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Abstract This paper proposes a localization sys-
tem for a mobile robot based on odometric data
and RGB-D (Red, Green, Blue image and Depth
map) measurements relative to a landmark, available
from sensors installed on board. The localization sys-
tem is composed of two cascaded estimators: i) a
kinematic optimal attitude estimator; and ii) a position
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estimator designed in body-frame, based on an under-
lying LPV (Linear Parameter Varying) model, that
avoids the need of approximations or linearization.
Both underlying models are observable, even consid-
ering the presence of angular and linear slippages and
the resulting estimators present globally asymptoti-
cally stable estimation error dynamics. Experiments
to assess the performance of the proposed estimators
were carried out resorting to a wheeled differential
drive mobile robot in a laboratory instrumented with
a Qualysis Motion Tracking System, used for ground-
truth validation. An effective real-time localization
system is obtained, featuring convergence to zero of
the estimated errors, regardless the initial estimate and
without requiring the landmark to be always visible,
thus validating the system global stability. The results
obtained paved the way to the integration of the pro-
posed localization solution in a docking system for
the same robot. The docking problem is solved with a
smooth, time-invariant, globally asymptotically stable
feedback control law, which allows for a very human-
like closed-loop steering that drives the robot to a
certain goal with a desired attitude and tunable cur-
vature. Simulation and experimental results with the
aforementioned robot are also presented, that illus-
trate the performance of the docking solution based
on the proposed localization methods central to this
work.

Keywords Mobile robots · Robot kinematics ·
Lyapunov methods · Nonlinear control systems
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1 Introduction

The localization of mobile robots is one important
challenge to the scientific community. The robots
have to be able to use the sensors on-board, which
often consist of optical encoders, mono and stereo
cameras, gyroscopes, accelerometers, laser range-
finders, among many others [1]. The localization in
the environment consists of knowing its position in
some global frame or in any local frame of interest.
This localization is always needed if the robot is to
autonomously plan its motions that go towards the
satisfaction of a certain goal. The specific task to be
carried out by the mobile robot motivates the choice of
the kind of localization needed, ranging from a topo-
logical localization [2, 3], often aided by a structured
map or other representation of the environment, to a
scenario where the robot may have to build its own
map of the surroundings while simultaneously local-
izing itself in it. The latter problem is widely known
as SLAM [4, 5] and the solutions are usually based in
particle filters or extended Kalman Filters.

The strategy proposed in this paper consists of a
sensor-based localization system that estimates the
position of a certain feature or landmark in the robot
frame, based on measurements from an RGB-D (red,
green, blue and depth) camera. Thus an intuitive inter-
action of the robot with its close surroundings is possi-
ble. The purpose of this method is twofold: i) to tackle
some problems present in a number of localization
solutions, by reducing the consistency and accuracy
issues caused by approximations or linearizations, as
is the case of the EKF based localization systems [6,
7]; and ii) to complement their functionality, allow-
ing for a modularized approach to a specific mission.
This estimator takes advantage of the independence
between the attitude and position of a feature relative
to the body-fixed frame, thus preventing the attitude
errors from augmenting given the position estimation
errors. The system kinematics is expressed as an LPV
(Linear Parameter Varying) system, thus allowing the
design of an estimator with global asymptotically sta-
ble error dynamics. This characteristic is due to the
fact that the exact kinematics does not need to be lin-
earized for the estimator design process. The models
used, augmented by constant or slowly time-varying
angular and linear slippages, respectively, are shown
to be observable, following the approach introduced in
[8, 9].

