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System Identification of
Nonlinear Vessel Steering
In this paper, the stochastic parameters describing a nonlinear ocean vessel steering
model are identified, resorting to an extended Kalman filter (EKF). The proposed method
is applied to a second-order modified Nomoto model for vessel steering and that is
derived from first physics principles. Furthermore, the results obtained resorting to a
realistic numerical simulator of nonlinear vessel steering are also illustrated in this
study. [DOI: 10.1115/1.4029826]

Introduction

Ocean navigation is a process of planning, recording, and con-
trolling the movement of a craft or a vehicle from one place to
another [1]. However, the mathematical formulation of ocean nav-
igation is complicated when compared with land and aerial navi-
gation systems due to the existence of nonlinear hydrodynamic
forces and moments that are associated with vessel dynamics.

Vessel Dynamics. The study of vessel dynamics can be divided
into two components: (1) steering and maneuverability, where the
vessel motion is studied in absence of wave excitations, generally
denominated as maneuvering, thus corresponding to a situation
where the vessel motion is under calm water conditions and (2)
seakeeping that is the study of the vessel motion under the pres-
ence of wave disturbances. In both cases, a proper mathematical
model of an ocean going vessel is an important part of the naviga-
tion due to its influence on the vessel maneuverability and
controllability conditions.

Furthermore, in the development of these mathematical models
deterministic or stochastic disturbances can be considered, with
the corresponding presence of a number of model parameters. As
the stochastic ocean behavior influences the vessel dynamics and
these environmental effects cannot be isolated, the vessel steering
and maneuverability model parameters are assumed as stochastic
in this study. Therefore, this study is focused on the identification
of steering parameters of an ocean going vessel that are assumed
to describe their stochastic behavior. One should note that the ves-
sel steering properties directly influence the maneuverability char-
acteristics. Furthermore, the maneuverability conditions in an
ocean going vessel can be further divided into two sections:
course keeping and course changing maneuvers.

Recent Studies in System Identification. There are several
recent studies of system identification (i.e., state and parameter
estimation) of ocean going vessels are documented in the litera-
ture. A parameter estimation approach of ship steering dynamics
based on a linear continuous-time model that influences the dis-
crete time measurements was proposed by Astrom and Kalstrom
[2]. Ma and Tong [3] proposed the EKF and second-order filter
approaches for the parameter identification of ship dynamics.
However, these studies are limited to speed control maneuvers
that are associated only with the propulsion control system.

A parameter identification approach of ship steering dynamics
based on the nonlinear Norrbin model is presented in Casado et al.
[4]. The experimental data collected in course changing maneu-
vers are used in that analysis (i.e., an adaptive procedure and
back-stepping theory). The identification of ship steering dynam-
ics based on the support vector regression is proposed in Ref. [5].
A simplified mathematical model for the short-term path predic-
tion, based on the vessel kinematics is presented in Ref. [6]. Simi-
larly, the system identification approach of vessel navigation,
along a desired path, based on a nonlinear ship maneuvering
model is proposed by Skjetne et al. [7], where several experimen-
tal results are also presented. Sutulo and Guedes Soares [8] pre-
sented a new offline system identification algorithm using a
genetic algorithm driver to minimize a metric of the difference
between the reference response and the response obtained with
the identified parameters.

The Nomoto model [9] is one of the most popular models to
describe vessel steering and that has been extensively used in the
recent literature. The fundamental observability and controllabil-
ity properties, for the first- and second-order Nomoto models, are
studied in Tzeng and Chen [10]. The parameter identification
approach of ship steering dynamics, based on the Nomoto’s first-
order model, is presented in Journee [11]. Furthermore, the calcu-
lations of maneuvering indices are based on the vessel zig-zag
maneuvers in the same study. However, the static behavior in ves-
sel steering parameters can only be approximated in this model
under the constant rudder angle, yaw rate, and surge velocity
conditions. Therefore, the stochastic behavior of the Nomoto
model parameters should be considered under course changing
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maneuvers (i.e., zig-zag maneuvers). This concept is supported by
the experimental data that are reported in Ref. [12], where the esti-
mated hydrodynamic force and moment variations are observed
under rudder angle changing conditions. The Nomoto model was
also adopted by Sutulo and Guedes Soares, [13], showing its
applicability to practical situations.

