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Abstract— This paper presents a novel navigation filter for
estimation of linear motion quantities based on a combined
Long Baseline / Ultra Short Baseline (LBL/USBL) acoustic
positioning system with application to underwater vehicles. The
filtering algorithm does not resort to any algebraic inversion
techniques and no linearizations are carried out whatsoever.
In this way, the nonlinear sensor-based system dynamics are
considered to their full extent and globally asymptotically
stable (GAS) error dynamics are achieved. Finally, it is shown,
under simulation environment, that the filter achieves very good
performance in the presence of sensor noise.

I. INTRODUCTION

The design of navigation systems is essential for the

successful operation of autonomous vehicles. For aerial or

ground vehicles the Global Positioning System (GPS) consti-

tutes an important milestone. For underwater vehicles other

solutions have been pursued due to the strong attenuation

that the electromagnetic field suffers in water, in particular

Long Baseline (LBL) and Short Baseline (SBL) acoustic

positioning systems, see e.g. [1], [2], [3], [4], [5], [6], and

references therein. Another commercially available solution

is the GPS Intelligent Buoy (GIB) system, see [7]. Further

work on the GIB underwater positioning system can be found

in [8]. Position and linear velocity globally asymptotically

stable (GAS) filters based on an Ultra-Short Baseline (USBL)

positioning system were presented by the authors in [9],

while the Extended Kalman Filter (EKF) is the workhorse

of the solution presented in [10]. For interesting surveys on

underwater navigation, the reader is referred to [11] and [12].

With a Long Baseline acoustic positioning system, an un-

derwater vehicle has access to the distances to a set of known

transponders, which are usually fixed in the mission scenario.

With some mild assumptions on the LBL configuration, it is

possible to determine the inertial position of the vehicle. With

an Ultra-Short Baseline acoustic position system installed

on-board the vehicle, in the so-called inverted configuration,

see [13], the vehicle has access to the distance to a fixed

transponder in the mission scenario and the time (or range)

differences of arrival between each pair of receivers of the

USBL array. From those measurements, and under some mild

assumptions on the USBL array configuration, the position of

the external landmark relative to the vehicle, and expressed
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in body-fixed coordinates, is readily available. Using spread

spectrum techniques, see [14], it is possible to combine

LBL and USBL acoustic positioning devices, which gives,

in essence, both the distance between the vehicle and each

of the external landmarks and the time (or range) differences

of arrival between pairs of receivers, for each landmark.

The goal of this paper is to design a filter for estimation

of linear motion quantities (position and velocity) using

all this information, in addition to attitude data, angular

velocity, and relative velocity, as provided by an Attitude and

Heading Reference System (AHRS) and a Doppler Velocity

Log (DVL).

In previous work by the authors, see [15], a sensor-based

solution was proposed for estimation of linear motion quan-

tities with a LBL acoustic system, while in [13] a sensor-

based solution was proposed with an USBL acoustic system.

Central to the design, in both cases, was the derivation

of augmented systems that, although still nonlinear, could

be regarded as linear for observability and observer design

purposes. With no linearizations whatsoever, that has resulted

in exact observability analyses and the design of filtering

solutions with globally asymptotically stable error dynamics.

More recently, in [16], a novel solution was proposed that

combines both a LBL and an USBL acoustic frameworks,

yielding a complete navigation system that allows for the

estimation of the inertial position, linear velocity, attitude

and rate gyro bias. In contrast with the solutions proposed in

[13] and [15], where the measurements are explicitly used by

the filters, in the approach proposed in [16] the USBL/LBL

is simply assumed to give the body-fixed positions of the

external LBL landmarks, as well as the inertial position of

the vehicle. These are obtained, in that framework, resorting

to algebraic nonlinear operations that are carried out with

the acoustic data that is provided by the LBL and USBL. As

such, the actual measurements (travel times or, equivalently,

the distances to the landmarks, and the time differences of

arrival between acoustic receivers or, equivalently, the range

differences of arrival,) are not explicitly used in the filtering

process. This means, among others, that in poor LBL/USBL

configurations, i.e., configurations with little redundancy, loss

of one channel of the USBL or one of the LBL transponders,

for instance, could prevent the computation of intermediate

artificial measurements that are fed to the navigation filter.