Localization systems are key enabling elements
for the development of docking systems. Industrial
automation has experienced huge advances in the last
decades [10]. Flexible automation manufacturing cells
require the use of automatic handling solutions usu-
ally resorting to Automatic Guided Vehicles (AGVs).
Nowadays, fleets of AGVs must navigate among
warehouses, automated workcells, and charging sta-
tions. Thus, the automated docking of mobile robotic
platforms, with minimal structuring of the environ-
ment is still an active topic of research [11]. The
solutions found in the literature to solve this problem
are diverse, both in terms of algorithms and sensors.
One approach, defined as visual servoing, with an
early contribution reported in [12], consists of repre-
senting a given task directly by an error relative to a
goal image to be captured by the vision system. This
approach became popular from 1990 onward, with
works such as [13], and the contribute of task function
approach [14]. Visual servoing benefits from con-
tributes with out-of-body cameras, i.e., Camera-Space
Manipulation (CSM) [15], or Mobile Camera-Space
Manipulation (MCSM) which extends the latter with
body embedded cameras. More recently, [16] com-
putes the goal configuration using visual landmarks.
Other approaches to the docking problem include
the computation of feedback control laws by using
Lyapunov and backstepping techniques. That line of
research lead to the development of an Ultra-Short
Baseline (USBL) acoustic positioning system [17]
applied on an underwater solution for a similar prob-
lem as the one that will be illustrated in this work.
Electromagnetic based homing systems [18], optical
guidance approaches such as [19], and computing the
deceleration needed by a robot, resorting to an esti-
mation of a time-to-contact (τ ) through optical flow
field divergence measurements of an image stream as
in [20], are some other alternatives that have been
exploited by the community. In [21] a method based
on the direction of arrival (DOA) of signals transmit-
ted by RFID transponders is proposed, showing that
a robot can dock in a station transmitting through an
RFID by using two antennas installed on board of
the vehicle. A method proposing the estimation of
the position and orientation of a visual landmark is
presented in [22] to help on docking and automatic
recharging, thus being similar to the work presented
herein. Recently, in [23] an indoor RGB-D and WiFi
localization system is proposed resorting to a Markov



J Intell Robot Syst (2015) 80:423–440 425

Localization technique, with an one meter standard
deviation error. The solution detailed in this work is
based on a preliminary version presented in [24] and
clearly present a reduced error relative to this last
contribution.

The main contributions of the method proposed in
this paper are: i) to tackle some problems present in
a number of localization solutions, by reducing the
consistency and accuracy issues caused by approxi-
mations or linearizations, as is the case of the EKF
based localization systems [6, 7]; and ii) to comple-
ment their functionality, allowing for a modularized
approach to a specific mission. Moreover, this esti-
mator takes advantage of the independence between
the attitude and position of a feature relative to the
body-fixed frame, thus preventing the attitude errors
from augmenting given the position estimation errors.

This work is structured as follows: the architecture
is briefly outlined in Section 2, where all the mod-
ules that compose the localization system are shown,
followed by the robot environment formalization in
Section 3. Then, both attitude and position estimator
modules are presented, respectively, in Section 4 and
Section 5. Finally the experimental results are ana-
lyzed in Section 6, where a Qualisys™Visual Tracking
System [25] is used for ground-truth. Results of the
proposed localization solution integrated in a docking
system are also reported.

2 Architecture

The proposed landmark-based on-board localization
system, depicted in Fig. 1, is composed of three
modules: i) the landmark detector module that consists

of the algorithm that will process the RGB and depth
images, in order to obtain measurements of the land-
mark position and orientation in the robot frame; ii) a
sub-optimal position estimator based on a Kalman Fil-
ter; iii) an optimal attitude estimator, also based on a
Kalman filter.

All the modules of the proposed architecture,
depicted in Fig. 1, rely on the sensor package com-
posed by: i) an RGB-D camera, that will provide
visual data that the landmark detector uses to com-
pute the relative position e and relative attitude ψ ;
and ii) the left and right velocities of the wheels, used
as measurements to compute the linear and angular
velocities, v and ω, respectively. The RGB-D cam-
era used is a Microsoft Kinect, which includes an
8 bit RGB image with the VGA resolution (640 ×
480 pixels), and a 2D depth sensor with the same
resolution, with 11 bits of resolution. The use of this
sensor for mobile robots localization could combine
the capture of an RGB image and a depth map about
the environment, obtaining RGB-D images. Optical
encoders attached to the wheels provide angular and
linear velocity readings. The velocity readings can be
derived from the encoder readings directly or from the
velocity commands stored in the controller, assuming
perfect tracking.

3 Model Description

The scenario of operation under study in this work
is composed of a mobile robot and a static land-
mark, as depicted in Fig. 2, where the frame {I } is an
inertial frame that can be considered to be stationary
for the purposes of this study. Frame {B} is attached to

Fig. 1 Estimator Modules
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Fig. 2 Schematic of Inertial and Body-Fixed frames

the mobile robot and is hence designated a body-fixed
frame.