There are several experimental platforms developed to study
the hydrodynamic forces and moments of ocean going vessel
under maneuvering conditions. In general, two types of experi-
ments are conducted in this area: free steering tests and captive
tests. In free steering tests, the vessel motions are observed with
respect to the rudder angle variations in full-scale vessels. In the
captive tests, a scaled model of the vessel is used and the experi-
mental platform is forced into scaled environmental conditions
[2,14–16]. However, the captive tests can be further divided into
two sections: static and dynamic tests. The static tests consist of
rotating arm tests, circular motion tests, oblique towing tests, etc.
The dynamic test mainly consists of a planar motion mechanism
[17,18]. However, these model tests for estimating the maneuver-
ing parameters of ocean going vessels may suffer from the scale
effects when applied to full-scale vessels [19,20]. Nevertheless,
large-scale models are proposed to be used also in these situations,
to overcome the model scale difficulties.

A mathematical model for vessel maneuvering based on a
recursive neural network approach is proposed in Moreira and
Guedes Soares [21]. Similar approaches, also resorting to neural
networks, are proposed and experimentally evaluated by several
studies of Refs. [22] and [23]. However, the neural network
approaches can have various system identification challenges with
respect to highly nonlinear steering conditions. The identification of
the hydrodynamic coefficients of an ocean going vessel from the
data acquired during a sea trial is presented in Ref. [12]. The accu-
mulated hydrodynamic forces and moments for surge, sway, and
yaw are estimated resorting to an EKF and a smoother, where the
individual hydrodynamic coefficients are calculated by a regression
method. However, considerable variations between the true and
estimated hydrodynamic coefficients are reported in the same study.
The identification of vessel hydrodynamic characteristics based on
ship maneuvering trails is presented in Ref. [19]. The EKF based
approach is considered and several zig-zag trajectories of mild,
moderate and violent maneuvers are conducted to capture the non-
linear hydrodynamic behavior of the parameters in this study.

The above proposed linear and nonlinear models and their
parameters of vessel steering are assumed to be deterministic in
the process of system identification. In this study, the stochastic
vessel steering parameter behavior describing the nonlinear ocean
vessel steering model is assumed and that can be considered the
first contribution in this study. Furthermore, the proposed method
consists of a second-order modified Nomoto model for the vessel
navigation that is derived from first physics principles.

Furthermore, the proposed stochastic parameters describing the
nonlinear ocean vessel steering model are identified, resorting to an
EKF and that is the second contribution in this study. The results
obtained considering a realistic numerical simulator for the nonlinear
vessel steering model are illustrated in this study. The work presented
in this study is part of an on-going effort to formulate an autonomous
navigation system for ocean going vessels [24] that is extended with
collision avoidance, as further described in Refs. [25–27].

The organization of this paper is as follows: The second section
contains an overview of the mathematical model of vessel steer-
ing. The third section formulates the dynamic estimation process
for the nonlinear vessel steering model parameters. The discussion
about the computational simulations of the proposed EKF algo-
rithm is presented in the fourth section. Finally, the conclusions
are presented in the fifth section.

Mathematical Model for Ship Steering

The proposed mathematical models of ocean vessel maneuver-
ing can be divided into two categories: point mass models and

rigid body models. Note that both types of dynamic models are
subjected to external forces (i.e., environmental forces of wave,
wind, and currents) and internal forces (propeller and rudder
force) during their navigation. Furthermore, for both cases kine-
matic and dynamic relations should be considered.

Sway and Yaw Subsystem. The reference systems used in the
mathematical model of vessel maneuvering is presented in Fig. 1.
However, several ocean vessel kinematic and dynamic models
can be found in the recent literature: surge model (u), maneuver-
ing model (u, v), horizontal motion model (u, v, r), longitudinal
motion model (u, w, q), and lateral motion model (v, p, r) that are
based on the respective vessel states.

