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Abstract: This paper addresses the problem of decentralized state estimation in formations of
Autonomous Underwater Vehicles (AUVs) with fixed topologies. In the envisioned scenario, each
AUV in the formation estimates its own state relying only on locally available measurements and
data communicated by neighboring agents, requiring lower computational and communication
loads than centralized solutions. A method for designing local state observers featuring global
error dynamics that converge asymptotically to zero is detailed, and an algorithm for improving
its performance under stochastic disturbances and Gaussian uncertainties is presented. The
proposed algorithm aims to minimize the H2 norm of the global estimation error dynamics,
expressed as an optimization problem subject to Bilinear Matrix Inequality (BMI) constraints.
To assess the performance of the solution, realistic simulation results are presented and discussed
for several formation topologies.

Keywords: Marine system navigation, guidance and control; Cooperative navigation;
Navigation.

1. INTRODUCTION

The increasing use of formations in robotics, as well as
the evolution of parallel computing, have led to extensive
research on the field of distributed systems and agent
formations, see e.g. Barooah (2007), Fax (2002), Tsitsiklis
(1984), Middleton, R.H. and Braslavsky, J.H. (2010), and
Sousa et al. (2009). In short, a distributed system consists
of multiple autonomous computers or agents that com-
municate information between them and work towards a
common goal.

There are many applications where the use of multiple
agents in a cooperative setting is beneficial or even crucial.
Unmanned Aerial Vehicles (UAVs) can be used in a forma-
tion setting advantageously, as close formation flight allows
for reduced drag, thus allowing for more efficient fuel
usage, see Giulietti et al. (2000) and Wolfe et al. (1996).
In underwater applications, the concerted operation of
formations of Autonomous Underwater Vehicles (AUVs)
has many potential applications, such as minesweeping
and oceanographic sampling, see Healey (2001) and Curtin
et al. (1993). Automated highway systems also pose several
problems related to formations, such as collision avoidance
and traffic flow control, see Bender (1991) and Yanakiev
and Kanellakopoulos (1996). In general, any task where a
single agent is too slow or does not offer enough coverage,
and any setting where multiple autonomous agents are
present, may benefit from the study of the problem under
a distributed point of view. One might wonder why the
problems related with formations should be treated in
a distributed setting when their treatment in a global,
centralized way might probably be much simpler con-
ceptually. However, the computations involved with large
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formations are often very heavy and would require much
higher processing power of the agents, which is a problem
when dealing with size and energy concerns, and would
need the extensive use of telecommunications to and from
a central processing node.

This paper addresses the problem of state estimation in
a formation of vehicles in a distributed setting. Each
agent in the formation aims to estimate its own position
based on some awareness of its own movement and local
measurements and communications. In the specific case
treated in this paper, each agent has access to either
measurements of its absolute position, or measurements
of its position relative to one or more agents as well as the
state estimates of those agents, received through commu-
nication. Additionally, awareness of its own movement is
provided by a measure of its linear acceleration, provided
by an accelerometer mounted on-board. This problem is
specially relevant in the scenario of a formation of AUVs
working underwater, as sophisticated navigation solutions
such as GPS are impractical due to the attenuation of
electromagnetic waves in water. In this setting, one or
more agents could have access to measurements of their ab-
solute position using, e.g., range readings to a fixed source
or to a series of beacons, see Batista et al. (2009b) and
Batista et al. (2010). The other agents would then rely on
locally available measurements and data communication
to estimate their own position. A method for local state
observer design, rooted in classical state observer theory, is
presented here, and the estimation error of the distributed
state observer composed by the local estimators imple-
mented in each agent of the formation is shown to converge
globally asymptotically to zero for a certain class of forma-
tion structures. Namely, in the structures first considered
there is no communication feedback between the agents,
that is, the information flows in a single direction, and this
allows for the calibration of the local observers based only
on local dynamics, and without considering the specific
shape of the formation. Building on this, an iterative algo-
rithm, inspired by the P −K iterations used in some con-
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troller synthesis problems, see Fransson and Lennartson
(2003), is presented for improving the performance of such
a decentralized observer in noisy environments, as well as
constructively incorporating additional measurements and
communication that may create information loops in the
formation, based on the minimization of the H2 norm of
the estimation error dynamics. This problem is formulated
as an optimization problem with bilinear matrix inequality
(BMI) constraints.

