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This paper presents a methodology for height and yaw angle control of a quadrotor that transports an unknown
constant load added before the flight. Based on measurements from the onboard sensors, estimates of inertial
parameters — mass and z-axis inertia — and state variables — vertical position, velocity, yaw angle and rate
— are provided resorting to Multiple-Model Adaptive Estimators. The number and worst case performance of
Kalman filters is selected based on the Baram Proximity Measure. The proposed control methods are a steady
state Linear Quadratic Regulator (LQR) with integrative action for the height, and an LQR controller for the

yaw angle. The overall system obtained is validated with load variations of up to 10% of the vehicle mass,
both in simulation and experimentally, resorting to an off-the-shelf commercially available quadrotor.

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAV) have become a
popular topic, and have seen an increase in application of research
projects or military applications. Consumer level uses include racing,
photography, and filming, while commercial applications include trans-
portation and delivery, manipulation [1], inspection [2], and surveil-
lance/monitoring [3]. Some noteworthy transportation and delivery
systems are the UPS medical samples transportation system [4] already
in operation, and the Amazon Prime Air [5] delivery system that is
currently under development.

For transport and delivery applications, from the control system
design point of view, one major concern is the nature of the load.
The variable nature of the transported goods leads to an infinite pos-
sible set of characteristics about the system. The mass, inertia, and
position of the item affect the dynamics of the full system and, conse-
quently, the performance of the control. Therefore, solutions for control
and estimation that are robust to uncertain parameters are of great
relevance.

Control methods for quadrotors can be found in [6-10], to mention
a few. In [6], a method relying on saturated feedback and backstepping
control is proposed, while [7] proposes an integral predictive/non-
linear robust control structure. In [8], a sliding mode control approach
for robust landing and lift-off is proposed. These works propose robust
solutions to persistent disturbances, but do not approach the problem

of parametric uncertainty and state-estimation. Additionally, although
robust methods can handle uncertainty, the resulting solutions tend to
be over-conservative, as can be seen in [11], and have the potential to
fail during longer tests. In [9], PID control is proposed for a Flymobile
quadrotor. In [10], PID control is proposed for a biplane quadrotor.

The problem of load transportation has been addressed, for exam-
ple, in [12-14], where suspended load cases are considered. In [12] a
Model Predictive Control (MPC) approach is proposed and compared
with Linear Quadratic Regulator (LQR) control. Better results were
obtained using the MPC approach, but stability and convergence are
only shown through testing, without any formal proof. In [13], a
solution for trajectory generation and control is designed exploiting
the fact that the system is differentially flat. Additionally, stability
and convergence proofs are provided. In [14], an adaptive solution for
an unknown mass of the load is considered, relying on classical PID
control.

An alternative to Robust Control that is also designed for handling
unknown parameters is Multiple-model methods. Multiple-model meth-
ods for piecewise constant unknown mass of quadrotors have been
considered and tested in [15,16]. In [15], the method relied on a
Multiple-Model Adaptive Estimator (MMAE) with a bank of Integrative
Kalman Filters and an LQR controller with integrative action. Given the
set of Kalman Filters with an integrative mechanism for gravitational
force, it provided reduced state-estimation error. In [16], the method
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relied on a Multiple-Model Adaptive Controller (MMAC), extending the
multiple-model framework from [15] to the control.

A common method for handling non-linear and parameter uncer-
tainty is the Extended Kalman Filter (EKF) [17]. Other alternatives,
such as the Unscented Kalman Filter (UKF), have been used in ag-
gressive flight control for quadrotors in [18]. Although the EKF and
UKF methods are widespread, there are no stability or robustness
guarantees.

This work studies the control and estimation for the height and
yaw angle of the quadrotor. The proposed solution is a Multiple-
Model Adaptive Estimator (MMAE) based architecture. The height
component relies on an LQR controller with integrative action and
on Kalman filters with integrative component. The yaw component
uses an LQR controller and Kalman filters. The onboard sensors used
are the accelerometer, the ultrasound sonar, the gyroscope, and the
magnetometer, usually available onboard these types of platforms. In
addition to the on-board sensors, an indoor multiple-camera motion
capture system is available.

The main contribution of this paper is an architecture for estimation
and control of quadrotors in the presence of parametric uncertainties in
mass and in z-axis inertia. A study on the impact of the variation in the
unknown parameters is included. A stability verification is performed,
and the state-error is computed to be zero (disregarding dissipative
effects like drag).

This paper is organized as follows: the problem addressed is de-
scribed in Section 2. The physical model considered is presented in
Section 3. The control architecture proposed is detailed in Section 4.
The solution for estimation is presented in Section 5, and in Section 6
the solution for the control problem is proposed. The analysis of stabil-
ity and of null static-error for the full proposed solution are presented
in Section 7. In Section 8 the quadrotor model and its sensors are pre-
sented. The implementation details are also discussed in this section. A
verification on the stability is provided in Section 9. Simulation results
are presented and discussed in Section 10. The experimental results are
presented and analyzed in Section 11. Finally, some concluding remarks
are drawn.