The idea of this paper is, again, to combine both strategies,

i.e., the USBL and the LBL acoustic positioning systems, to

design an integrated LBL/USBL position and velocity filter.

In contrast with the solution proposed in [16], the sensor

measurements, i.e. ranges and range differences of arrival,

are explicitly employed by the navigation filter. As such, loss
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of one particular measurement does not invalidate the use

of other measurements, which can potentially result in the

increase of the performance of the overall system. Following

previous work of the authors, the proposed methodology

does not resort to any linearizations whatsoever and globally

asymptotically stable error dynamics are achieved. This is, to

the best of the authors’ knowledge, the first contribution on

the design of tightly coupled LBL/USBL navigation systems.

A. Notation

The symbol 0 denotes a matrix (or vector) of zeros, I the

identity matrix, and blkdiag(A1, . . . ,An) a block diagonal

matrix, all assumed of appropriate dimensions. For x,y ∈
R

3, the cross and inner products are represented by x × y

and x · y, respectively.

II. PROBLEM STATEMENT

Consider an underwater vehicle moving in a scenario

where there is a set of fixed landmarks installed in a

Long Baseline configuration and suppose that the vehicle is

equipped with an Ultra Short Baseline acoustic positioning

system, which measures not only the distance between the

vehicle and each landmark but also the range differences of

arrival between the acoustic receivers of the USBL, from

each landmark, as depicted in Fig. 1. For further details on

the USBL, the reader is referred to [13], [14], and references

therein. Further assume that the vehicle is equipped with

landmarks

(a) AUV and LBL array (b) AUV with USBL array

Fig. 1. Mission Scenario

an Attitude and Heading Reference System, which provides

both the angular velocity and the attitude of the vehicle, and

a Doppler Velocity Log, which measures the velocity of the

vehicle relative to the water. Finally, it is considered that the

vehicle moves in the presence of a constant unknown ocean

current. The problem considered in the paper is the design of

a highly integrated sensor-based filter to estimate the inertial

position of the vehicle and the ocean current velocity, with

globally asymptotically stable error dynamics.

A. System dynamics

In order to set the problem framework, let {I} denote a

local inertial reference coordinate frame and {B} a coordi-

nate frame attached to the vehicle, commonly denominated

as the body-fixed reference frame. The linear motion of the

vehicle is described by

ṗ(t) = R(t)v(t), (1)

where p(t) ∈ R
3 denotes the inertial position of the vehicle,

v(t) ∈ R
3 is the velocity of the vehicle relative to {I} and

expressed in body-fixed coordinates, and R(t) ∈ SO(3) is

the rotation matrix from {B} to {I}, which satisfies Ṙ(t) =
R(t)S (ω(t)), where ω(t) ∈ R

3 is the angular velocity of

{B}, expressed in body-fixed coordinates, and S (ω) is the

skew-symmetric matrix such that S (ω)x is the cross product

ω × x.

The AHRS provides the attitude of the vehicle, encoded

in the rotation matrix R(t), and the angular velocity ω(t),
while the DVL provides the velocity of the vehicle relative

to the water, expressed in body-fixed coordinates, denoted

by vr(t) ∈ R
3, such that

v(t) = vr(t) + vc(t), (2)

where vc(t) ∈ R
3 is the ocean current velocity expressed in

body-fixed coordinates. Finally, let si ∈ R
3, i = 1, . . . , N ,

denote the inertial positions of the landmarks, and ai ∈ R
3,

i = 1, . . . , M , the positions of the array of receivers of the

USBL relative to the origin of {B}, expressed in body-fixed

coordinates. Then, the range measurement between the i-th
landmark and the j-th acoustic receiver of the USBL is given

by

ri,j(t) = ‖si − p(t)− R(t)aj‖ ∈ R. (3)

Define u(t) := R(t)vr(t) and let Ivc(t) := R(t)vc(t)
denote the ocean current velocity expressed in inertial coor-

dinates. Assuming it is constant, and combining (1), (2), and

(3), yields the nonlinear system






















ṗ(t) = Ivc(t) + u(t)
I v̇c(t) = 0(t)
r1,1(t) = ‖s1 − p(t)− R(t)a1‖
...

rN,M(t) = ‖sN − p(t)− R(t)aM‖

. (4)

The problem considered in the paper is the design of a filter

for (4) assuming noisy measurements.