The paper is organized as follows: Section 2 introduces the
dynamics of the agents and of the local state observers,
while Section 3 analyzes the convergence properties of the
resulting distributed state observer. Section 4 formulates
the problem of optimal decentralized state estimation
as an optimization problem with BMI constraints, and
presents an iterative algorithm to improve the performance
of the decentralized state observer. Finally, Section 5 shows
the results of several simulations carried out to assess the
performance of the proposed solution.

1.1 Notation

Throughout the paper the symbol 0 denotes a matrix (or
vector) of zeros and I an identity matrix, both of appro-
priate dimensions. Whenever relevant, the dimensions of
an n × n identity matrix are indicated as In. A block
diagonal matrix is represented as diag (A1, . . . ,An), and
the Kronecker product of two matrices A and B is denoted
byA⊗B. For x,y ∈ R

3, x×y represents the cross product.

2. AGENT AND LOCAL STATE OBSERVER
DYNAMICS

Consider a formation composed by N point-mass agents
moving in a scenario, where each agent is identified by a
distinct positive integer i ∈ {1, 2, . . . , N}. Let {I} denote
an inertial reference coordinate frame and {Bi} a coordi-
nate frame attached to agent i, denominated in the sequel
as the body-fixed coordinate frame associated with the i-
th agent. The linear motion of agent i can be written as

ṗi(t) = Ri(t)vi(t), (1)

where pi(t) ∈ R
3 is the inertial position of the agent,

vi(t) ∈ R
3 denotes its velocity relative to {I}, and Ri(t) ∈

SO(3) is the rotation matrix from {Bi} to {I}, which
satisfies

Ṙi(t) = Ri(t)S(ωi(t)),

where ωi(t) ∈ R
3 is the angular velocity of {Bi}, expressed

in body-fixed coordinates, and S(ω) is the skew-symmetric
matrix such that S(ω)x is the cross product ω × x. Each
agent is assumed to have access to measurements of both
Ri(t) and ωi(t) provided by an Attitude and Heading
Reference System (AHRS), and of its linear acceleration
ai(t) ∈ R

3, which follows

ai(t) = v̇i(t) + S(ωi(t))vi(t)− gi(t), (2)

where gi(t) ∈ R
3 is the acceleration of gravity, expressed

in body-fixed coordinates. Even though the acceleration of
gravity is usually well-known, it is treated as an unknown
variable, as small errors in the estimation of the attitude of
the agent may lead to significant errors in the acceleration
compensation. Its time derivative is given by

ġi(t) = −S(ωi(t))gi(t). (3)

Finally, consider that each agent has access to either:

(1) a measurement of its own inertial position, provided
by a GPS or by an Ultra-short Baseline (USBL)
positioning system; or

(2) measurements of its position relative to one or more
agents in the vicinity, denoted in the sequel as the
source-agents of agent i,

∆pi(t) :=











pi(t)− pai,1
(t)

pi(t)− pai,2
(t)

...
pi(t)− pai,Ni

(t)











∈ R
3Ni , ai,j ∈ Ai, (4)

where

Ai := {ai,1, ai,2, . . . , ai,Ni
|

ai,j ∈ {1, . . . , N}, j = 1, . . . , Ni}

is the set of source-agents of agent i, and Ni the
number of source-agents of agent i. Furthermore, each
of those agents transmits its own position estimate
p̂ai,j

(t) ∈ R
3 to agent i.