In order to transform a position written in {B} into
one expressed in {I }, a transformation needs to be
executed. The translation is defined by the body-fixed
frame position in the inertial frame pI

B , and so the
landmark position in both frames follows

pI
B(t) + IpB

l (t) = pI
l (t), (1)

where IpB
l (t) ∈ R

2 is the landmark position in {B}
expressed in {I } and pI

l (t) is the landmark position in
{I }, expressed in the latter. The landmark position in
the body fixed frame pB

l (t) ∈ R
2 is what needs to be

derived and will henceforth, for a matter of simplicity,
be denoted as e(t).

The rotation matrix from {B} to {I } that simplifies
(1) is denoted by IRB(t) ∈ SO(2) and respects the
kinematics

I ṘB(t) = S(ω(t))R(t), (2)

where

S(ω(t)) =
[

0 −ω(t)

ω(t) 0

]
,

is a skew symmetric matrix. The angular velocity of
the body-fixed frame is given by ω(t) ∈ R, that
can be obtained from the differential readings of the
encoders. The rotation IRB(t) will henceforth be
denoted as R(t) for simplicity. It is straightforward

Fig. 3 IST Biomechanics Laboratory.A - Landmark, B - RGB-
D Camera, and C - Robot

to show that the inverse rotation follows a simi-
lar expression to Eq. 2 by taking the derivative on
both sides of RT R = I and making the necessary
substitutions

ṘT (t) = −S(ω(t))RT (t).

In this section all quantities were defined in 2D but the
generalization to 3D is straightforward.

4 Optimal Attitude and Angular Slippage
Estimation

This section will focus on deriving the attitude esti-
mator. Firstly, the kinematic model will be described,
followed by a brief observability study that will nat-
urally lead to the definition of the estimator. The
proposed kinematic system is appended explicitly by
the unavoidable angular slippage, that may occur
due to the lack of knowledge on the contact points
with the floor. Lack of accuracy in the measure-
ment of each wheel radius, aging, or asymmetries

Table 1 Qualysis Motion Tracking system characteristics

Cameras 14 Qualisys Pro Reflex 1000

Frequency 100 Hz

Markers 19 mm diam. passive retroreflectors

Accuracy <1 mm after calibration
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in mechanical construction, can also be explained by
the model adopted. Here the angular slippage s(t) is
considered to be constant or slowly time-varying, i.e.
ṡ = 0. The model that describes the attitude sys-
tem is given by the following dynamic and the output
equations

θ̇(t) = Aθ θ(t) + Bθω(t) + ν(t), (3)

and

y(t) = Cθ θ(t) + η(t), (4)

respectively, where θ(t) = [ψ(t) s(t)]T ,Aθ =[
0 −1
0 0

]
,Bθ =

[ −1
0

]
,Cθ = [

1 0
]
, and ν(t)

and η(t) are the plant and output noises, respectively.
The superscript θ is added to denote the dynamics,
input, and output matrices, respectively, of the attitude
state space model. Both disturbances are assumed to
have Gaussian distributions with zero mean and with
covariances Qθ and Rθ , respectively, i.e.

ν(t) ∼ N(0,Qθ )

η(t) ∼ N(0,Rθ ).

This model considers the landmark as if it is mov-
ing in the body reference frame. Thus, ψ(t) repre-
sents the landmark attitude expressed in body frame,
which as stated before, is under the assumption that

it is possible to define a unique reference system in
the landmark used. Moreover, it is assumed that the
camera is able to detect the relative orientation. Since
the continuous time system is LTI (Linear Time
Invariant), as expressed by Eq. 3 and 4, it is suffi-
cient to check if the observability matrix Oa is full
rank,

Oa =
[

Cθ

CθAθ

]
=

[
1 0
0 −1

]
.

The solution that we will develop along this work
will be implemented in discrete time. Thus, assum-
ing that the attitude filter runs fast enough compared
to the robot closed loop dynamics bandwidth we can
consider constant angular velocity between sampling
instants. The state transition equation for this linear
time invariant system is

θk+1 = �θ
kθk + Gθ

kωk + νk,

where ωk is the measured angular velocity obtained
using the command sent to the dual-motor driver,
�θ

k = exp(AθTk),Gθ
k = ωk

∫ tk
tk−1

�θ (tk −τ)
(
Bθ )

)
dτ ,

and Tk is the time interval between samples k − 1
and k. From the implementation point of view this
quantity can be measured, which is not constant in
general.