B. Long Baseline / Ultra Short Baseline configuration

Long Baseline acoustic configurations are one of the

earliest methods employed for underwater navigation. These

are characterized by the property that the distance between

the transponders is long or similar to the distance between

the vehicle and the transponders. This is in contrast with

Ultra Short Baseline systems, where the distance between

the transponder and the vehicle is much larger than the

distance between receivers of the USBL system. In common

is the fact that, under standard assumptions, both the inertial

position of the vehicle (for the LBL) and the position of the

landmarks with respect to the vehicle, expressed in body-

fixed coordinates, (for the USBL, in the so-called inverted

configuration) are uniquely determined. This happens with

the following standard assumptions, which are considered in

the remainder of the paper.

Assumption 1: The LBL acoustic positioning system in-

cludes at least 4 noncoplanar landmarks and the distance

between the landmarks of the LBL is much larger than

the distance between the receivers of the USBL acoustic

positioning system.

Assumption 2: The USBL acoustic positioning system

includes at least 4 noncoplanar receivers and the distance

between the landmarks of the LBL is much larger than

the distance between the receivers of the USBL acoustic

positioning system.
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III. FILTER DESIGN

The design of a filter for the nonlinear system (4), con-

sidering also sensor noise, is detailed in this section. First,

state and output augmentation are performed, in Section

III-A, to attain a nominal system that, although nonlinear,

can be regarded as linear for observability analysis and

observer design purposes. Afterwards, the observability of

that system is analyzed in Section III-B. Finally, in Section

III-C, a Kalman filter for the resulting system, with globally

asymptotically stable error dynamics, is briefly discussed.

A. State and output augmentation

In the recent past, a novel observer analysis and design

technique has been proposed by the authors for navigation

systems based on nonlinear range measurements, which

consists basically in: i) include the range measurements in the

system state; ii) identify the nonlinear terms of the dynamics

of the range measurements as additional state variables; iii)

define augmented outputs, when appropriate, to capture the

structure of arrays of landmarks or receivers; and iv) work

with the resulting nonlinear system, which can actually be

regarded as linear time-varying, for observability analysis

and observer design purposes. This approach has been suc-

cessfully employed considering single measurements, see

[17], LBL configurations, see [15], and USBL configurations,

see [13], where different auxiliary sensors were consid-

ered, for example DVLs or triads of accelerometers. The

design presented herein consists in the integration of both

LBL/USBL measurements with this approach.

The time derivative of the range measurements (3) is given

by

ṙi,j(t) =
u(t)+R(t)S(ω(t))aj

ri,j(t)
· p(t)

+
−si+R(t)aj

ri,j(t)
· Ivc(t) +

1
ri,j(t)

p(t) · Ivc(t) + uri,j (t),(5)

where

uri,j (t) :=
uT (t)R(t)aj − uT (t)si − sTi R(t)S (ω(t)) aj

ri,j(t)
.

Identifying the nonlinear term p(t) · Ivc(t) in (5) with a new

variable and taking its time derivative gives

d

dt

[

p(t) · Ivc(t)
]

= u(t) · Ivc(t) +
∥

∥

Ivc(t)
∥

∥

2
. (6)

Finally, identifying the nonlinear term
∥

∥

Ivc(t)
∥

∥

2
in (6) and

taking its time derivative gives d
dt

[

∥

∥

Ivc(t)
∥

∥

2
]

= 0.

