy of the
algorithms used to estimate the target depth, i.e., its distance
with respect to the camera. These algorithms play a key
role in many areas, such as 3-D reconstruction [9], obstacle
detection [10], and video surveillance [11]. In multicamera
approaches, triangulation strategies are the most effective
solution to estimate the position of a target and therefore its
depth. However, for systems with small baselines, i.e., with
small depth sensitivities, or for systems with only one camera,
triangulation methods are not the best option [12]. In these
situations, monocular depth estimation strategies should be
considered. Moreover, multicamera systems have two signif-
icant disadvantages: the image-to-image matching problem,
perhaps the major source of errors in this type of strategies,
and the missing part problem (it is not possible to estimate
the depth of points that are visible only in images acquired by
one static camera).

When a single camera is used, the depth of a point in
the 3-D world can be estimated by exploiting the relation
between this quantity and the amount of blur that corrupts
the projection of the point into the images. This is done
by modeling the influence that some of the camera intrinsic
parameters have on images acquired with a small depth
of field. Based upon this principle, there are three main
strategies that have been exploited: depth from blur by
focusing [13], [14], depth from blur by zooming [15],
and depth from blur by irising [16]. In this paper, we
are mainly concerned with the depth estimation from blur
by focusing. Two different techniques based upon this
approach can be found in the literature: depth from defocus
[14], [16], [17], and depth from focus [13], [18]–[20]. The
depth estimation strategy that is proposed here is based on this
latter method, since this approach does not require a mathe-
matical model for the blurring process of the camera, i.e., the
point spread function (PSF) responsible for the blurring does
not need to be modeled.

This paper is an evolution of a framework recently pro-
posed for target tracking and positioning [8], where a low-
cost single pan and tilt camera-based indoor positioning and
tracking system was presented. The depth estimation strategy
used in that system was a simple visual looming technique
that required the knowledge of the dimensions of the target.
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In this paper, indoor positioning and tracking systems play
a minor role. The emphasis is put on the depth estimation
strategy. Two novel approaches to estimate the depth of a
target [21], [22] are described: one based on a complementary
filter and the other based on a linear-parameter-varying (LPV)
observer. These strategies combine the measurements of the
depth of the target, obtained with algorithms that exploit the
concept of depth from focus, with the measurements of the
dimensions of the images of the target. In the complementary
filter approach, the measurements of the dimensions of the pro-
jection of the target into acquired images are used to infer the
value of the target depth derivative over time, i.e., the velocity
of the target along the camera principal axis. This quantity is
corrupted by a bias, which is the result of assuming an incor-
rect value for the target unknown dimensions. However, since
the proposed complementary filter estimates this bias, it pro-
vides estimates for the instantaneous depth of a target describ-
ing arbitrary trajectories in the 3-D world, without requiring
the availability of further information about its dimensions and
shape. In the observer-based approach, the dynamics of the
depth of the target is written as a function of a parameter
that depends on the dimensions of the projection of the target
into acquired images, which leads to an LPV observer for
the depth of targets with unknown dimensions. The use of the
proposed depth estimation strategies leads to a new monocular
indoor positioning and tracking system, which estimates in real
time the 3-D position, linear velocity, linear acceleration, and
angular speed of targets with unknown dimensions.

The main contributions in this paper are as follows:

1) the complete process of synthesis, analysis, implemen-
tation, and validation in real time of two new depth
estimators for target tracking and positioning;

2) a detailed study of the influence that some of the camera
parameters, such as the focal length and aperture, have
on the proposed algorithms;

3) experimental results comparing the performance of the
proposed methods with other monocular and stereo-
based depth-estimation strategies;

4) experimental results illustrating the behavior of the
whole positioning and tracking system when the target
is a small indoor unmanned aerial vehicle (UAV).

This paper is organized as follows. A brief overview of
the positioning and tracking system architecture is presented
in Section II, and in Section III, the process of obtaining
the image-based measurements used by the depth estimation
algorithms is addressed. The proposed complementary filter
and the LPV observer are studied in Sections IV and V,
respectively, where their design and analysis are detailed.
In Section VI, experimental results illustrating the performance
of the proposed depth estimation algorithms and the behavior
of the whole positioning and tracking system are presented,
and in Section VII, the concluding remarks are provided.

II. SYSTEM ARCHITECTURE

The indoor positioning and tracking system proposed in [8]
has three main modules: 1) that addresses the interface with
the camera; 2) that implements image processing algorithms;

Fig. 1. Tracking system architecture.

and 3) that is responsible for dynamic system state estimations.
The architecture of this system is presented in Fig. 1, where
some quantities are introduced informally to augment the
legibility of the document.

The extraction of physical information from an image
acquired by a camera requires the knowledge of its intrinsic
and extrinsic parameters, which are computed during the initial
calibration process. In this paper, the classical direct linear
transformation method was used [23]. The camera intrinsic
parameters are denoted by the matrix A and its extrinsic
parameters are denoted by R and T, where R is a rotation
matrix and T a translation vector. These parameters depend,
respectively, on the orientation and position of the camera
reference frame {C} with respect to an inertial reference
frame {I}. This calibration was preceded by an independent
determination of a set of parameters K that compensates for
the distortion introduced by the lens of the camera. With this
purpose, the lens calibration method proposed in [8] was used.
The pan, tilt, and zoom (PTZ) low-cost camera is responsible
for providing three images (I1, I2, and I3) to the image
processing module, in each iteration of the algorithm. The
reason why three images are used per iteration will become
clear in the next section.

The image processing module has two main purposes: to
identify the target in each image and to estimate its distance
in relation to the camera. The target is identified using active
contours, which are also known as snakes [24], [25]. This
approach consists in finding the target contour and use it to
compute the target center coordinates (uc, vc). The measure-
ments of the target depth z are provided by depth from focus
strategies, as explained in Section III, and processed either
by the complementary filter proposed in Section IV or by the
observer proposed in Section V. These three quantities (uc, vc,
and z) correspond to the measurements that are used to obtain
the estimates p̂, v̂, and â, of the target position p, velocity v,
and acceleration a, in the inertial reference frame {I}.
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Fig. 2. Model for the imaging process of a thin lens.

To obtain estimates for the state and parameters of the
dynamical model of the target, an estimation problem is
formulated and solved. The target dynamical model is linear
on the system state (p, v, and a), but nonlinear on the
target angular speed w. On the contrary, the sensor model
is nonlinear on the system state. Therefore, a set of Extended
Kalman Filters (EKFs), each one associated with a different
angular speed value, were included in a MMAE architecture.
These filters provide estimates for the system state for the
state error covariance P̂ and for the target unknown angular
speed ŵ (Fig. 1).