Now, consider the problem of decentralized state esti-
mation in the formation, in the sense that each agent
aims to estimate its inertial position using only locally
available data, that is, measurements provided by the on-
board sensor-suite and position estimates received from
its source-agents. For the first case, i.e., with absolute
position readings, grouping equations (1) through (3), and
measuring the absolute position, yields the system











ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = pi(t)

.

Using in each vehicle the Lyapunov state transformation
introduced in Batista et al. (2009a),





x1
i (t)

x2
i (t)

x3
i (t)



 :=

[

I 0 0
0 Ri(t) 0
0 0 Ri(t)

][

pi(t)
vi(t)
gi(t)

]

, (5)

which preserves stability and observability properties, and
making ui(t) := Ri(t)ai(t), the system dynamics can be
written as the linear time-invariant (LTI) system

{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = CLxi(t)

, (6)

where xT
i (t) =

[

[x1
i (t)]

T [x2
i (t)]

T [x3
i (t)]

T
]T

∈ R
n, n = 9,

is the state of the system,

AL =

[

0 I 0
0 0 I
0 0 0

]

, BL =

[

0
I
0

]

, and CL = [I 0 0] .

Simple calculations show that the pair (AL,CL) is ob-
servable, thus it is straightforward to design a local state
observer for agent i with globally asymptotically stable
error dynamics, see Astrom and Murray (2008).

For the second case, i.e., when the agent has access to
relative position measurements, grouping equations (1)
through (3) and taking the relative position measurements
(4) as the output yields the system











ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = ∆pi(t)

,

and applying (5) yields the compact form
{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = Ci∆xi(t)

, (7)

where xi(t), AL, and BL are defined as in (6), Ci =
[

CT
L CT

L . . . CT
L

]T
∈ R

3Ni×nNi , and
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∆xi(t) :=









xi(t)− xai,1
(t)

xi(t)− xai,2
(t)

...
xi(t)− xai,Ni

(t)









∈ R
nNi .

The dynamics of the local state observers are defined as
{

˙̂xi(t) := ALx̂i(t) +BLui(t) + Li(yi(t)− ŷi(t))
ŷi(t) := Ci∆x̂(t)

, (8)

where x̂i(t) ∈ R
n is the state estimate of agent i, Li ∈

R
n×3Ni is an arbitrary matrix of output feedback weights,

to be determined, and

∆x̂i(t) :=









x̂i(t)− x̂ai,1
(t)

x̂i(t)− x̂ai,2
(t)

...
x̂i(t)− x̂ai,Ni

(t)









∈ R
nNi . (9)

Defining the estimation error of agent i, x̃i(t) ∈ R
n as

x̃i(t) := xi(t) − x̂i(t) and splitting Li into the blocks
referring to each of the Ni distinct measurements, Li =
[

L
ai,1

i L
ai,2

i . . . L
ai,Ni
i

]

, L
ai,j

i ∈ R
n×3 the error dynamics

can be written as

˙̃xi(t) =

(

AL −

Ni
∑

k=1

L
ai,k

i CL

)

x̃i(t) +

Ni
∑

k=1

L
ai,k

i CLx̃ai,k
(t).

3. STABLE OBSERVER GAINS

This section presents a sufficient condition for global
asymptotic stability of the error of the decentralized state
observer presented in the previous section. Agent forma-
tions such as the one considered in this paper can be
handily described by a directed graph, and as such it is
convenient to introduce some concepts on graph theory,
see Wallis (2007) and West (2001) for further details.

A directed graph, or digraph, G := (V, E) is composed by
a set V of vertices together with a set of directed edges E ,
which are ordered pairs of vertices. Such an edge can be
expressed as e = (a, b), meaning that edge e is incident on
vertices a and b, directed towards b. A directed path in G is
a sequence (v0, e1, v1, e2, v2, . . . , en, vn) of distinct vertices
(with the possible exception of the first and the last) and
edges of G such that ei = (vi−1, vi). A directed cycle is a
directed path in which the first and the last vertices are
the same. A directed graph is called acyclic if it contains
no directed cycles. If a directed graph G is acyclic, it can
be represented by a drawing divided in K hierarchical
tiers following a few simple rules: tier 0 is composed of
the vertices with no edges directed towards them while,
for a vertex in tier k > 0, all directed paths ending in
that vertex start in a node of a lower tier. In this paper,
each vertex is denoted by its tier k and an identifier i in
the respective tier (e.g., some quantity x associated with
vertex 4 in tier 2 is denoted as x2/4, and the vertex itself is
identified as {2/4}). Furthermore, the number of vertices
in a given tier k is denoted by Tk.