For the sake of clarity of presentation, let x1(t) := p(t),
x2(t) := Ivc(t), x1,1(t) := r1,1(t), . . . , xN,M(t) :=

rN,M(t), x3(t) := p(t) · Ivc(t), and x4(t) :=
∥

∥

Ivc(t)
∥

∥

2
,

and define the augmented state vector as

x(t) :=

























x1(t)
x2(t)
x1,1(t)
x1,2(t)

...

xN,M(t)
x3(t)
x4(t)

























∈ R
3+3+NM+1+1.

Then, the system dynamics can be written as

ẋ(t) := A(t)x(t) +Bua(t),

where A(t) ∈ R
(6+NM+2)×(6+NM+2),

A(t) =
























0 I 0 0 0

0 0 0 0 0
u

T (t)−a
T
1 S(ω(t))RT (t)
r1,1(t)

−s
T
1 +a

T
1 RT (t)

r1,1(t)
0 1

r1,1(t)
0

...
...

...
...

...
u

T (t)−a
T
MS(ω(t))RT (t)
rN,M (t)

−s
T
N+a

T
MRT (t)

rN,M (t) 0 1
rN,M (t) 0

0 uT (t) 0 0 1
0 0 0 0 0

























,

B =











I 0

0 0

0 I

0 0

0 0











∈ R
(6+NM+2)×(3+NM),

and ua(t) :=
[

uT (t) ur1,1(t) . . . urN,M
(t)

]T
∈ R

3+NM .
In order to define the output, notice that the states

x1,1(t), . . . , xN,M(t) are measured. Note, however, that the

range differences of arrival (RDOA) between pairs of re-

ceivers to the same landmark are measured more accurately

with the USBL when compared to the distance between the

landmark and any given receiver of the USBL. Selecting a

reference sensor on the array, for instance receiver 1 for now,

all the other ranges are easily reconstructed from the range

measured at receiver 1 and the RDOA between receiver 1

and the other receivers. Hence, the first set of measurements

that is considered is

y1(t) =





























r1,1(t)
r1,1(t)− r1,2(t)

...

r1,1(t)− r1,M (t)
...

rN,1(t)
...

rN,1(t)− rN,M(t)





























∈ R
NM . (7)

However, if that was the only output to be considered, the

LBL/USBL structure would not be encoded in the output. In

order to capture the LBL/USBL structure, consider first the

square of the range measurements, which is given by

r2i,j(t) = ‖p(t)‖
2
+ ‖si‖

2
+ ‖aj‖

2

−2 [si − R(t)aj ] · p(t)− 2sTi R(t)aj

for all i = 1, . . . , N , j = 1, . . . , M . Then,

r2m,j(t)− r2n,j(t) = ‖sm‖
2
− ‖sn‖

2

−2 (sm − sn) · [p(t) + R(t)aj ] (8)

and

r2i,m(t)− r2i,n(t) = ‖am‖
2
− ‖an‖

2

−2 [R(t) (am − an)] · [si − p(t)] . (9)

Breaking the differences of the squares, using a2 − b2 =
(a+ b)(a− b), it follows from (8) and (9) that

2 (sm−sn)
T

rm,j(t)+rn,j(t)
x1(t) + xm,j(t)− xn,j(t) =

‖sm‖2−‖sn‖
2−2(sm−sn)

T R(t)aj

rm,j(t)+rn,j(t)
(10)
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and

−2 (am−an)
T RT (t)

ri,m(t)+ri,n(t)
x1(t) + xi,m(t)− xi,n(t) =

‖am‖2−‖an‖
2−2(am−an)

T RT (t)si
ri,m(t)+ri,n(t)

, (11)

which capture the LBL/USBL structure. The augmented

output can then be written as

y(t) = C(t)x(t),

with C(t) ∈ R
(NM+M N

2 C+N M
2 C)×(3+3+NM+1+1),

C(t) =





0 0 C13 0 0

C21(t) 0 C23 0 0

C31(t) 0 C33 0 0



 ,

where C13 := blkdiag
(

C0
13, . . . ,C

0
13

)

∈ R
NM×NM, with

C0
13 :=



















1 0 . . . . . . 0

1 −1
. . .

...