Assuming that the vessel forward speed is a constant u0ð Þ, the
coupled sway and yaw subsystem for the vessel linear steering
system, as introduced by Davidson and Schiff in Ref. [28], can be
written as

m _vþ u0r þ xG _rð Þ ¼ Y v; r; dR; _v; _rð Þ
IZ _r þ mxG _vþ u0rð Þ ¼ N v; r; dR; _v; _rð Þ

(1)

where the respective hydrodynamic forces and moments can be
written as

Y v; r; dR; _v; _rð Þ ¼ Yvvþ Yrr þ YddR þ Y _v _vþ Y _r _r

N v; r; dR; _v; _rð Þ ¼ Nvvþ Nrr þ NddR þ N _v _vþ N _r _r
(2)

The state space describing the vessel linear steering system,
introduced in Eq. (1) can be written as

MR _tþ NR u0ð Þt ¼ BRdR (3)

where t ¼ v r½ �T and the matrices MR, NR u0ð Þ, and BR can be
written as

MR ¼
m� Y _v mxG � Y _r

mxG � N _v IZ � N _r

� �

NR u0ð Þ ¼
�Yv mu0 � Yr

�Nv mxGu0 � Nr

� �

BR ¼
Yd

Nd

� �
(4)

Due to the positive definiteness of MR, the vessel linear steering
system presented in Eq. (3) can be rewritten as

Fig. 1 Reference systems for the mathematical model of ves-
sel maneuvering
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_t ¼ �M�1
R NR u0ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

tþM�1
R BR|fflfflffl{zfflfflffl}

B

dR (5)

The matrices A and B of Eq. (5) can be presented as

A ¼
a11 a12

a21 a22

� �

B ¼
b1

b2

� � (6)

where the respective coefficients are given by

a11 ¼
IZ � N _rð ÞYv þ Y _r � mxGð ÞNv

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ

a12 ¼
IZ � N _rð Þ Yr � mu0ð Þ þ Y _r � mxGð Þ Nr � mxGu0ð Þ

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ

a21 ¼
m� Y _vð ÞNv þ N _v � mxGð ÞYv

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ

a22 ¼
m� Y _vð Þ Nr � mxGu0ð Þ þ N _v � mxGð Þ Yr � mu0ð Þ

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ

b1 ¼
IZ � N _rð ÞYd þ Y _r � mxGð ÞNd

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ

b2 ¼
m� Y _vð ÞNd þ N _v � mxGð ÞYd

m� Y _vð Þ IZ � N _rð Þ � mxG � Y _vð Þ mxG � N _rð Þ (7)

Second-Order Linear Nomoto Model. The second-order
linear Nomoto model [9] can be derived by eliminating the sway
velocity, v, in Eqs. (5)–(7), resulting in

T1T2€r þ T1 þ T2ð Þ _r þ r ¼ KR T3
_dR þ dR

� �
(8)

where the respective coefficients are

T1T2 ¼
1

a11a22 � a12a21

T1 þ T2 ¼
a11 þ a22

a12a21 � a11a22

T3 ¼
b2

a21b1 � a11b2

KR ¼
a21b1 � a11b2

a11a22 � a12a21

(9)

The second-order linear Nomoto model, in Eq. (8), can be
rewritten considering the heading angle of the vessel

wð3Þ þ 1

T1

þ 1

T2

� �
€wþ 1

T1T2

_w ¼ KR

T1T2

T3
_dR þ dR

� �
(10)

Modified Nonlinear Nomoto Model. The second-order linear
Nomoto model can be used for the course keeping maneuvers but
this model is not adequate for the course changing maneuvers.
Therefore, the model presented in Eq. (10) must be modified to
capture the course changing maneuvers as proposed in Ref. [29],

where _w � KRH _w
� �

is assumed, resorting to a nonlinear function

Hð _wÞ. Thus, Eq. (10) can be written as

wð3Þ þ 1

T1

þ 1

T2

� �
€wþ KR

T1T2

H _w
� �

¼ KR

T1T2

T3
_dR þ dR

� �
(11)

Assuming the nonlinear function, H _w
� �

¼ a1
_wþ a2

_w3, Eq. (11)
can be written as

wð3Þ ¼ �d1
€w� d2 a2

_w3 þ a1
_w

� �
þ d2 d3

_dR þ dR

� �
(12)

where the parameters d1 ¼ 1=T1 þ 1=T2, d2 ¼ KR=T1T2, and
d3 ¼ T3, are straightforward to be defined. Hence, Eq. (12) can be
rewritten as

wð3Þ ¼ a1
_w3 þ a2

_wþ a3
€wþ b1dR þ b2

_dR (13)

where the final parameters to be identified can be defined
a1 ¼ �a2d2, a2 ¼ �a1d2, a3 ¼ �d1, b1 ¼ d2, and b2 ¼ d2d3.