The command of the camera is the result of solving a
decision problem with the purpose of maintaining the target
close to the image center. The implemented decision system
consists in computing the pan and tilt angles (αc and θc,
respectively) that should be sent to the camera at each moment.
Large distances between the target and the center of acquired
images are avoided. Thus, the capability of the overall system
to follow targets is increased.

III. DEPTH MEASUREMENTS

In this section, the process of obtaining the measurements
used by the depth estimation algorithms proposed in the
remaining of this paper is described. The measurements of the
depth of the target are obtained resorting to depth from focus
strategies, and the target depth derivative is inferred from the
variations in the boundary of the images of the target.

A. Target Depth

The idea of inferring depth from focus is based on the
concept of depth of field, which is a consequence of the
inability of one lens to simultaneously focus planes on
the scene at different depths. Depth of field corresponds
to the distance between the farthest and the nearest planes
on the scene whose points appear in acquired images with a
satisfactory definition, according to a certain criterion.

Considering a thin model for the lens of the camera [26],
it is possible to establish a nonlinear relation between the
distance z from the lens to the plane that the camera can
exactly focus at each instant of time (the object plane) and
the distance v between the lens and the image plane at which
the projection of points in the object plane appears sharply
focused (Fig. 2). To complete the relation, the focal length f of
the lens is considered. This relation is known as the Gaussian
lens formula [26] and can be written as

z = f v

v − f
. (1)

Fig. 3. Example of the boundary, in black, and lines approximately
orthogonal to it, in blue, used to estimate the depth of a simple target (in
this case a red circle in a white background).

The use of (1) to estimate the depth of a target
moving in the scene requires the knowledge of both the focal
length of the camera and the value of v, i.e., the value of
the camera focus that minimizes the amount of blur that
corrupts the projection of the target into acquired images.
The estimation of this quantity requires the definition of a
metric that quantifies the sharpness of a transition in an image.
Metrics related with high-frequency energy contents in the
image, the Fourier transform, image gradient, or the Laplacian,
are detailed in [18]. Our goal is to estimate the depth of a
target, and therefore, the proposed metric aims to maximize
the image gradient magnitude across lines orthogonal to the
target boundary, which, as described in [8], is obtained using
snakes [24], [25]. This approach considers that the real target
boundary is on a plane perpendicular to the camera principal
axis, which is the plane that appears sharply focused when
the camera focus value v0 [i.e., the distance between the lens
and the plane of the camera charge-coupled device (CCD)
sensor] is the one that optimizes the proposed metric. This
assumption is not too restrictive, since for typical applications,
the difference between the depths of the points in the target
contour is usually small compared with the accuracy of the
depth estimation algorithm. The plane in which the target
boundary is considered to be (the object plane) is the plane
that specifies the depth of the target. The problem at hand can
be written as

v = arg min
v0

g(v0)

where the cost function

g(v0) =
⎡
⎣ 1

Nl

Nl∑
i=1

max
(x,y)∈li

||∇ Iv0(x, y)||2
⎤
⎦

−1

(2)

is the inverse of the mean of the square of the image
gradient magnitude maximum values across lines approx-
imately orthogonal to the target boundary (Fig. 3).
Moreover, Nl denotes the number of used lines, li the i th
line, ∇ the gradient operator, || · || the Euclidean norm, and
Iv0(x, y) the intensity of the image acquired with the focus
value v0 at point (x, y). The formulation of this problem as
the minimization of g(v0), instead of the maximization of its
inverse, is based on the model that will be proposed for this
function.

To gain some insight into how to model the cost function,
consider a scene consisting of a plane at a given depth. In this
case, images acquired with a focus value v0 can be obtained
by convolving the ideal sharply focused image I f (x, y) of the
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Fig. 4. Cost function for an AXIS 215 PTZ, when the camera focal length
is 29 mm and the target is 3 m away from the lens.

plane with the PSF h(x, y) of the lens system for the depth
of the plane, i.e., with the function that models the camera
blurring process for the plane depth, Iv0(x, y) = I f (x, y) ∗
h(x, y).

A common model for the PSF is a circle of constant
intensity. Let, in this situation, the PSF be

h(x, y) =
⎧⎨
⎩

1

πR2
c
, x2 + y2 ≤ R2

c

0, x2 + y2 > R2
c

where Rc is the radius of the circle and consider the existence
of a vertical step in the sharply focused image of the form
I f
v0(x, y) = a1 + a2 u(x − x0), where u(x − x0) is the standard

unit step function centered at point x0, a1 is the intensity of
the image when x < x0, and a2 is the magnitude of the step.

In this situation, it is easy to show that the partial derivative
of Iv0(x, y) with respect to y is 0, since differentiation and
convolution are linear operations, and thus they commute.
After some mathematical manipulation, it is also possible to
show that the partial derivative of Iv0(x, y) with respect to x is

⎧⎪⎨
⎪⎩

0, |x − x0| > Rc

2a2

πR2
c

√
R2

c − (x − x0)2, |x − x0| ≤ Rc.

By considering a line l orthogonal to the boundary of the
target, we can conclude that

max
(x,y)∈l

||∇ Iv0(x, y)||2 = ||∇ Iv0(x, y)||2
∣∣∣∣
x=x0

=
(

2a2

πRc

)2

.

If some trigonometric manipulations are used, the value
of Rc can be written as a function of f , z, and v0, and the
diameter of the lens L; see [16] for details. The replacement
of the value of Rc in (2a2/πRc)

2 by its expression allows us
to write the cost function proposed in (2) in the form

g(v0) = ( f − z)2v2
0 + 2 f z( f − z)v0 + ( f z)2

[4 f za2/(Lπ)]2 . (3)

According to the discussion above, which is supported
by Fig. 4, the cost function in (2) is expected to depend
quadratically on v0. Thus, a quadratic model is considered
for this function. Since three coefficients are enough to define
a quadratic function, the acquisition of at least three images
with different focus values provides at least three measure-
ments of g(v0), one per focus value, which are enough to
estimate the three coefficients of the cost function model.
If three or more images are acquired, a system of linear
equations results, which can be solved using the standard

Fig. 5. Architecture of the proposed depth estimation algorithm.

linear least squares method [27]. The linear dependence of
this model on the parameters to be estimated is the reason
why the minimization of g(v0) was considered, instead of
the maximization of its inverse, which seemed to be more
intuitive. The estimated coefficients can be easily converted
into the estimates of v = arg minv0 g(v0), i.e., the estimates
of the focus value that minimizes the cost function for a
given depth of the target, since this value corresponds to the
one that minimizes the quadratic function. By repeating this
procedure over time, the successive estimates for the value of v
result, and consequently, the estimates for the instantaneous
depth z of the target can be computed using (1).