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 −1



















∈ R
M×M ,

C21(t) :=







C1
21(t)
...

CM
21(t)






∈ R

(M N
2 C)×3,

Ci
21(t) := 2















(s1−s2)
T

r1,i(t)+r2,i(t)
(s1−s3)

T

r1,i(t)+r3,i(t)

...
(sN−1−sN )T

rN−1,i(t)+rN,i(t)















∈ R
N
2 C×3,

C31(t) :=







C1
31(t)
...

CN
31(t)






∈ R

(N M
2 C)×3,

Ci
31(t) := −2















(a1−a2)
T RT (t)

ri,1(t)+ri,2(t)
(a1−a3)

T RT (t)
ri,1(t)+ri,3(t)

...
(aM−1−aM )T RT (t)
ri,M−1(t)+ri,M (t)















∈ R
M
2 C×3,

where N
2 C = N (N − 1) /2 and M

2 C = M (M − 1) /2
correspond to the numbers of 2-combinations of N and M
elements, respectively, and C23 and C33 encode the differ-

ences of range measurements in (10) and (11), respectively,

which are omitted as they are evident from the context. In

short, C31 encodes (7), matrices C21(t) and C23 encode

(10) for all j ∈ {1, . . . , M} and m,n ∈ {1, . . . , N}, with

n 6= m, and matrices C31(t) and C33 encode (11) for all

i ∈ {1, . . . , N} and m,n ∈ {1, . . . , M}, with n 6= m.

Considering the augmented system state and outputs, the

final augmented system dynamics can be written as
{

ẋ(t) = A(t)x(t) +Bua(t)
y(t) = C(t)x(t)

. (12)

B. Observability analysis

The observability of the nonlinear system (12) and its

relation with the original nonlinear system (4) is analyzed

in this section.

Even though the system dynamics (12) resemble a linear

time-varying system, the system is, in fact, nonlinear, as

the system matrices depend both on the output and the

input. However, this is not a problem for observability and

observer design purposes and the results for linear time-

varying systems still apply, see [17, Lemma 1]. Before

presenting the main results, it is therefore convenient to

compute the transition matrix associated with A(t) and the

observability Gramian associated with the pair (A(t),C(t)).
Long, tedious but straightforward computations allow to

show that the transition matrix associated with A(t) is given

by

φ (t, t0) =





φ
A
(t, t0) 0 0

φ
BA

(t, t0) I φ
BC

(t, t0)
φ

CA
(t, t0) 0 φ

CC
(t, t0)



 ,

where

φ
A
(t, t0) =

[

I (t− t0) I
0 I

]

∈ R
6×6,

φ
BA

(t, t0) =
[

φ
BA1 (t, t0) φ

BA2 (t, t0)
]

∈ R
NM×6,

φ
BA1 (t, t0) =







φ
BA1(1,1) (t, t0)

...

φ
BA1(N,M) (t, t0)






∈ R

NM×3,

φ
BA1(i,j) (t, t0) =

∫ t

t0

uT (σ)− aTj S (ω (σ))RT (σ)

ri,j (σ)
dσ,

φ
BA2 (t, t0) =







φ
BA2(1,1) (t, t0)

...

φ
BA2(N,M) (t, t0)






∈ R

NM×3,

φ
BA2(i,j) (t, t0) =

∫ t

t0

−s
T
i +a

T
j RT (σ1)

ri,j(σ)
dσ1

+
∫ t

t0

(σ−t0)[u(σ1)+R(σ1)S(ω(σ1))aj ]
T+

∫ σ1
t0

u
T (σ2)dσ2

ri,j(σ)
dσ1,

φ
BC

(t, t0) =









∫ t

t0

1
r1,1(σ)

dσ
∫ t

t0

σ−t0
r1,1(σ)

dσ
...

...
∫ t

t0

1
rN,M (σ)dσ

∫ t

t0

σ−t0
rN,M (σ)dσ









∈ R
NM×2,

and φ
CA

(t, t0) and φ
CC

(t, t0) are omitted as they are not

required in the sequel. The observability Gramian associated

with the pair (A(t),C) is simply given by

W (t0, tf ) =

∫ tf

t0

φT (t, t0)C
T (t)C(t)φ (t, t0) dt. (13)

The following theorem addresses the observability of (12).