Now, consider the agent formation described in the pre-
vious section. This kind of formation can be associated
with a directed graph G = (V, E), where each vertex
represents a distinct agent, and an edge (a, b) means that
agent a is a source-agent of agent b. Note that the vertices
with no edges directed towards them refer to agents with
access to measurements of their own absolute position.
The following result establishes a sufficient condition for
global asymptotic stability of the estimation error for the
distributed state observer.

Theorem 1. Consider a formation composed of N agents,
whose dynamics are described either by (6) or (7), depend-
ing on the type of measurements available to them, and
assume that the digraph associated with the formation is
acyclic. Suppose that each agent {a/b} described by (6)
implements a local state observer with globally asymptot-
ically stable error dynamics, with gain La/b, and that each
agent {k/i} described by (7) implements the local state
observer (8), with the gain Lk/i chosen so that the matrix
(

AL −
∑Nk/i

j=1
L
ak/i,j

k/i CL

)

is stable. Then, the estimation

error of the distributed state observer,

e(t) :=
[

x̃T
0/1(t) x̃T

0/2(t) . . . x̃T
K−1/TK−1

(t)
]T

∈ R
nN ,

composed by the concatenation of the estimation error
of each local observer, converges globally assymptotically
to zero, and its dynamics satisfy ė(t) = Λe(t) for some
Λ ∈ R

nN×nN , whose eigenvalues are those of each local
state observer.

This result allows the design of a distributed estimator
in the terms described in Section 2. Note that the state
observer of each agent can be designed locally.

Remark 1. It is also possible to use this method to design
a stable state observer when the graph associated with the
formation is cyclic, by removing edges from the graph until
it is no longer cyclic, while making sure to never remove the
last edge directed towards a vertex. This is then applied to
the observers by zeroing the gains referring to edges which
were removed during the process.

4. PERFORMANCE IN NOISY ENVIRONMENTS

The previous section presented a method for designing
decentralized state observers for agent formations such as
the one described in Section 1. While stability is assured,
there are no guarantees regarding performance in noisy
environments, which is critical in most practical settings.
As such, this section introduces a method for improving
the performance of the state observer in the presence of
sensor noise and cycles in the formation graph.

4.1 Global Observer Dynamics

The global dynamics of the formation can be represented
in the LTI form

{

ẋ(t) = Agx(t) +Bgu(t) +w(t)
y(t) = Cgx(t) + v(t)

, (10)

where x(t) :=
[

xT
1 (t) x

T
2 (t) . . . x

T
N (t)

]T
∈R

nN is the state

of the whole formation, y(t) :=
[

yT
1 (t) y

T
2 (t) . . . y

T
N (t)

]T
∈

R
3M the output of the system, M being the total number

of measurements in the whole formation, and u(t) :=
[

uT
1 (t) uT

2 (t) . . . uT
N (t)

]T
∈ R

3N is the input of the sys-

tem. The variables w(t) ∈ R
nN and v(t) ∈ R

3M represent,
respectively, process and observation noise, which are as-
sumed to be zero-mean uncorrelated white Gaussian pro-
cesses, with associated covariance matrices Q ∈ R

nN×nN

and R ∈ R
3M×3M . The matrices Ag ∈ R

nN×nN and
Bg ∈ R

nN×3N are built from the dynamics of the indi-
vidual agents, following

{

Ag = IN ⊗AL
Bg = IN ⊗BL

.