The attitude kinematics and the outputs are com-
pletely defined, so defining the state to be estimated

Fig. 4 Trajectory ground
truth and estimate results
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as θ̂(t) =
[ ˆψ(t) ˆs(t)

]T

, it is now possible to com-

pute the dynamics of the optimal estimator, making
use of the celebrated Kalman filter [26]. The state esti-
mate dynamics and the error covariance are updated
according respectively by

θ̂k+1 = �θ
k θ̂k + Gθ

kωk + Kθ
k

[
ψ̄k − ψ̂k

]
,

Pθ
k|k =

(
I − Kθ

kC
θ
)
Pθ

k|k−1

(
I − Kθ

kC
θ
)

+ Kθ
kR

θ
kK

θ
k .

where Kθ
k is the Kalman gain, at time instant kT ,

computed as

Kθ
k = Pθ

k|kCθ
[
CθPθ

k|kCθ
]−1

.

The error covariance prediction can be obtained
resorting to

Pθ
k|k−1 = �(k)θPθ

k−1|k−1�
θ (k)T + Qθ

k . (5)

5 Sub-Optimal Position and Linear Slippage
Estimation

In order to have a localization system working in the
mobile robot, thus expressed in {B}, as introduced
in Section 3, we need to compute the error dynam-
ics of the position of the landmark in body frame
ė(t). After having completely defined the model of the

Fig. 5 Trajectory ground
truth and estimate results in
X axis on top; Estimation
errors at the bottom
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Fig. 6 Trajectory ground
truth and estimate results in
Y axis on top; Estimation
errors at the bottom
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Fig. 7 Attitude estimate
error, relative to
ground-truth information
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robot environment in Section 3, we start by expressing
the dynamics of the robot’s position in {I } as
ṗ(t) = IRB(t)u(t),

where u(t) = [v(t) 0] and v(t) ∈ R is the robot veloc-
ity in the body-fixed frame. By expressing the product
of Eq. 1 byRT we get the position error e(t) expressed
in terms of pl and p each corresponding to the land-
mark position and {B} position in {I } (respectively pI

l

and pI
B ).

e(t) = R(t)T (pl (t) − p(t)), (6)

which, once the time derivative is taken gives

ė = ṘT (t)(pl(t) − p(t)) + RT (t) (ṗl(t) − ṗ(t)) . (7)

Considering that the landmark will be static in the
inertial reference system, the term ṗl(t) drops. Using
Eq. 6 in Eq. 7 we get

ė(t) = −S(ω)e(t) − u(t). (8)

It can be further assumed that the common mode
velocity v(t) can suffer from a biased measurement
due to slippage. The velocity could then be expressed
as v(t) = v̄(t)+b where b is a constant or slowly time-
varying bias and v̄(t) is the measured linear velocity,

while v(t) is the actual linear velocity. Thus, the slip-
page is only considered along the longitudinal axis of
the robot. An extension to consider transversal slip-
page would be straightforward. Assuming the state
vector as x(t) = [eT (t) b(t)]T , the matrix expression
for the dynamics of the position will be given by

ẋ(t) = A(ω(t))x(t) + Bv̄(t) + v(t)

=
⎡
⎣ 0 ω −1

−ω 0 0
0 0 0

⎤
⎦ x(t) +

⎡
⎣ −1

0
0

⎤
⎦ v̄(t) + v(t),

where v(t) ∈ R
3 is Gaussian white plant noise caused

by model uncertainty and is characterized by

E[v(t)] = 0, ∀t ∈ R

E[v(t)vT (τ )] = Qxδ(t − τ).

A and B denote the dynamics and input matrices,
respectively of the position state space model. Since
the camera provides measurements of the landmark
localization in {B}, the output equation of this under-
lying system can be expressed as

y(t) = e(t) + w(t),

where w(t) represents the noise generated by the
camera sensor as well as the detection algorithm,

Fig. 8 Histograms of the
estimation errors, relative to
ground truth
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assumed to have properties similar to those of the plant
noise

E[w(t)] = 0, ∀t ∈ R

E
[
w(t)wT (τ )

]
= Rxδ(t − τ), ∀t, τ ∈ R.