To study the sensitivity of the estimates of the depth z of
the target with respect to the estimates of the value of v, let us
compute the partial derivative (∂z/∂v) of z with respect to v,
which is given by

∂z

∂v
= −

(
z

f
− 1

)2

according to (1). If δz and δv are used to denote small
perturbations in the value of z and v, respectively, around some
fixed points, we have that

δz ≈ ∂z

∂v
δv ≈ −

(
z

f
− 1

)2

δv

where the symbol ≈ is used to indicate that the two members
of the equation are approximately equal. As can be seen, the
uncertainty in the estimation of z grows quadratically with the
depth of the target, if the accuracy in the estimation of v is
assumed to be the same for all possible depths.

A simplified version of the architecture of the proposed
depth estimation strategy is shown in Fig. 5. In this figure,
zm denotes the measurements of the target depth provided
by the algorithm described in this section, which can be
written in the form zm = z + zd , where zd is the noise
that corrupts the measurements of z. Moreover, ẑ denotes the
target depth estimates obtained from one of the algorithms that
will be proposed in Sections IV and V, and Iv0i

and g(v0i ),
i = 1, 2, 3, denote, respectively, the three images used by the
described depth estimation algorithm and the cost function
measurements extracted from these images. It is assumed that
the depth of the target does not change during the acquisition
of these three images, which is not true in many situations.
However, the impact of this assumption in the performance of
the proposed algorithms should not be significant when com-
pared with the accuracy of the estimates of the target depth,
as long as the target does not perform aggressive maneuvers
in the direction of the camera principal axis. The value of vc

0



GASPAR AND OLIVEIRA: NEW DEPTH FROM FOCUS FILTERS IN ACTIVE MONOCULAR VISION SYSTEMS 1831

Fig. 6. Influence of the scene illumination on the cost function for several
target depths when the image intensity is scaled (the results obtained with an
AXIS 215 PTZ and f = 45.6 mm).

corresponds to the focus value used to command the focus of
the camera.

The accuracy of the target depth estimates obtained with
the strategy proposed in this section depends on the depth of
field Dof of the optical system, which can be written as

Dof = 4z(z − f ) f L Rc

( f L)2 − 4(z Rc)2
(4)

where

( f L)2 − 4(z Rc)
2 > 0 z − f > 0.

These expressions can be derived from (1), if some simple
trigonometric relations that can be inferred from Fig. 2 are
used. As can be seen, larger target depths lead to larger depths
of field, as they decrease and increase, respectively, the values
of the denominator and numerator in (4). The influence that
the camera focal length and aperture have on the depth of
field of the an optical system is on the opposite direction,
i.e., large focal lengths and large apertures lead to small depths
of field [28]. The smaller the depth of field, the more accurate
are the depth estimates. Thus, estimates of depths of targets
that are close to the lens, obtained using large focal lengths
and large apertures, tend to be more accurate.

The accuracy of the depth estimates also depends on the
shape of the cost function. It is difficult to compute the
minimum of a flat cost function, for instance. Thus, it is
important to understand the influence that some quantities
have on this function, namely, the scene illumination, and the
camera focal length and aperture.

The illumination of the scene influences the shape of the
cost function in (3) through the value of a2. This influence
can be minimized by scaling the intensity of acquired images
along the lines l in such a way that the magnitude a2 of the
step functions is unitary. As shown in Fig. 6, this strategy
minimizes the impact of the scene illumination in the shape
of the cost function, especially in the vicinity of its minimum,
which is the region of interest. This is not true outside this
region, since the noise corrupting the derivative of the image
intensity is not negligible when the target boundary is too
blurred and the image intensity values are small, which occurs
when the scene is poorly illuminated.

To study the influence of the camera focal length and aper-
ture on the shape of the cost function, let the quadratic function
in (3) be written in the form g(v0) = av2

0 + bv0 + c. Flat
cost functions are associated with small values of a, and large
values of a lead to cost functions with narrow concavities,
whose minimum is easier to compute. Therefore, the value

Fig. 7. Relation between the dimensions of the target measured on the object
plane and on the image plane, R and r , respectively, for a pinhole camera.

of a defines how difficult is to find the minimum of the cost
function. The partial derivatives of a with respect to the camera
focal length and aperture are given by

∂a

∂ f
= 2z

(
Lπ

4z f a2

)2 (
1 − z

f

)

∂a

∂L
= 2L

(
π

4za2

)2 (
1 − z

f

)2

.

Since it is difficult to imagine a situation in which the
depth of the target is less than or equal to the focal length,
which is on the order of some millimeters, we can assume
that z > f and, consequently, (∂a/∂ f ) < 0 (even if such
situation occurred, it would not have any relevance for the
positioning problem that is addressed in this paper). This
indicates that small focal lengths lead to cost functions with
narrow concavities. However, as previously stated, small focal
lengths are associated with large depths of field. Thus, there
is a tradeoff between the depth of field and the precision
in the computation of the cost function minimum that must
be considered when choosing the focal length. The balance
between these two aspects depends on the particular optical
system in use.

Regarding the camera aperture, large values improve the
accuracy of the depth estimates as they lead to cost functions
with narrow concavities, (∂a/∂L) > 0, and to small depths of
field.

Note that the measurements obtained according to the
proposed strategies are robust to variations in the camera focal
length and aperture, which may change the shape of the cost
function, as long as they do not occur during the acquisition of
a set of images used to obtain a depth estimate. This flexibility
results from the computation of new parabola coefficients in
each iteration of the algorithm, which leads to the adaptation
of the cost function to the new parameters.

B. Target Depth Derivative

By considering a pinhole model for the camera [23] (Fig. 7),
the relation between the cartesian coordinates (x, y, z) of a
point in the camera reference frame {C} and the coordinates
(x p, yp) of its projection into the image plane is given by
x p = f x/z and yp = f y/z, where the origin of the camera
reference frame is considered to be coincident with the camera
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optical center, and the origin of the image frame is in the
principal point.

From the expressions of x p and yp , it is straightforward to
show that the distance R between two points in a plane at a
distance z from the camera and the distance r between the
projection of these points into the image plane are related by

r = f R/z. (5)

Consider that the coordinates of the points in the boundary
of the image of the target are discrete random variables,
and let the square root of the trace of the covariance matrix
associated with such variables be used as a measure of the
target dimensions. In this case, the dimensions of the target
verify (5) and are invariant to rotations of the target image
boundary. More details about this topic can be found in [21].

According to relation (5) and assuming that f and R remain
constant, it is possible to write the derivative of the depth of
the target with respect to time in the form

ż = − ṙ

r2 R f (6)

where r and ṙ denote the square roots of the trace of the
covariance matrix associated with the boundary of the image of
the target and its derivative with respect to time, respectively.
Both quantities follow from the boundary of the target in the
image, and their measurements are here denoted as rm and ṙm .