To describe Cg ∈ R
3M×nN , it is useful to build a matrix

S ∈ R
N×M similar to the incidence matrix of graph G.
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First, define virtual edges of the form (0, i) to represent
the absolute position measurements that are available to
some of the agents, then build S following

Sij =

{

1, edge j incident on i, directed towards it,
−1, edge j incident on i, directed away from it,
0, otherwise.

Then, Cg follows Cg = ST ⊗CL. The local state observers
can also be grouped in a similar way, yielding

{

˙̂x(t) := Agx̂(t) +Bgu(t) + L(y(t)− ŷ(t))
ŷ(t) := Cgx̂(t)

, (11)

where x̂(t) :=
[

x̂
T
1 (t) x̂

T
2 (t) . . . x̂

T
N (t)

]T
∈R

nN is the global
state estimate of the decentralized state observer, and
L ∈ R

nN×3M is the matrix of observer gains. To account
for the fact that each local observer only has access to
some measurements, L must follow a special structure, or
sparsity constraint. More specifically, define an augmented
incidence matrix S′ := S⊗ 1n,3 ∈ R

nN×3M , where 1n,m is
a n ×m matrix whose entries are all equal to 1. Then, L
must obey the following sparsity constraint:

Lij = 0 if S′

ij 6= 1, ∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M}.

This constraint prevents the use of classical filter design
techniques such as the Kalman filter, therefore a different
strategy must be pursued to find suitable observer gains.

4.2 H2 Nominal Performance

Consider the system
{

ẋ(t) = Ax(t) +Bu(t)
z(t) = Cx(t) , (12)

where x(t) ∈ R
m is the state of the system, u(t) ∈ R

o

the input, and z(t) ∈ R
p is the output. The matrices

A, B, and C are constant real matrices of appropriate
dimensions. Denote the corresponding transfer function by
T(s) = C(Is−A)−1B.

The H2 norm of the system, ‖T‖H2
, which verifies

‖T‖
2

H2
=

1

2π
trace

∫

∞

−∞

T(jω)T(jω)∗dω, (13)

can be used as a performance metric for state observers.
In fact, when the components of the input u(t) are
independent zero-mean, white Gaussian noise processes,
the H2 norm of the system is also the asymptotic output
variance of the system, see Scherer and Weiland (2005).
The global error of the decentralized state observer (11),
x̃(t) ∈ R

nN , is defined as x̃(t) := x(t) − x̂(t). Taking its
time derivative and using (10) and (11) yields

˙̃x(t) = (Ag − LCg)ẽ(t) +w(t)− Lv(t). (14)

Define a zero-mean, uncorrelated, white Gaussian noise
process q(t) ∈ R

nN+3M whose covariance is the identity
matrix. The error dynamics (14) can then be rewritten as

˙̃x(t) = (Ag − LCg)x̃(t) +
[

Q
1
2 −LR

1
2

]

q(t). (15)

By making the substitution


















A = (Ag − LCg),
B =

[

Q
1
2 −LR

1
2

]

,
C = I,
x(t) = x̃(t),
u(t) = q(t),

(16)

the system (12) describes the error dynamics of the decen-
tralized state observer, and its H2 norm is also the asymp-
totic variance of the estimation error. Thus, the problem of

Table 1. Algorithm for H2 norm minimization

1) Initialization: set k = 1; find L(0) such that (Ag−L(0)Cg)
is stable (this can be done following, e.g., Theorem 1);
choose a stopping criterion for the algorithm (e.g. a fixed
number of steps, or a minimum improvement on the value
of γ at each iteration).

2) Solve the optimization problem (18) with L fixed as

L(k−1) and store the resulting P∗ as P(k).

3) Solve the optimization problem (18) with P fixed as P(k)

and store the resulting L∗ as L(k).