Also, both the plant and the sensor noise are assumed
as uncorrelated, which can be expressed as

E[w(η)v(τ )] = 0, ∀η, τ ∈ R.

In order to be possible to estimate the state of
the system just introduced, it needs to be observ-
able. This analysis uses the observation matrix C =[
1 0 0
0 1 0

]
, where slippage is not explicitly present.

The transition matrix can be computed as �(t1, t0) =
exp

(∫ t1
t0
A(ω(τ))dτ

)
, where t1 > t0. As the dynam-

ics were written as an LPV system, observability can

be studied resorting to the tools proposed in [9]. In
general, the observability Gramian WO(t1, t0) will be
full rank rendering the system observable. Even if the
linear movement case is considered, i.e. ω(t) = 0, the
observability Gramian degenerates in

WO(t1, t0)|ω=0 =
⎡
⎣ �t 0 −�t2/2

0 �t 0
−�t2/2 0 �t3/3

⎤
⎦

where �t = t1− t0 and full observability is preserved.
To obtain a discretized version of this system,

we adopted an identical approach to that pursued in
Section 4, leading to the following discrete time LPV
system, with sampling period T

xk+1 = �(ωk)xk + Gkvk + vk,

Fig. 9 Trajectory ground
truth and estimate results in
X axis on top; Estimation
errors at the bottom
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Fig. 10 Trajectory ground
truth and estimate results in
Y axis on top; Estimation
errors at the bottom
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Fig. 11 Attitude Estimate
error, relative to
ground-truth information
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Fig. 12 Angular slippage
estimation

where the transition matrix �(ωk) is an abbreviavion
for �ωk

(tk, tk−1), expressed by

�(ωk) = �ωk
(tk, tk−1)

= exp

(∫ tk

tk−1

A(ωτ )dτ

)

=
⎡
⎢⎣

c(ωkTk) s(ωkTk) − s(ωkTk)
ωk

−s(ωkTk) c(ωkTk)
1−c(ωkTk)

ωk

0 0 1

⎤
⎥⎦ ,

where s(.) and c(.) are abbreviations for the sine and
cosine functions, respectively, Tk = tk − tk−1 is the
sampling interval, vk is the discrete Gaussian white
noise, andGk is the discrete input matrix expressed as

Gk =
∫ tk

tk−1

�ωk
(τ, tk−1)Bdτ =

⎡
⎢⎣

− s(ωkTk)
ωk

1−c(ωkTk)
ωk

0

⎤
⎥⎦ .

The position estimator will perform a sub-optimal
estimation since the angular velocity that parametrizes
the state transition matrix of this system is meant
to take into account the angular slippage whose
estimation is described in Section 4. Nevertheless,
the equation that describes the estimate dynamics is

similar to that used for the attitude system estimate,
resulting in

x̂k+1 = �(ω̂k)x̂k + Bxvk + Kx
k

[
ēk − êk

]
.

The Kalman gain for this estimator is calculated in
the exact same way as in the attitude estimator, using
Eq. 5, only using the appropriate sensor noise covari-
ance matrix Rx and model noise covariance Qx.

6 Experimental Results

This section details the experimental setup and the
analysis of the estimation errors of the proposed solu-
tions that constitute the localization system.

The Qualisys ™Motion Tracking [25] system, using
14 different cameras to track the position of reflectors
placed upon the mobile robot, provides measurements
that are used as ground-truth data. The characteristics
of the tracking system are listed in Table 1. The robot
prototype and landmark setup are shown in Fig. 3.
Several passive retroreflectors, which are highlighted
by the camera flash, were placed on the robot and
landmark to provide redundant data. The landmark

Fig. 13 Linear slippage
estimation
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Fig. 14 Linear slippage estimation

used serves only the purpose of validation of the
localization method proposed.