Relation (6) is a function of the value of R, which corre-
sponds to the dimensions of the real target measured on the
object plane. When this quantity is not known, i.e., when the
dimensions of the target are not available, an extra term γ that
considers this uncertainty must be added to the value of R,
resulting in

ż′ = − ṙ

r2 R f
︸ ︷︷ ︸

ż

− ṙ

r2 γ f
︸ ︷︷ ︸

β

for the target depth derivative. The value of ż corresponds to
the real target velocity in the direction of the camera principal
axis, and β corresponds to a bias term that results from
considering γ. The new quantity ż′ denotes a biased version
of the target depth derivative ż.

The measurements ψm of the target depth derivative
provided by the previously described method have the form

ψm = ψ + β + ψd + βd (7)

where ψ denotes the real target depth derivative, ψd is the
noise that corrupts the measurements of this quantity, and βd is
a disturbance related to the bias value. The noise may come,
for instance, from errors in the segmentation of the target.

The implementation of the discrete-time depth estimation
algorithms proposed in the Sections IV and V requires the
availability of discrete-time versions of the measurements
derived in this section. If T is the sampling interval, the
values of the target depth zmk , at time instants kT (where
k = k0, k0 + 1, . . . , and k0 is associated with the initial instant
k0T ), are obtained from the depth from focus algorithm, and
the values of the target depth derivative ψmk , at the same
instants, are computed according to ψmk = − f R′ṙmk /r2

mk
,

with rmk = (tr(
xk ))
1/2 and ṙmk = (rmk − rmk−1)/T , where


xk is the covariance matrix associated with the boundary
of the projection of the target into the image acquired at
instant kT . Ideally, ψmk would be obtained using the target
real dimensions R measured in the object plane. However,
since this quantity is not known, R is replaced by a constant R′
chosen by the user. This quantity can be written as R′ = R+γ,
where both R and γ are unknown. As explained before, γ
corresponds to the difference between the guessed and real
target dimensions.

From (5), it is possible to conclude that at a given time
instant kT , an estimate R̂k for the dimensions of the target
can be easily obtained according to R̂k = rmk ẑk/ f , where ẑk

denotes the value of an estimate ẑ for the depth of the
target at the same time instant. In particular, in experiments
where the dimensions of the target do not vary over time, a
global estimate R̂ for R can be obtained as the mean of the
estimates R̂k computed along the whole experiment.

At this point, several similar quantities have been intro-
duced. To augment the legibility of the document, a list of
these quantities, and their meaning, is presented here:

z target depth, i.e., distance from the lens to the object
plane associated with the target;

ẑ general estimate of the target depth z;
ẑk estimate of the target depth z at time instant kT ;
r dimensions of the image of the target, i.e., dimensions

of the target measured in the image plane;
R dimensions of the target measured in the object plane;
R̂k estimate of R computed using the measurements

obtained at the time instant kT ;
R̂ estimate of R computed using the measurements

obtained along the whole experiment;
R′ parameter used to replace R, which is unknown;
z′ biased version of the target depth that results from

replacing the target dimensions R, in (5), with R′;
Rc PSF radius.

IV. DEPTH COMPLEMENTARY FILTER

In this section, a complementary filter that provides esti-
mates for the depth of a moving target is proposed. Initially, for
motivation, a simple continuous-time complementary structure
for situations where the dimensions of the target are known
is presented. Afterward, this structure is modified to address
the same problem when the dimensions of the target are not
known, and the process of obtaining a discrete-time version
of the filter that results is described. A rigorous formulation
of the problem addressed in this section is presented next.

Problem Statement 1: Consider a moving target with
unknown dimensions and unknown position (x, y, z) in the
camera reference frame {C}. Suppose that the measurements

{
zm = z + zd

ψm = ψ + β + ψd + βd

of the target depth and its derivative are obtained from the
images acquired with a single camera and that both quantities
are corrupted by noise (zd and ψd , respectively) in com-
plementary frequency regions. These quantities are measured
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in relation to the camera reference frame. The value of the
target depth derivative is affected by a bias term β, which
results from the unknown nature of the target dimensions,
and which is corrupted by a disturbance βd . Given these
assumptions, design a filter that provides an optimal solution
in the minimum mean square error sense for the problem of
estimating the instantaneous depth of the moving target.

A. First-Order: Known Target Dimensions

When the target dimensions R on the object plane are
known, the measurements of the target depth derivative
presented in (7) are not biased, since γ = β = 0. In this
case, a filter with gain k > 0 and state-space realization

˙̂z = ψm + k(zm − ẑ) (8)

can be used to obtain the estimates ẑ of the target depth from
the measurements zm and ψm . As shown in [21], such esti-
mates consist of an undistorted copy of the original signal z,
corrupted by the measurement noises zd and ψd

ẑ = z + Fzzd + Fψψd (9)

where Fz and Fψ are the linear time-invariant operators.
The proposed filter blends the information provided by the

depth from focus algorithm at low frequencies with that from
the target depth derivative at high frequencies. This combina-
tion is appropriate since the depth from focus measurements
are more reliable at low frequencies, whereas the target depth
derivative measurements may be corrupted by a bias in the
same frequency region (as exemplified in the next section),
which makes it useful at higher frequencies.

For the system in study, the stochastic underlying process
model, here called M, can be written relying on the realization

∑
M

:=
{

ż = ψm − ψd

zm = z + zd

where ψd and zd play the roles of process and measurement
noises, respectively. To design the gain of the filter, consider
an H2 estimation framework, in which the objective is to
minimize the asymptotic variance of the system estimation
error, when the input of the system is white Gaussian noise;
see [29] for details about H2 filtering. In this case, the goal is
to minimize the asymptotic variance of the depth estimation
error z − ẑ for given values of the covariances of ψd and zd .
The optimal solution to this problem has the complementary
structure described in (8). In a deterministic setup, where
the aim is to shape the filter closed-form transfer function,
the filter can be designed using any efficient method, and the
analysis of the filter can be performed in the frequency domain
using the Bode plots.

B. Second-Order: Unknown Target Dimensions

In most situations, there is no information about the dimen-
sions of the target. Therefore, the value of γ and, as a conse-
quence, the value of β are not known, and the measurements
of the target depth derivative presented in (7) are biased.
The simple complementary structure described previously does
not allow steady-state bias estimation. However, a modified

version of its structure, augmented with an extra integrator,
will meet this additional constraint. This strategy results in a
new complementary filter, described in the remainder of this
section, with the realization

∑
M

:=

⎧⎪⎪⎨
⎪⎪⎩

[ ˙̂x1˙̂x2

]
=

[−k1 1
−k2 0

] [
x̂1
x̂2

]
+

[
k1
k2

]
zm +

[
1
0

]
ψm

ẑ = [ 1 0 ]
[

x̂1
x̂2

]

(10)

where x1 and x2 denote the states associated with the depth of
the target and with the bias term, respectively, and k1 and k2
are the filter gains. Note that as mentioned in the end of
Section III-B, the bias term models the uncertainty resulting
from having a target with unknown dimensions. It is possible
to show that this bias can also be seen as a term that comprises
slowly time-varying perturbations in the dimensions of the
target. Therefore, the estimation of the extra state variable x2
mitigates the effect of assuming constant target dimensions.