Dynamic Parameter Estimation

Algorithm Structure. The dynamic parameter estimation
approach is described in this section and consists of three subsec-
tions: (1) vessel motion model (VMM), (2) measurement model
and associated techniques (MMATs), and (3) parameter estima-
tion technique (PET). The VMM consists of a mathematical
model that is considered for parameter estimation in this study.
The MMAT consists of the mathematical model of observed states
of the VMM. Finally, the PET consists of the estimation algo-
rithm, the EKF that is implemented for VMM states and parame-
ter estimation.

Second-Order Linear Nomoto Model. The vessel nonlinear
steering model derived in Eq. (13) is considered in this section
and can be written as

_xðtÞ ¼ f xðtÞð Þ þ wwðtÞ (14)

where the vessel system state vector can be presented as

xTðtÞ¼ wðtÞ _wðtÞ €wðtÞ a1ðtÞ a2ðtÞ a3ðtÞ b1ðtÞ b2ðtÞ dRðtÞ _dRðtÞ
	 


(15)

The function f xðtÞð Þ that is presented in Eq. (14) can be written as

f xðtÞð Þ ¼

_wðtÞ
€wðtÞ

a1ðtÞ _w3ðtÞ þ a2ðtÞ _wðtÞ þ a3ðtÞ €wðtÞ

þ b1ðtÞdRðtÞ þ b2ðtÞ _dRðtÞ
0

0

0

0

0

0

0

2
66666666666666666666666666664

3
77777777777777777777777777775

(16)
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The Jacobian of function f xðtÞð Þ is given by

@

@xðtÞ f xðtÞð Þ ¼

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0
3a1ðtÞ _w2ðtÞ
þa2ðtÞ

a3ðtÞ _w3ðtÞ _wðtÞ €wðtÞ dRðtÞ _dRðtÞ b1ðtÞ b2ðtÞ

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2
666666666666666666664

3
777777777777777777775

(17)

MMAT. The measurement model is formulated in discrete-
time due to the fact that the sensors available to provide indirect
information on the vessel states at discrete time instants. The dis-
crete time measurement model can then be written as

zðkÞ ¼ h xðkÞð Þ þ wvðkÞ (18)

The set of measurements can be represented as the column vector

zTðkÞ ¼ zwðkÞ z _wðkÞ zdðkÞ z _dðkÞ
	 


(19)

The function, h xðkÞð Þ, can be written as

hT xðkÞð Þ ¼ wðtÞ _wðtÞ dRðtÞ _dRðtÞ
	 


(20)

The Jacobian of function h xðkÞð Þ can be computed as

@

@xðkÞ h xðkÞð Þ ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
6664

3
7775 (21)

Estimation Algorithm. The EKF algorithm is proposed in this
study as the PET, due to the EKF capabilities of capturing the
nonlinear behavior of ocean vessel navigation. Even though the
EKF is a computationally effective and powerful algorithm, it is a
suboptimal recursive filter and can fail to converge in some situa-
tions. However, in many engineering applications nonlinear sys-
tem parameters are estimated by the EKF algorithm and
successful results are also reported [30] and in the references
therein. The summarized EKF algorithm can be formulated as
described in Ref. [31]

• System model

_xðtÞ ¼ f ðxðtÞÞ þ wwðtÞ; wwðtÞ�Nð0;QðtÞÞ
E wwðtÞ½ � ¼ 0; E wwðtÞ; wwðtÞ½ � ¼ QðtÞ½ � (22)

• Measurement model

zðkÞ ¼ hðxðkÞÞ þwvðkÞ;wvðkÞ�N 0;RðkÞð Þ; k ¼ 1;2; :::

E wvðkÞ½ � ¼ 0; E wvðkÞ; wvðkÞ½ � ¼ RðkÞ½ � (23)

• Error conditions

~xðkÞ ¼ x̂ðkÞ � xðkÞ (24)

• State initial conditions

xð0Þ�N x̂ð0Þ;Pð0Þð Þ (25)

where x̂ð0Þ is the state initial estimate and Pð0Þ is the state
initial covariance values, describing the uncertainty present
on the initial estimates. All stochastic disturbances are
assumed as Gaussian distributions with zero mean values.