Theorem 1: Under Assumptions 1 or 2 (or both), the

nonlinear system (12) is observable on I := [t0, tf ], t0 < tf ,

in the sense that, given the system input {u(t), t ∈ I} and

the system output {y(t), t ∈ I}, the initial condition x (t0)
is uniquely determined.

Proof: The proof follows by contradiction. Suppose

that the nonlinear system (12) is not observable in I. Then,

the observability Gramian W (t0, tf ) is not invertible, see
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[17, Lemma 1], which means that there exists a unit vector

d =
[

dT
1 dT

2 dT
3 d4 d5

]T
∈ R

3+3+NM+1+1, with

d1 ∈ R
3, d2 ∈ R

3, d3 ∈ R
NM , and d4, d5 ∈ R, such that

dT
W (t0, t)d = 0 (14)

for all t ∈ I. Substituting (13) in (14) yields
∫ t

t0

‖C (τ)φ (τ, t0)d‖
2
= 0 (15)

for all t ∈ I. Taking the time derivative of (15) gives

‖C (t)φ (t, t0)d‖
2
= 0

for all t ∈ I, which in turn implies that

C (t)φ (t, t0)d = 0 (16)

for all t ∈ I. With t = t0 in (16) gives






C13d3 = 0

C21 (t0)d1 +C23d3 = 0

C31 (t0)d1 +C33d3 = 0
. (17)

Notice first that C13 has full rank, which means that d3 = 0.

On the other hand, under Assumption 1 matrix C21 (t0) has

full rank, while under Assumption 2 matrix C31 (t0) has full

rank. Hence, under the conditions of the theorem, is has been

shown so far that the only solution of (17) is d1 = 0 and

d3 = 0. Taking in the time derivative of (16) gives

d

dt
C (t)φ (t, t0)d = 0

for all t ∈ I. In particular, for t = t0, and considering

d1 = 0 and d3 = 0, it is possible to write that

[−si + R (t0)aj ]
T
d2 + d4 = 0 (18)

for all i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Now, under

Assumption 1 or 2 (or both), it is straightforward to show

that the only solution of (18) is d2 = 0 and d4 = 0.

Finally, taking the second time derivative of (16), for t = t0,

and considering d1 = d2 = 0, d3 = 0, and d4 = 0, it

is straightforward to show that it must also be d5 = 0.

But this contradicts the hypothesis of existence of a unit

vector d such that (14) holds. Hence, by contradicton, the

observability Gramian W (t0, tf ) is invertible and hence the

nonlinear system (12) is observable in the sense established

in the theorem, see [17, Lemma 1].

The fact that (12) is observable does not immediately

entail that the nonlinear system (4) is observable nor that

an observer for (12) is also an observer for (4), as there is

nothing in the system dynamics (12) imposing the nonlinear

algebraic relations that were at its own origin. Moreover,

the range measurements as a nonlinear function of the state

were also discarded. However, all that turns out to be true,

as shown in the following theorem.

Theorem 2: Under Assumptions 1 or 2 (or both), the

nonlinear system (4) is observable on I := [t0, tf ], t0 < tf ,

in the sense that, given the system input u(t) and the system

output r1,1(t), . . . , rN,M(t) for t ∈ I, the initial condition

p (t0) and Ivc (t0) is uniquely determined. Moreover, the

initial conditions of the augmented nonlinear system (12)

match those of (4) and hence an observer with globally

asymptotically stable error dynamics for (12) is also an

observer for (4) with globally asymptotically stable error

dynamics.

Proof: The proof is omitted due to space limitations.

C. Kalman filter

As a result of Theorem 2, a filtering solution for the

nonlinear system (4) is simply obtained with the design of

a Kalman filter for the augmented system (12), which can

be regarded as LTV for this purpose as the output and input

are available. The design is trivial and therefore it is omitted.