From (10), it is possible to show that the estimated target
depth can be rewritten as in (9), where the transfer functions
of T1 and T2 take the form

T1(s) = k1s + k2

s2 + k1s + k2
T2(s) = s2

s2 + k1s + k2

and the intensity of the noise term is given by Fzzd + Fψ
(ψd + βd). This term depends on the transfer functions
Fz(s) = T1(s) and Fψ(s) = s/(s2 + k1s + k2). As before,
T1(s) + T2(s) = I , where T1(s) and T2(s) correspond to
low- and high-pass filters, respectively. The second-order com-
plementary filter proposed blends the information provided
by the depth from focus algorithm at low frequency regions
with that of the target depth derivative in the complementary
frequency range, leaving the original signal z undistorted.
Therefore, low-frequency bias in the disturbances that corrupt
ψm will be naturally rejected at the output. Note also that the
filter rejects high-frequency noise present in zm .

In this situation, the underlying process model can be
written relying on the realization

∑
M

:=

⎧⎪⎪⎨
⎪⎪⎩

[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
1
0

]
ψm −

[
ψd

βd

]

zm = [ 1 0 ]
[

x1
x2

]
+ zd

(11)

where ψd and βd correspond to the process noise and zd to the
measurement noise. One of the two measurements available
(ψm) is used as an input to the differential equation that
models the process and the other (zm) as the observation.
So far, no assumption has been made about the noise terms.
However, if the process and measurement noises are stationary,
white, and Gaussian processes with zero mean, then as stated
in Lemma 1, the complementary filter described in this section
corresponds to a stationary Kalman filter for the realization
presented in (11). Therefore, according to the properties of
Kalman filters [27], the proposed complementary filter pro-
vides a stable and optimal solution, in the minimum mean
square error sense, for the problem of estimating the depth
of a target evolving according to the presented underlying
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process model. Note that under the aforementioned Gaussian
assumptions, the bias term is modeled as a Wiener process.

Lemma 1: Let the process and observation noises in realiza-
tion (11) correspond to stationary white Gaussian noises with
zero mean and spectral densities σ 2

ψ , σ 2
β , and σ 2

z , respectively
(i.e., ψd ∼ N (0, σ 2

ψ), βd ∼ N (0, σ 2
β ), and zd ∼ N (0, σ 2

z )),
and β denote a low-frequency bias that corrupts the measure-
ments of the target depth derivative. Then the complementary
filter in (10) is the stationary Kalman filter for the system (11)
if k1 = (2σβ/σz + (σψ/σz)

2)
1/2

and k2 = σβ/σz .
Proof: Let the system realization (11) assume the form

{
ẋ = Ax + Bu + Lη
y = Cx + ϑ

where x = [x1 x2]T , u = ψm , y = zm , η = [ψd βd ]T , and
ϑ = zd and

A=
[

0 1
0 0

]
, B=

[
1
0

]
, L=

[ −1 0
0 −1

]
, C=[

1 0
]
.

Consider that the process noise η and the observation noise ϑ
correspond to stationary white Gaussian noises with zero
mean and spectral densities Q = diag[σ 2

ψ, σ
2
β ] and R = σ 2

z ,
respectively. The notation diag[σ 2

ψ, σ
2
β ] represents a diagonal

matrix with the elements σ 2
ψ and σ 2

β in its diagonal. In this
situation, the estimation error covariance matrix P of the
Kalman filter for the system (11) is the solution of the
Riccati equation Ṗ = AP + PAT + LQLT − PCT R−1CP;
see [27] for more details. The stationary Kalman filter is
obtained by setting Ṗ = 0 in this equation. Considering the
general expression P = ( p11 p12

p21 p22 ) for the estimation error
covariance matrix, where p12 = p21, by the properties of
symmetry of covariance matrices, the solution of the Riccati
equation in steady-state leads to p11 = σz(2σβσz + σψ

2)
1/2

,
p12 = p21 = σβσz , and p22 = σβσz(2σβσz + σψ

2)
1/2

.
The Kalman filter gain that follows from this solution is
K = PCT R−1 = [(2σβ/σz + (σψ/σz)

2)1/2 σβ/σz ]T , which
results in:

˙̂x = Ax̂ + Bu + K(y − Cx̂)

=

⎡
⎢⎢⎣

−
√

2
σβ

σz
+

(
σψ

σz

)2

1

−σβ
σz

0

⎤
⎥⎥⎦ x̂ +

⎡
⎢⎢⎣

√
2
σβ

σz
+

(
σψ

σz

)2

σβ

σz

⎤
⎥⎥⎦ zm

+
[

1
0

]
ψm

for the state estimate provided by the Kalman filter. This
equation is equivalent to the one that provides the state
estimate according to the complementary filter in (10), when

k1 = (2σβ/σz + (σψ/σz)
2)

1/2
and k2 = σβ/σz . Therefore,

under the stated assumptions, the complementary filter
proposed in this section corresponds to a stationary
Kalman filter.

In an H2 setting, the goal is to minimize the state estimation
error for given values of the covariances of ψd , βd , and zd .
As mentioned, the optimal solution to this problem has the
complementary structure described in (10). Therefore, the

covariances of ψd , βd , and zd can be regarded as design
parameters to vary the cutoff frequency of the filter.

In summary, two strategies can be used to obtain the
gains of the filter: a deterministic approach in which classical
strategies based on pole placement, for instance, are used [30]
and a stochastic approach, in which the noise variances are
determined and used to compute the filter gains.

The discrete-time equivalent of the proposed second-order
complementary filter is obtained by sampling the solution of
the state equation in (10) at time instants kT , where T is
the sampling interval and k = k0, k0 + 1, . . .; the value of k0
is associated with the initial time instant k0T . By assuming
that the inputs zm and ψm of the filter remain constant
between sampling instants, a discrete time-invariant linear state
equation for the filter results; see [30] for more details.

The discrete-time complementary filter proposed in this
section provides the estimates for the depth of a target, with
unknown dimensions, moving in a 3-D scene. This filter is
suitable for the tracking system described in Section II, since
it is appropriate for implementation in a digital computer and
its computational complexity is very small.