4) If the stopping criterion is met, stop and take L(k) as the
gain for the decentralized state observer. Otherwise, set
k = k + 1 and go to step 2.

optimizing the performance of the state observer in noisy
environments can be restated as minimizing the H2 norm
of (12). Consider the following result, resorting to Linear
Matrix Inequality (LMI) concepts, as described in Scherer
and Weiland (2005), presented here in a simplified form:

Theorem 2. Suppose that the system (10) is asymptoti-
cally stable. Then, the following statements are equivalent:

(1) ‖T‖
2
< γ.

(2) there exists P = PT ≻ 0 and Z such that
[

ATP+PA PB

BTP −γI

]

≺ 0,

[

P CT

C Z

]

≻ 0,

and trace(Z) < γ (17)

Define

X(P,L, γ) :=
[

(Ag−LCg)
TP+P(Ag−LCg) P

[

Q
1
2 −LR

1
2

]

[

Q
1
2 −LR

1
2

]T
P −γI

]

Using Theorem 2 and the substitution (16), the minimiza-
tion of the H2 norm can be done solving the optimization
problem

min
P∈R

nN×nN

L∈R
nN×3M

Z∈R
nN×nN

γ∈R
+

γ (18)

subject to: P ≻ 0,
X(P,L, γ) ≺ 0,
[

P I
I Z

]

≻ 0,

trace(Z) < γ,

and Lij = 0 if S′

ij 6= 1,

∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M},

see Scherer and Weiland (2005). The resulting set of con-
straints contains a BMI, which is inherently difficult to
treat and is usually associated with nonconvex problems.
In fact, even finding a feasible solution is a NP-hard
problem, see Toker, O. and Ozbay, H. (1995). While it is
possible, for centralized systems, to apply a variable substi-
tution which renders the constraints linear, the structural
constraint imposed on L in the decentralized case inviabi-
lizes this approach. On the other hand, if the value of L or
P is fixed, the constraints take a Linear Matrix Inequality
(LMI) form, and there exist very fast and efficient methods
to solve optimization problems with LMI constraints. Fol-
lowing this, Table 1 details an algorithm for improvement
of the performance of the decentralized state observer.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

13639



1

6

7

3 4

2

5

8

Graph a: Graph b:

9

1

6

7

3 4

2

5

8

9

Fig. 1. Digraphs associated with the agent formations
considered in simulation
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Fig. 2. Evolution of the algorithm for different initial
conditions, acyclic graph.

5. SIMULATION RESULTS

This section presents the results of simulations that were
carried out in order to assess the performance of the
proposed decentralized state observers. Two similar for-
mation structures were considered, with associated graphs
depicted in Fig.1. The key difference between both is that,
while graph (a) is acyclic, graph (b) has two additional
edges that render it cyclic. The results are divided in
two parts. In the first one, the algorithm proposed in the
previous section is used for the two different formation
structures, using in each case several distinct initial values
for L, which were found using Theorem 1. The second part
takes the best gain L found for each formation structure
and compares their performance in simulation.

5.1 H2 Norm Minimization

To optimize the state observer gains, the process and
observation noise must first be characterized. In the sim-
ulations, the linear acceleration, relative position, and
absolute position measurements were corrupted by addi-
tive, uncorrelated, zero-mean white gaussian noise, with
standard deviations of 0.01 (m/s2), 1 (m), and 0.1 (m),
respectively. Following this, Q and R were set to

{

Q = diag (0.0001, 0.0001, . . . , 0.0001)
R = diag (R0, R0, R1, R1, R1, . . . , R1)

,

where R0 = diag (0.01, 0.01, 0.01) refers to the absolute
position measurements of agents 1 and 2, while R1 = I
refers to the relative position measurements available to
the other agents.

Fig. 2 and Fig. 3 depict the evolution of the H2 cost
during the optimization algorithm for the acyclic and
cyclic graph, respectively, with 4 distinct initial values of
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Fig. 3. Evolution of the algorithm for different initial
conditions, cyclic graph.

Table 2. Lowest value achieved for γ

Acy./Decent. Acy./Cent. Cyc./Decent. Cyc./Cent.

γmin 8.459 6.901 8.236 6.648

Table 3. Comparison of steady-state error stan-
dard deviation

Decent./Acy. Decent./Cyc. Cent./Cyc.