• Uncorrelated process and measurements noises

E vðtÞ; wðkÞ½ � ¼ 0 for all k; t (26)

• State estimation propagation

_̂xðkÞ ¼ f ðx̂ðkÞÞ (27)

• Error covariance extrapolation

_PðtÞ ¼ Fðx̂ðtÞÞPðtÞ þ PðtÞFTðx̂ðtÞÞ þ QðtÞ

Fðx̂ðtÞÞ ¼ @

@xðtÞ f ðxðtÞÞ
����
xðtÞ¼x̂ðtÞ

(28)

• Estimate state update
At each step, after measurement data is available from the
sensors, the state estimates can be updated according to

x̂ðkþÞ ¼ x̂ðk�Þ þ KðkÞ zðkÞ � hk x̂ðk�Þð Þ½ � (29)

• Error covariance update

PðkþÞ ¼ 1� KðkÞHk x̂ k�ð Þð Þ½ �Pðk�Þ

H x̂ k�ð Þð Þ ¼ @

@xðkÞ h xðkÞð Þ
����
xðkÞ¼x̂ k�ð Þ

(30)

• Kalman gain computation

KðkÞ ¼ Pðk�ÞH x̂ k�ð Þð Þ H x̂ k�ð Þð ÞPðk�ÞH x̂ k�ð Þð ÞTþRðkÞ
h i�1

(31)
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Parameter Estimation. The mean values of vessel parameters
in the steering model associated with stochastic behaviors
are assumed as a1 ¼ �0.3710 (1/rad2), a2 ¼ �0.4340 (1/s2), a3 ¼
�3.4000 (1/s), b1 ¼ 0.3500 (1/s3), and b2 ¼ 0.1225 (1/s2). Some

of these parameter values are extracted from the study of
[29] and others are generated by trial and error calculations
considering the vessel response under stable steering condi-
tions. The above vessel parameter values are implemented on

Fig. 2 Actual, measured, and estimated vessel states

Fig. 3 Actual and estimated vessel parameters
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the computational simulations that are further discussed in the
following paragraph.

The computational simulations of the actual (Act.), estimated
(Est.), and measured (Mea.) vessel states of heading angle, head-
ing rate, and derivative of heading rate are presented in top three
plots of Fig. 2 under the violent maneuvering conditions. The
inputs of the system, the rudder angle and rate under violent
maneuvering conditions are also presented in bottom two plots of
Fig. 2. Furthermore, the actual (Act.) and estimated (Est.) stochas-
tic vessel parameters of a1, a2, a3, b1, and b2 are also presented in
Fig. 3.

The EKF algorithm is implemented on the MATLAB software
platform. Violent maneuvers with varying rudder angle and rudder
rate values as the inputs are assumed in this study, for better EKF
convergence of the vessel parameters. Note that persistent excita-
tion of the input signal, leading to violent maneuvers, is required
for unbiased identification of the system parameters, as observed
also in Ref. [32].

As presented in Fig. 2, the actual (Act.), estimated (Est.), and
measured (Mea.) vessel states of heading angle, heading rate are
similar due to an assumption of the accurate measurements. How-
ever, the small variations of the vessel states can also be observed
due to an assumption of violent maneuvering conditions of the
vessel. These maneuvering conditions are generated by the rudder
angle and the rudder rate under white Gaussian noise type
motions. Furthermore, the actual and estimated derivatives of
heading rate have some variations due to the estimation conditions.

As presented in Fig. 3, the parameters estimation of the proposed
nonlinear vessel maneuvering model, a1, a2, a3, b1, and b2 is suc-
cessfully achieved, where the estimated values successfully con-
verged into the actual values. Initially, all parameter values have
been assigned with constant values and due the EKF estimation capa-
bilities, these values have been converged into the actual parameter
values that have stochastic behavior as proposed in this study.

Conclusion

The EKF performance on nonlinear parameter estimation under
dynamic data handling conditions is evaluated in this study, where
the estimated stochastic vessel parameter values converged into
the actual values. Therefore, the evaluation of vessel nonlinear
parameters under the dynamic conditions can be used to feed the
nonlinear vessel autopilot models, which is a considerable contri-
bution and a potential future development in this study.