V. DEPTH LPV OBSERVER

In this section, a state-space formulation for the evolution
of the target depth is derived and an observer for the state of
the LPV system that results is proposed.

To derive a state-space formulation for the evolution of the
depth of the target, consider that both R and f in (5) do
not vary over time and that the measurements rm and ṙm of
r and ṙ , respectively, are exact. Under these assumptions, it is
straightforward to show that the derivative of the depth of the
target with respect to time can be written in the form

ż = − ṙm

rm
z. (12)

By denoting the quotient −ṙm/rm by a parameter α, and by
considering that exact measurements zm of the target depth
are available, a deterministic LPV system with the realization

{
ż = αz
zm = z

results. An observer for the state z of this system can be written
in the form [30]

˙̂z = αẑ + h(zm − ẑ), ẑ(t0) = ẑ0 (13)

where ẑ and ˙̂z are the target depth estimate and its derivative
with respect to time, respectively; h is the observer gain, t0 is
the initial time instant, and ẑ0 is the initial estimate for the
target depth.

From the considerations above, it is easy to show that the
state estimation error z̃ = z − ẑ satisfies the linear equation

˙̃z = (α − h)z̃, z̃(t0) = z0 − ẑ0 (14)

where ˙̃z denotes the derivative of the estimation error with
respect to time. The unknown parameter α depends on the
target velocity and on the target depth, as it can be written in
the form α = ż/z. Since all physical systems have limitations
in terms of maximum velocity, ż is bounded. Moreover, it is
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physically impossible that the target depth goes below a certain
value (the target and the camera cannot coincide), and thus α is
upper bounded and the bound depends on the type of motion
of the target. According to this reasoning, we can expect that
the gain h must be chosen according to the experiment at hand
to guarantee the stability of the observer (Lemma 2).

Lemma 2: The linear state equation (14) is uniformly
exponentially stable if the gain h of the observer verifies
h ≥ αmax + ν/q , where αmax is the upper bound of α, and
ν and q are finite positive constants.

Proof: The proof of this lemma can be found in [22].
From (8) and (13), it is possible to infer that the structure

of the first-order complementary filter and the structure of the
proposed LPV observer are very similar. The main difference
is in the computation of the target depth derivative. In the
complementary filter, it is based on (6), which is a function
of the target dimensions R measured on the object plane, and
in the LPV observer, it is based on (12), which is a function
of the state variable z. The two expressions are equivalent;
however, the latter does not require any knowledge about the
dimensions of the target. This is an important advantage since
the performance of both strategies is similar, as will be seen
in the next section.

The discrete-time version of the proposed observer is
obtained by sampling the solution of (13) at discrete-time
instants and by assuming that zm , rm , and ṙm remain constant
between consecutive sampling times; see [22] for details about
this discretization. The proposed observer provides estimates
for the depth of a target, with unknown dimensions, moving
in a 3-D scene. Thus, it is suitable for the proposed tracking
system, since it is appropriate for implementation in a digital
computer and its computational complexity is very small.

VI. EXPERIMENTAL RESULTS

In this section, the proposed depth estimation algorithms are
assessed using experimental data. This assessment consists of
the following:

1) a comparison with several monocular depth estimation
strategies, based on the information provided by the
authors in the corresponding articles;

2) a comparison with a monocular depth estimation method
that is state of the art;

3) a comparison with a classical stereo-based approach;
4) an experimental evaluation of the proposed methods

when the target describes two common trajectories
(in this case a straight line and a circumference);

5) an example of application of the presented depth estima-
tion strategies in a real positioning and tracking system.

The results presented in this section were obtained with
the 215 PTZ camera from AXIS. The images with the spatial
resolution 704×576 pixels were used. Since image segmenta-
tion is a complex domain, which is not the main focus of this
paper, targets with easily identifiable colors were considered.

As in most cameras, the value of the distance v0 between
the plane of the CCD sensor of the used camera and the lens of
the camera is not accessible to the operator. Instead, a different
parameter ranging from 1 to 9999 is available. This parameter

TABLE I

COMPARISON BETWEEN SEVERAL MONOCULAR DEPTH ESTIMATION

METHODS FOR STATIC SCENES AND REAL DATA

is specified by the manufacturer and is usually known as the
camera focus setting. The use of the proposed depth estimation
algorithms requires the calibration of the relation between
these two quantities; see [31] for details about this procedure.

The accuracy of the proposed algorithms depends on the
extraction of information from the blur present in the images.
To guarantee that this blur results only from the distance
of the target to the camera and not from the motion of the
CCD sensor, we have to wait some time for this sensor
to stop completely after each movement. This interval is
approximately 0.4 s for the camera in use, and therefore, the
acquisition of an image takes approximately 0.4 s. This time
is used to perform image processing tasks, such as identifying
the target. Since three images are required per iteration of
the algorithm, each iteration takes approximately 1.2/1.3 s,
and thus the nominal sampling interval T for the application
was set to 1.3 s. Obtaining accurate depth estimates with this
sampling interval imposes a constraint in the velocity at which
the target can change its depth. However, as explained, this
limitation is mostly imposed by the slow speed at which the
CCD sensor can be moved and not by the proposed algorithms.
Note that the camera in use is a regular camera, not modified
for this type of tasks. Tracking other types of targets, namely,
targets that perform more aggressive maneuvers, could be
achieved using a camera that allowed faster movements of
the sensor. Moreover, the aforementioned sampling interval
is in accordance with typical update rates for indoor 3-D
positioning systems. The Cricket system, for instance, which is
a reference in terms of indoor positioning, works at 1 Hz [32],
and the vision-based system presented in [33] works at 0.1 Hz.

The results provided in this section were obtained by
discretizing the LPV observer according to the algorithm
described in detail in [22]. The same strategy was used to
discretize the complementary filters and the aforementioned
sampling interval was used.

A. Comparison With Alternative Depth Estimation Strategies

A comparison between several depth from focus and depth
from defocus methods is presented in Table I. The root-mean-
square error (RMSE), expressed as a percentage of the distance
to the camera, is provided, as well as the range of depths

1The error increases linearly from 2.3%, at 0.6 m, to approximately 20%,
at 5 m.

2The results presented in the table for the algorithm proposed in [34] were
obtained using the code that Favaro and Soatto made available on the internet,
since the accuracy evaluation provided in [34] is for synthetic data. These
results were obtained using the experimental setup described in this section.
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Fig. 8. Comparison between the depth estimation strategies proposed
in Section III (RMSE = 1.03%) and [34] (RMSE = 0.94%).

associated with the reported accuracies. The last column
indicates if the implementation of the algorithms in a real-time
positioning system is realistic. The first four methods in the
table are based on depth from defocus, whereas the last two
use a depth from focus approach. Apart from the information
that concerns our method and the method proposed in [34],
which we obtained by conducting a set of experiments with a
static target, all the other information in the table is based on
the values indicated in [14], [16], [18], and [35].