Notice that the proposed solution is not an EKF, which would

not offer GAS guarantees, and no approximate linearizations

are carried out.
In order to guarantee that the Kalman filter has globally

asymptotically stable error dynamics, stronger forms of

observability are required, in particular uniform complete

observability, see [18] and [19]. The pair (A(t),C(t)) can

be easily shown to be uniformly completely observable fol-

lowing the same reasoning as in Theorem 1 but considering

uniform bounds. The proof is omitted due to the lack of

space.

IV. SIMULATION RESULTS

This section briefly presents some simulation results in

order to give an idea of the performance achieved by the

proposed solution. These are only preliminary results and

they do not explore the full potential of the proposed

solution, e.g. loss of measurements is not considered. Further

results will be detailed in future work, including comparison

with the EKF and Monte Carlo simulations.
In the simulations, the 3-D kinematic model for an

underwater vehicle was employed. It is not necessary to

consider the dynamics as the estimators are purely kinematic,

hence the results apply to all underwater vehicles, regardless

of the dynamics. The trajectory described by the vehicle

is shown in Fig. 2. The LBL configuration is composed
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Fig. 2. Trajectory described by the vehicle

of 4 acoustic transponders and their inertial positions are

s1 =
[

1000 0 0
]

(m), s2 =
[

0 1000 0
]

(m),
s3 =

[

1000 1000 0
]

(m), s4 =
[

0 0 100
]

(m),
while the positions of the USBL array receivers, in body-

fixed coordinates, are a1 =
[

0 0 0
]

(m), a2 =
[

0 0.3 0
]

(m), a3 =
[

0.20 0.15 0.15
]

(m), a4 =
[

0.20 0.15 −0.15
]

(m), hence both Assumptions 1 and

2 are satisfied.
Sensor noise was considered for all sensors. In particular,

the LBL range measurements, the USBL range differences of

arrival, and the DVL relative velocity readings are assumed

to be corrupted by additive uncorrelated zero-mean white

Gaussian noise, with standard deviations of 1m, 6×10−3 m,
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and 0.01m, respectively. The angular velocity measurements

are also assumed to be perturbed by additive, zero mean,

white Gaussian noise, with standard deviation of 0.05 °/s,

and the attitude is provided by an AHRS with a mean angle

error of 0.35 °, with the Euler angler-axis parameterization

for the attitude error R̃(t) := R̂(t)R(t), where R̂(t) is the

attitude estimate.

To tune the Kalman filter, the state disturbance intensity

matrix was chosen as

blkdiag
(

10−2I, 10−4I, 10−2, . . . , 10−2, 10−2, 10−3
)

and the output noise intensity matrix as

blkdiag (Q0,Q0,Q0,Q0, 1, . . . , 1) ,

where Q0 := blkdiag (1, 0.6, 0.6, 0.6) . The initial condi-

tions were set to zero for all states.

The evolution of the position and velocity errors is de-

picted in Fig. 3. As it can be seen, the convergence rate of

the filter is quite fast. While all the errors are very small,

the most interesting fact is that the errors along the z-axis

are much larger when compared with those along the x and

y axes. This is directly related to the structure and baseline

of the LBL array: the baseline along x and y is roughly 10

times the baseline aling z.
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Fig. 3. Evolution of the errors

V. CONCLUSIONS

This paper presented a novel approach for navigation of

autonomous underwater vehicles that resorts to a combined

LBL/USBL acoustic positioning device. The proposed filter

for estimation of linear motion quantities is based on an

augmented system that, although nonlinear, can be regarded

as linear time-varying for observability analysis and observer

design purposes. Hence, a Kalman filter was proposed,

with globally asymptotically stable error dynamics, without

any linearization whatsoever. In comparison with algebraic

solutions for positioning, the present approach still works in

case of failure of one or more range or range differences of

arrival readings. Simulation results evidence fast convergence

and performance. Future work will cover the comparison

with existing techniques, in particular with the Extended

Kalman Filter, the development of a multi-rate framework,

and the analysis of the impact of errors of the AHRS.
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