2. Problem statement

The simplified height and yaw dynamics of a quadrotor are
Mp,=h(T,g) @
Ly =1 (v:), @)

where h is the height acceleration function, f is the yaw acceleration
function, p, is the height, M is the mass of the drone, T is the thrust,
g is the gravitational acceleration, y is the yaw angle, I, is its z-axis
inertia, and 7, is the z-axis moment.

The height dynamics have a constant non-linear effect in the form
of the gravitational force. However, control solutions with a constant
compensation of the gravitational component can be used. These solu-
tions assume that the mass is known a priori. The angular acceleration
is related linearly to the provided moment, therefore this is a simple
problem to solve. When a load with unknown mass (M,) and inertia (/,)
is being transported the problem becomes more complex. Re-writing
the equations, results in:

(M + M) p,=h(T,g M) 3
(IL+ 1) =f(c. 1)) ()]

Central to this work, the solution for the control is not as imme-
diate, the performance degrades, and the platform stability is compro-
mised. The gravitational effect influenced by M, is unknown. Only a
lower bound for the gravity effect can be known a priori. Additionally,
the (M + M;) p, and (I, + 1))y components present an added non-
linearity to the problem. Since a single linearization of this equation,
close to the hovering situation with nominal load, provides a solution
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that only works for small variations around a specific mass and inertia,
the use of standard linear solutions is not an interesting approach and
alternative solutions should be exploited.

Given the non-linearity of the dynamics, the estimation problem is
also harder. Additionally, the available sensors of the quadrotor do not
provide a measurement of the vertical velocity, and the use of optical
flow techniques relying on the ground pointing camera provides poor
estimates. To tackle the optimal control problem and filter the sensory
data, estimates of the state variables are required. Due to the non-
linearity and the unreliability of a linearization, Kalman filters are not
an option.

The roll and pitch components were not considered, as they are an
equivalent problem to the yaw, having a model of similar structure.

3. Physical model

In this section, the dynamics of quadrotor are studied for the height
and yaw components.

The full dynamics of a quadrotor are presented in [19], providing
the equations

0 0 Px
Mp=R|0|-Mg|O0], p=|p, 5)
T 1 /A
) T, I, 0 O
IN=-QxIQ+7, n=|0|, z=|z]|, I=[0 1, 0 (6)
4 T, 0o 0 I,
cycl — spsysd  —copsy  cysO + cOspsy
R =|cOsy +cyspsd  chpcy  sysd—cychsdp|, R =RQ,. 7

—c¢pso sp cipch

In the presented model, p stands for inertial position, 2 is the body
angle rates, 5 stands for the Euler angles, M is the mass, I is the inertia
matrix, R is the rotation matrix from the body fixed coordinate frame
to the inertial frame, g is the gravitational acceleration, T is the thrust
provided by the rotors, and = is the angular moments provided by the
rotors. The notation €2, denotes the skew-symmetric matrix, such that
Qv = Q x v for the vector cross product x and any vector v € R>.
Additionally, ¢ is the roll angle, 0 is the pitch angle, and y is the
yaw angle. The abbreviations ¢ and s stand for the cosinus and sinus
trigonometric functions, respectively.

For the purpose of designing the controllers and estimators, it is
necessary to isolate the relevant dynamics for the components being
studied. These models are provided in the following two subsections.

3.1. Height dynamics

Taking the dynamics of a quadrotor as shown in (5)—(7) and as-
suming zero roll and pitch angles, the dynamics of the height can be
described by

Mp, =a,T - Mg,

where a, is the thrust gain from the command input, which is assumed
to be constant. Given the available measurements, these dynamics can
be written in state-space form as

bt 361

X A, X,

LLUHQH 0
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Fig. 1. Architecture with multiple-model estimation.

3.2. Yaw dynamics

Also from the dynamics of a quadrotor in (5)-(7), isolating the yaw
dynamics, the resulting behavior can be described by
Izli/ =4y T, + (Ix - Iy) €¢’ ©)

where q,, is the z-axis moment gain from the command input. Given
the available sensors and discarding the Coriolis effect, these dynamics
can be written in state-space form as

ERECREE

M~ ——
Xy Ay Xy B
Y 10)
vl |10
b -k
—— ——
Yy Cy

3.3. Inertia behavior analysis

A particular issue for the yaw rotation is that the inertia of a
system depends on the relative position of its components. To perform
system identification for the inertia, no high frequency variations are
expected during the test. The rotation of the rotors provides high
speed variations. However, its relative center of mass remains constant.
Assuming the rotor blades to be approximately flat in the z-plane, by
the Parallel Axis Theorem the rotation does not affect the z-axis inertia.