The depth estimation strategy detailed in Section III is com-
pared here with the one proposed by Favaro and Soatto [34].
This method learns a set of projection operators from blurred
images, which are then applied to novel acquired (blurred)
images. Their approach does not use any information about
the PSF and consists in minimizing the Euclidean norm of
the difference between the estimated and the observed images.
Depth is inferred from the operator that leads to the output with
the lowest energy. For the results presented in this section, a
Gaussian kernel for patches of 3 × 3 pixels was considered,
and 50 equifocal planes placed equidistantly in the range
between 2.7 and 4.2 m, in front of the camera, were used.
Larger patches could have been considered to obtain better
accuracies; however, this would make the algorithm slower.
This algorithm provides a depth map of the scene, thus we
used a mean of the depth map values in the vicinity of the
target contour to estimate its depth.

In Fig. 8, the comparison between the novel strategy
proposed in this paper and the aforementioned one is illus-
trated. A target placed at two different depths, 3 and 3.9 m,
was used, and 50 independent experiments were performed
with f = 45.6 mm. In the figure, zm denotes the target
depth measurements obtained with the strategy presented in
Section III-A and z f the measurements obtained with the
strategy proposed in [34]. The values in brackets in the caption
correspond to the RMSEs associated with each approach,
expressed as a percentage of the target depth. These values
were computed by dividing the RMSEs by the target real
depth (both experiments were considered). The performance
of the algorithm proposed in [34] is slightly superior to the
performance of our algorithm. However, despite requiring only
two images to estimate the depth of the target (one image less
than the strategy that we propose), this algorithm is slower,
which is a critical issue in real time applications. In particular,
our method is approximately three times faster than the one
proposed in [34], for the experiments reported in Fig. 8.

Fig. 9. Comparison between the depth estimation strategy proposed
in Section III and a stereo-based strategy.

Overall, the depth estimation approach proposed in this
document seems to have the best properties for real-time target
tracking, when compared with all the monocular strategies
presented in Table I. The algorithm proposed in [18] attains
similar accuracies for depths on the order of a few meters;
however, according to the details provided in [18], this strat-
egy is not appropriate for real-time applications since it is
computationally too expensive.

In Fig. 9, a comparison between the depth estimation
strategy proposed in Section III and a classical stereo-based
system is presented. The cameras were calibrated using the
strategy described in [36], and the experimental setup used
to obtain the results was similar to the one used to obtain
the results in Fig. 8. A target was placed in front of two PTZ
cameras with a depth of 3 m, and the cameras were oriented in
such a way that the projection of the target was always close
to the center of the images. In the monocular configuration
the focal length of the camera was 45.6 mm, and in the stereo
approach, it was 6.9 mm for both cameras. Most classical
stereo methods assume that the stereo system has a nonverged
geometry, i.e., that the epipolar lines are parallel to each other;
see [37] for details about nonverged and verged geometries.
Since this assumption does not hold in many stereo systems
and, in particular, does not hold in this case, the image pairs
were rectified to a nonverged geometry; see [38] for details on
the topic of image rectification. In this paper, the center of the
target image boundary is used as the point that determines
the target position. The depth z of the target is obtained from
the disparity dP of this point (i.e., from the displacement of
this point in the images acquired with one camera with respect
to the images acquired with the other camera) according to
the expression z = f Bc/dP , where f is the focal length
of the cameras and Bc the baseline of the system. Several
baselines were tested, and 20 experiments were performed for
each baseline. As can be observed in the figure, the standard
error of our monocular depth estimation strategy is smaller
than the one of the stereo-based approach for baselines smaller
than approximately 1.6 m. This result is in accordance with the
idea that monocular depth estimation is a good option when
the baselines in multicamera systems are small.

Schechner and Kiryati [12] show that depth from focus
strategies can be seen as a realization of the geometric
triangulation principle, by considering that the diameter of the
lens aperture corresponds to the baseline between two cameras
in a stereo system. The main difference is in the physical
dimensions of the systems, since lens apertures are typically
one or two orders of magnitude smaller than stereo baselines,
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Fig. 10. Real-time target tracking. (a) Experimental setup. (b) Target
identification, where the initial snake, its temporal evolution, and the final
contour estimate are presented in black, red, and blue, respectively.

which leads to smaller depth sensitivities in the monocular
case. However, due to the 2-D nature of lens apertures, the
(implied) triangulation in depth from focus does not use only
two marginal points, as in stereo, but a continuum of points,
which makes the triangulation more robust. This is why the
monocular strategy outperforms stereo for small baselines.

B. Performance of the Proposed Algorithms

In the sequel, three experiments are reported: two in which
the target, a balloon attached to a robot Pioneer P3-DX as
in Fig. 10, moves along a straight line and a circumference,
both with known coordinates, and a third in which the target,
the UAV shown in Fig. 14(a), describes a trajectory in the 3-D
space with unknown coordinates. The first two experiments
are used to study the performance of the proposed depth
estimation algorithms, and the third illustrates the behavior of
the whole positioning and tracking system that results when
depth is inferred from these strategies.

The depth from focus estimates were obtained using as
many lines, crossing the target contour estimate, as the number
of points of this contour. In the three experiments, 40 pixel
wide lines were used. In the first two experiments, the focal
length f of the lens and the value considered for the target
unknown dimensions R′ were 45.6 and 10 mm, respectively,
and in the third experiment 20.5 mm and 1 mm, respectively.
The dynamics of the discrete-time versions of the second-
order complementary filter and LPV observer were derived
from their continuous-time equivalents by setting the gains
k1, k2, and h to 0.4, 0.04, and 0.4, respectively. In the case
of the complementary filter, the gains were chosen so that
the transfer functions T1(s) and T2(s) had two real poles in
−0.2. The gain of the LPV observer was chosen according
to the relation presented in Lemma 2, where αmax was set
to 0.4 (this value can be adjusted for different experiments).
Since α can be written in the form α = ż/z, the constraint
ż ≤ 0.4z, on the target depth derivative, is always verified. For
performance comparison purposes, the results obtained in the
first two experiments with a discrete-time version of the first-
order complementary filter derived in Section IV-A are also
presented. This filter was discretized according to the strategy
described in Section IV-B for the second-order complementary
filter. The gain of the filter was set to 0.4, i.e., equal to the
LPV observer gain, and the real dimensions R of the target
used in the first two experiments were 35.76 mm. To com-
pute these dimensions, a set of experiments was performed,

Fig. 11. Experimental evaluation of the performances of the depth from focus
algorithm (in red, σss = 45.5 mm), LPV observer (in black, σss = 20.7 mm),
first-order complementary filter (in yellow, σss = 24.5 mm), second-order
complementary filter (in green, σss = 27.4 mm), and standard filter (in
magenta, σss = 33.8 mm) in the straight-line trajectory experiment. The
target real depth is shown in blue. (a) Depth estimation. (b) Depth estimation
error.