A summary of the parameters and initialization of
both Kalman Filters is summarized next:

– Sampling period: 0.2s for both estimators.
– Camera noise covariance: Rx = 1 × 10−2I2 and

Rθ = 1 × 10−2

– Plant noise covariance: Qx = diag(4.1 ×
10−6I2, 1× 10−8) and Qθ = diag(2× 10−5, 1×
10−8)

– Initial covariance matrix: Px
0 = 1I3 and Pθ

0 =
0.1I3

– Initial conditions: ê and θ̂ were set to the approx-
imate position values, and both bias estimates b̂

and ŝ were set to zero.

The RGB-D camera installed on board is assumed
to have a frame {C} attached. To express the
measurements from this sensor in the body frame, it
is required to express the position and attitude of the
frame {C} relative to the body-fixed frame {B}. To
that purpose, it was identified a translation given by
pB

C = [0.090 0.03 0.775]T (m), and a rotation

BRC =
⎡
⎣ c(θ) −s(θ) 0

s(θ) c(θ) 0
0 0 1

⎤
⎦ ,

where θ = 0.216 rad .

6.1 Experimental Validation of the Localization
System

This section comprises the localization results for
two separate trajectories performed in a laboratory
equipped with the Qualisys Motion Tracking system.
For an easier visualization, only a portion of the first
trajectory that was tested is depicted in Fig. 4, where
Estimate refers to a correct initialization and Esti-
mate 2 to a wrong one, for global stability validation.
In the remaining figures of the document Observa-
tions correspond to the measurements of the RGB-D
camera.

The comparison between ground truth data
expressed in {B} and the estimate is depicted in

Fig. 15 Trajectory without
slippage estimation, at
constant linear velocity
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Fig. 16 Trajectory with
slippage estimation, at
constant linear velocity
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Fig. 17 Angular slippage
estimation

Fig. 18 Linear slippage
estimation
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Fig. 19 Mobile robot and docking station definition of frames

Figs. 5, 6, 7, for the X, Y and ψ , respectively. In these
results, no slippages were estimated, so open-loop
trajectory is computed with odometry data alone.

The landmark is not always visible from the robot.
Trajectory estimation degrades after a period of 30
seconds where the landmark was not visible and
also some corrupted measurements occurred, near
the end of the experiment. A statistical represen-
tation of these differences can be seen in Fig. 8.
When the same trajectory data is processed while also
estimating the slippages, some improvement can be
noticed, especially in the interval of the trajectory

Fig. 21 A Docking station, B 3D camera and C Robot
prototype

where both angular and linear velocities are main-
tained. The mentioned data set goes from 20 seconds
to 50 seconds from the beginning of the experiment
and the slippage estimation effect can be seen when
comparing Figs. 5 to 7 with Figs. 9, 10, 11.

The robot kept both velocities nearly constant, the
slippage estimation that took place until the 20 second
mark was suitable until the 50 second mark, allowing
for a reduced open-loop estimation error. The slip-
page estimates are depicted in Figs. 12 and 13, where
the shaded areas correspond to the time intervals of
landmark unavailability.

Fig. 20 Trajectories
performed with e(0) = 3
and ψ(0) = 0
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Fig. 22 Docking
manoeuvers: 3σ error
confidence and final
position ground truth
(zoom)

With the same data, a different test was conducted,
this time forcing the linear slippage b = −0.01 (m/s)

with results as depicted in Fig. 14.
A more intuitive demonstration of the slippage esti-

mation effect in the path estimation is depicted in
Figs. 15 and 16 which show that the data relative to a
second simpler trajectory, where the robot maintained
its linear velocity throughout the whole experiment.
The slippage estimation both in the linear and angular
velocities, respective to the trajectory in Fig. 15 are
depicted in Figs. 17 and 18.

The slippage estimation both in the linear and angu-
lar velocities, respective to the trajectory in Fig. 15 are
depicted in Figs. 17 and 18.

6.2 Integration of the Localization Solution
in a Docking System

Given the promising results obtained, the integration
of the proposed localization solution in a docking
system was tested. The docking problem is solved
with a smooth, time-invariant, globally asymptotically
stable feedback control law, which allows for a very
human-like closed-loop steering that drives the mobile

robot to a certain goal with a desired attitude and a
tunable curvature, based on the by now classic work
[27]. For that purpose, suppose that the state of the
robot is described by z = [

ex ey ψ
]T ∈ R

3 composed
by the quantities depicted in Fig. 19, and that were
introduced in the design of the estimators above.