σx
7 1.213× 10−1 1.155× 10−1 8.026× 10−2

σvx
7 3.558× 10−2 2.955× 10−2 2.373× 10−2

σ
g
7 4.118× 10−3 3.050× 10−3 3.735× 10−3

σx
8 1.272× 10−1 1.195× 10−1 8.087× 10−2

σvx
8 3.511× 10−2 2.940× 10−2 2.422× 10−2

σ
g
8 4.209× 10−3 3.148× 10−3 3.738× 10−3

σx
9 1.127× 10−1 1.163× 10−1 8.110× 10−2

σvx
9 2.964× 10−2 3.198× 10−2 2.404× 10−2

σ
g
9 3.960× 10−3 3.959× 10−3 3.952× 10−3

L. The line in red represents the H2 norm of the opti-
mal centralized filter, whose gains were computed using
classical Kalman filtering theory, see Jazwinski (1970).
To complement the graphical data, Table 2 details the
best values found in each case, and also the H2 norm
of the optimal centralized filter, to provide a comparison
term. The results show that, in every case, the algorithm
improved on the initial L and that, in the cyclic case, it
used the additional edges constructively and it achieved
better values than in the acyclic one.

5.2 Performance assessment and comparison

The agents were distributed spatially replicating the draw-
ing of the formation graph, and their initial velocity was
set to zero for all coordinates. The system input, that is,
the linear acceleration of the agent expressed in inertial
coordinates, was set for each agent following the rule






























ax(t) = Ax
(2π)2

T 2
x

cos

(

2π

Tx
t+ 2kxπ

)

(m/s2)

ay(t) = Ay
(2π)2

T 2
y

cos

(

2π

Ty
t+ 2kyπ

)

(m/s2)

az(t) = 10 +Az
(2π)2

T 2
z

cos

(

2π

Tz
t+ 2kzπ

)

(m/s2)

,

where the real scalars Ax, Ay, Az, Tx, Ty, Tz, kx, ky and
kz were chosen arbitrarily for each agent. As for the local
observers, and also the centralized Kalman filter, the initial
values for all state estimates were set to zero, except for
the ones corresponding to the acceleration of gravity. As g
is known approximately, it was set to its real value in all
estimators.
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Fig. 4. Evolution of the estimation error of agent 9,
for the optimal centralized Kalman filter and both
decentralized state observers

Fig. 4 shows the evolution of some of the error variables,
namely for the first coordinate of the position and velocity,
and the third coordinate of g, of agent 9. As it can be seen,
the error of both decentralized state observers converges
to the vicinity of zero (they do not converge to zero
only due to the presence of noise). To complement the
graphical data, Table 3 compares the standard deviation of
selected error variables for both filters and also the optimal
centralized one, namely the first coordinate of the position
and velocity, and the third coordinate of g, of agents 7,
8, and 9. As the data shows, while the performance is
marginally worse in agent 9 for the state observer built
on the cyclical graph, there is a clear improvement for
agents 7 and 8. The performance of both decentralized
filters is worse than that of the optimal centralized filter,
which is to be expected given the vastly inferior amount
of information available to estimate the state of each
individual agent. Nevertheless, the overall results are quite
satisfactory for the decentralized estimation structure,
which evidences the goodness of the proposed distributed
solutions in comparison with the heavy computational and
communication loads of the centralized estimator.

6. CONCLUSIONS

The problem of decentralized state estimation in forma-
tions of AUVs with fixed topologies was addressed in
this paper. A method for designing local state observers
presenting global error dynamics that converge globally
asymptotically to zero was derived, and an algorithm for
improving its H2 nominal performance in the presence of
noisy measurements or cycles in the graph associated with
the formation was detailed. Finally, simulation results were
presented that illustrate the performance of the proposed
solution in noisy environments and the improvement re-
sulting from the constructive use of additional measure-
ments which render the formation graph cyclic.
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