Fig. 12. Experimental evaluation of the performances of the depth from focus
algorithm (in red, σss = 79.8 mm), LPV observer (in black, σss = 37.7 mm),
first-order complementary filter (in yellow, σss = 43.8 mm), and second-order
complementary filter (in green, σss = 48.5 mm) in the circular trajectory
experiment. The target real depth is shown in blue. (a) Depth estimation.
(b) Depth estimation error.

Fig. 13. Comparison between the real value of the bias that corrupts the
measurements of the target depth derivative and the bias estimates obtained
with the second-order complementary filter. (a) Straight-line trajectory.
(b) Circular trajectory.

where the target was moved along a calibrated trajectory. The
measurements of the dimensions of the projection of the target
into acquired images were combined with the calibrated target
depths to obtain the real dimensions of the target.

In Figs. 11–13, the performance of the proposed comple-
mentary filters and observer is addressed. For comparison pur-
poses, the results obtained using a standard filtering approach
that models the dynamics of the target with a single integrator
are presented for the straight line trajectory experiment. The
gain of this filter was set to 0.4, i.e., equal to the one of
the LPV observer. From Figs. 11(a) and 12(a), it is possible
to conclude that the estimates provided by all the strategies
converge to the vicinity of the target real depth. In other words,
the depth estimation errors, shown in Figs. 11(b) and 12(b),
converge to the vicinity of zero.
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As can be observed from the standard deviations
σss of the steady-state depth estimation errors presented
in Figs. 11(b) and 12(b), the three proposed depth estima-
tion algorithms perform better than the direct measurements
provided by the depth from focus strategy. In particular, the
LPV observer is the one that leads to the smallest standard
deviations of the steady-state depth estimation errors (20.7 mm
in the straight line trajectory and 37.7 mm in the circular
trajectory), when compared with the first-order complementary
filter (24.5 mm in the straight line trajectory and 43.8 mm
in the circular trajectory) and with the second-order comple-
mentary filter (27.4 mm in the straight line trajectory and
48.5 mm in the circular trajectory). This was unexpected
since the first-order complementary filter resorts to additional
information (the real target dimensions) that is not used by
the observer. A possible explanation for this fact has to do
with the similarities between the structure of this filter and the
structure of the observer, which were detailed in Section V.
The main difference between the two is in the computation
of the target depth derivative. In the complementary filter, it
depends on the square of rm , and in the observer, it depends
directly on rm . Thus, the influence of the noise that corrupts
this quantity is smaller in the observer. This is a significant
advantage for the observer-based approach, which does not
require any knowledge about the dimensions of the target.
Since the computation of the target depth derivative in the
second-order complementary filter also depends on the square
of rm , a similar reasoning can be used to explain why the
observer outperforms this strategy.

From Fig. 11, it is possible to conclude that the performance
of the proposed estimators is better than the performance
of the aforementioned standard filtering approach, especially
when the target is moving (approximately between the 70 s
and the 120 s). This difference results from the fact that
this simple strategy does not use any information about the
dynamics of the target. This is not the case with the proposed
filters that use measurements of variations in the dimensions
of the image of the target to obtain such information. The
difference in performance between this approach and the
proposed ones is more significant if the RMSE is used for
evaluation purposes, as the depth estimates provided by the
standard filter have an offset when the target is moving
[Fig. 11(b)]. If only this period is considered, the RMSE
of the standard filter is 55.7 mm, which is even worse
than the performance of the depth from focus measurements
(RMSE = 43.2 mm). The RMSEs associated with the
LPV observer, firstorder complementary filter, and second-
order complementary filter are 24.1, 35.9, and 37.7 mm,
respectively.

There are several reasons that can explain the errors
observed in Figs. 11(b) and 12(b): 1) uncertainty associated
with the characterization of the real trajectory of the target;
2) errors resulting from the fitting of the cost function; 3) errors
in the calibration of the camera intrinsic parameters, whose
values vary with changes in the camera focus setting; and
4) uncertainty associated with the calibration of the rela-
tion between the focus value and the focus setting of the
camera.

Fig. 14. Real-time tracking of a UAV. (a) UAV and AXIS 215 PTZ.
(b) Position estimation. In (b), solid and dashed lines represent the estimates
of the UAV position obtained using depth estimates provided by the second-
order complementary filter and LPV observer, respectively.

The values of the bias estimates β̂, provided by the second-
order complementary filter, result from the unknown nature of
the target dimensions and are shown in Fig. 13.

The third experiment, in which a small UAV with unknown
dimensions moves in the 3-D space, is shown in Fig. 14.
In Fig. 14(a), the UAV and the used camera are shown, and in
Fig. 14(b), the real-time estimates of the UAV position p in the
inertial reference frame {I}, provided by the tracking system
described in Section II, are presented. An analysis of the
performance of the system, i.e., a comparison between the
real and estimated target positions, is not provided for this
experiment since the coordinates of the trajectory of the UAV
are not known. A demo movie illustrating the behavior of the
system in this case can be found online in [39].

As explained in the end of Section III, it is possible to
estimate the dimensions of the target when they do not vary
over time. To confirm this statement, a target with dimensions
R = 73.19 mm was placed 3 m away from the camera. The use
of the approach described in Section III to estimate the dimen-
sions of this target leads to R̂ = 73.23 mm, when the depth
estimates provided by the second-order complementary filter
are used, and to R̂ = 73.22 mm, when the observer depth
estimates are considered. As can be seen, these values are very
close to the target real dimensions. The standard deviations
of the errors associated with the target dimension estimates
obtained with the filter and with the observer during the 65 s
of the experiment were 1.18 and 1.07 mm, respectively.

VII. CONCLUSION

In this paper, new methodologies for the estimation of the
depth of a target with unknown dimensions were proposed.
The measurements of the target depth, extracted from images
acquired with a single camera and based upon depth from
focus techniques were considered. These measurements were
processed using a complementary filter and a LPV observer,
whose analysis and synthesis were provided. This paper com-
plements an inexpensive single pan and tilt camera-based
indoor positioning and tracking system, as it can be used
to estimate the instantaneous depth of a moving target with
unknown dimensions. The performance of the overall system
was assessed using a series of indoor experimental tests.
A centimetric accuracy was obtained for a range of operation
of up to ten meters. The proposed system was also used
to track and localize in real time a small indoor UAV with
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unknown dimensions. In the future, this system will be used
to track and estimate in real time the 3-D position of marine
animals under captivity for behavioral studies.
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