Representing the docking station position e(t) ∈
R
2 and attitude ψ(t) ∈ R in the body frame allows

for the derivation of linear kinematics and output
equations.

Following the work [27], for the state defined as
z = [

ex ey ψ
]T , using the new coordinates

⎧⎨
⎩

e = ‖e‖
α = atan(ey/ex)

φ = atan(ey/ex) − ψ

,

Table 2 Error in docking manoeuvers

μ σ

ex [cm] 3.5 0.12

ey [cm] −0.5 0.61

ψ [ ◦] 0.08 0.285
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allows the system to be represented, using Z =
[e α φ]T , as⎧⎨
⎩

ė = −v cosα

α̇ = −ω + v sinα
e

φ̇ = v sinα
e

, (9)

where an isomorphism g : R3\{0} �→ R
3\{0} is used.

Due to the singularity at the origin, Brockett’s theorem
no longer applies, since the regularity assumptions do
not hold, and so the asymptotic stabilization of Eq. 9
is possible, see [28] for details. Following the solution
proposed in [27], the control inputs for the linear and
angular velocities are given by

v = γ e cosα, γ > 0,

and

ω = kα + γ
cosα sinα(α + hφ)

α
,

respectively. For this solution, resorting to Lyapunov
theory, it is possible to prove that the origin is globally
asymptotically stable.

Note that the objective is to dock the vehicle in
a certain station with positive linear velocity. It is
possible to obtain different trajectories by simply
changing the goal objective (to for instance Zg =
[0, ±π, ± π ]). The trajectories obtained in simula-
tion are depicted in Fig. 20, where the controller
parameters were set to: γ = 3, h = 1, and k = 6.
It is important to remark that, as intended, the vehicle
always arrives at the target location facing the land-
mark, which goes accordingly with the state vector
converging to the origin. The results described above
paved the way for an experimental validation with the

mobile robot previously used. The robot prototype and
landmark setup are shown in Fig. 21. The architecture
of the localization system, central to this work, that
provides the necessary measurements is the same as
represented in Fig. 1.

Without loss of generality, for the tests presented
in this subsection, the landmark or docking station
is considered to be the origin of the inertial frame.
The goal of every experiment presented next was
set to 0.5 m in front of the real landmark object
used. Also, in every experiment, unless stated oth-
erwise, the initial estimate of the position was set
to a value similar to the real position of the mobile
robot. Moreover, a saturation of vmax = 0.2ms−1 and
ωmax = 0.2 ms−1 was imposed. Figure 22 depicts
the localization estimate and true final position for
several runs carried out in the laboratory environ-
ment. In each one of the six runs, as represented
in the zoom of Fig. 22, the prototype was able to
perform a successful docking manoeuver, even when
the initial estimate had a slight error. The average
μ and the standard deviation σ of the final position
errors, in the original coordinates, are summarized in
Table 2.

In Fig. 23 the commands in a particular experiment
are shown, together with the effect of the correction
of the estimate in them while Fig. 24 depicts the state
variables converging to zero. Notice that, due to the
discrete nature of the commands, the vehicle never
reaches the goal completely. Thus, the error distance
to the target will depend on the value of γ and the error
in the camera to body position and rotation calibration
values.

Fig. 23 Docking controller actuation in one of the experiments
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Fig. 24 Time progression of state variables and the 3σ interval for final position

7 Conclusions

This paper proposed a localization system for a mobile
robot based on odometric data and RGB-D measure-
ments relative to a landmark, available on board.
The localization system is composed of two cascaded
estimators, both developed for dynamic models that

are observable even in presence of angular and lin-
ear slippage. Moreover, the estimation errors of the
localization system that was proposed features glob-
ally asymptotically stable dynamics. Experiments to
assess the performance of the proposed estimators
were reported, resorting to a wheeled differential
drive mobile robot in an instrumented laboratory. The
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integration of the proposed localization solution in a
docking system for the same robot was also reported.
Simulations and experimental results with the afore-
mentioned robot validate the proposed localization
solution, and the performance of the docking solution
based on the proposed localization methods central to
this work is also illustrated.
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