It is observed that the estimation of the parameters of nonlinear
vessel steering model can only be achieved when violent maneu-
vers are performed, where the rudder angle and rudder rate were
excited by white Gaussian noise motion. Furthermore, it is
observed that smooth maneuvers (i.e., zig-zag and circular maneu-
vers) that have been extensively used for systems identification of
vessel kinematic and dynamic models do not excite the nonlinear
parameters, in which can degrade the system identification process.

In the former cases, the estimated vessel parameter values did
not converge into the actual values by smooth maneuvers as
observed in the simulations and that is another contribution in this
study. Therefore, this study concludes that the violent maneuver-
ing conditions of vessel navigation should be implemented to esti-
mate the nonlinear parameters of ocean going vessels under
varying (dynamic) conditions. Furthermore, the vessel steering
model and the state measurements are associated with white Gaus-
sian noise is assumed in this study. Hence, this assumption is also
contributed for successful parameters convergence as observed in
the simulations.

However, one should note that the parameters, a1, b1, and b2,
have converged in less than 1500 (s) (approximately 25 (min))
and the parameters, a2, and a3, have converged around 3500 (s)
(approximately 1 (hr)). Therefore, the vessel operational condi-
tions (i.e., draft, trim, etc.) should be stationary during a longer
time period for capturing the actual steering parameter values
under the similar navigation conditions [33,34]. However, this

requirement can only be noticed during the transient phase of the
estimation algorithm, where the parameter values are iterating to
converge. Therefore, the transient phase of the estimation algo-
rithm can face some challenges in more dynamics situations, such
as maneuvering in ports and restricted waterways. However, the
steady state phase of the algorithm can be used under any dynamic
conditions (i.e., maneuvering in ports and restricted waterways),
where the algorithm has the capabilities to follow large dynamic
variations. Therefore, the state and parameter reduction in the ves-
sel steering model in Eq. (13) is considered in this study to mini-
mize the convergence time for the proposed algorithm and that is
proposed for the future work of this study.
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Nomenclature

d1; d2; d3 ¼ initial nonlinear vessel parameters
f xðtÞð Þ ¼ nonlinear vessel state function

h xðkÞð Þ ¼ measurement function
IZ ¼ inertia of the vessel about the z-axis

K kð Þ ¼ Kalman filter gain
K;M;N ¼ roll, pitch, and yaw moments

KR ¼ rudder constant
m ¼ mass of the vessel

MR;NR u0ð Þ;BR ¼ vessel linear steering system matrices
Nv;Nr;Nd;N _v;N _r ¼ respective hydrodynamic coefficients of yaw

motion
Ob ¼ origin of XbYbZb

On ¼ origin of XnYnZn

p; q; r ¼ roll, pitch, and yaw angular velocities
P tð Þ ¼ estimated error covariance

P k�ð Þ ¼ estimated prior error covariance of vessel
state vector

P kþð Þ ¼ estimated posterior error covariance of vessel
state vector

Q tð Þ ¼ vessel state noise covariance
R kð Þ ¼ measurement noise covariance

T1; T2;T3 ¼ linear vessel parameters
u; v;w ¼ surge, sway, and heave linear velocities

Vb;n ¼ vessel course-speed vector
wV kð Þ ¼ measurement noise vector
ww tð Þ ¼ vessel state noise vector

x tð Þ ¼ nonlinear vessel state vector
X;Y; Z ¼ surge, sway, and heave forces

~xðtÞ ¼ vessel state error vector
x̂ðtÞ ¼ estimated vessel state vector

x̂ðk�Þ ¼ estimated prior vessel state vector
x̂ðkþÞ ¼ estimated posterior vessel state vector

xG ¼ distance to the center of gravity
XbYbZb ¼ vessel body fixed coordinate system
XnYnZn ¼ Earth fixed coordinate system

Yv; Yr; Yd;Y _v;Y _r ¼ respective hydrodynamic coefficients of sway
motion

z tð Þ ¼ measurement vector
zdðkÞ ¼ rudder angle measurements
z _dðkÞ ¼ rudder rate measurements
zw kð Þ ¼ heading angle measurements
z _w kð Þ ¼ heading rate measurements

a1; a2; a3; b1;b2 ¼ final nonlinear vessel parameters
dR ¼ rudder angle
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_dR ¼ rudder rate
t ¼ linear vessel state vector

wðkÞ ¼ heading angle
_wðkÞ ¼ yaw rate
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