The position of the load can also be an issue. To minimize effects on
the x and y rotational behavior, the load is assumed to be positioned
along the body-frame z-axis, making the position of the load constant
and known a priori.

4. Control architecture

To solve the unknown load transportation problem, with stable
solutions and with zero steady state error on the height and yaw angle

based on accurate state estimates, the control system architecture is
presented in Fig. 1. At its core, LQR control and linear Kalman filtering
are the solutions foreseen. For the height components, the control
uses integrative action to compensate the gravitational force, and the
estimation uses an integrative component to correct the gravitational
force used by the filters.

Estimators will provide the state data, while filtering the sensor
noise. The control is responsible for providing the desired thrust and
z-axis moment to reach the reference height and yaw angle, based on
the state estimates of the filters.

The proposed architecture (Fig. 1) uses a Multiple-Model Adaptive
Estimator (MMAE) for joint parameter and state estimation. The refer-
ence values for the control of the height and yaw are, respectively, p,,
and y,. The state estimates for the height and yaw components are,
respectively, X, and %,,. y is the drone data.

5. Estimation

In this Section the estimation solution is discussed. First the Kalman
filters are presented. Afterwards, the multiple-model estimation frame-
work is presented, followed by the Baram Proximity Measure (BPM),
which can be used to help on the selection of the number of models.
Finally, the Kalman filters with integrative component are described.

5.1. Kalman filter

The Kalman filter is an optimal filter for linear systems disturbed by
zero mean white Gaussian noise. The model for these systems is

{x:Ax+Bu+Fv

, an
y=Cx+Du+w

where v is the process noise and w is the sensor noise. These zero mean
noises are characterized by a covariance matrix for the process noise
Q and a covariance matrix for the sensor noise R, respectively. The
Kalman filter minimizes the covariance matrix of the error e:

e=x—-3X
12)
ée=(A-LC)e+ Fv— Lw,
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via the selection of the optimal gain for the filter L, denominated
as Kalman gain. The error covariance dynamics follows the Riccati
equation

P=AP+PA — PC'R™'CP + F'QF, 13)

where P is the covariance matrix of the error. The resulting Kalman
gain calculation is given by

L=PC'R™". 14

In the steady state case, P is zero and the popular algebraic Riccati
equation results, see [20] for details.

5.2. Multiple-model adaptive estimation

The MMAE algorithm (see [21] and the references therein) is a
combined state-estimation and parameter identification method. It pro-
vides a solution for parametric uncertainties and for non-linear state-
estimation (using different linearizations). As the name implies, it relies
on multiple models for the same system, but assuming different values
of the unknown parameter (or linearization points). For each of the
underlying models, a Kalman filter is designed, providing accurate
estimates for its assumed model. The MMAE uses the data provided
from each filter and merges it to provide better state-estimates than
those obtained using a single model. Additionally, by assessing which
of the models provides the best estimates, the value of the unknown
parameter is estimated.

The Bayesian Posterior Probability Estimator (PPE) assesses the
accuracy through the residues of the known sensory data, by assigning
a probability to each filter. These probabilities are called posterior
probabilities

pi=Prob(H =H;|Y),i=1,...,N, 15)

and are the probabilities of the unknown parameter H matching one
of the models, given the set of past data Y. The number of models is N
and the value of the parameter for each model is H;. The continuous
approximation of this discrete problem, yields the posterior probability
derivatives p;. This derivative [22,23] can be computed using the
probabilities p; and the residues of the filters r; according to

i
e Wi

p=—fi- P |, ae)
Z;l:l pjﬁje_iw/
1

f=—t a7

(2m)24/1S;1
w;=r.S7'r, (18)

where h represents the number of sensors used. The residual covariance
matrix of each filter (S;) is used as a weighting parameter in the calcu-
lations, g; is a weighting parameter based on the residual covariance
and number of sensors, |-| stands for the determinant of a square matrix,
and w; is a quadratic weighting parameter for the residue which also
uses the residual covariance.

This method is required to select the value of the unknown parame-
ter (or the closest). For that purpose, a convergence condition must be
met for the probability of the closest model, as detailed in the following
theorem from [23]:

Theorem 5.1. Leti* € {1,2,..., N} be an index of a parameter vector in «
and I :={1,2,..., N}\i* an index set. Suppose that there exists a positive
constant T such that for all t > 0 and all j € I the following condition
holds:

1 +T 1 +T
T [ (w(7) = Infy(z))dt < T /Z (@;(7) = Inp (7))dz. 19
Then, p;«(t) satisfies

rlim pix(t) = 1. (20)
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Fig. 2. MMAE structure and individual Kalman filter structure.

Conversely, if (20) is observed, then there exists a positive constant T such
that forallt >0 and dll j € I'

i 1 T
T /I (w;+(7) = Inp;(r))dT < T /, (w;(r) = Infi=(r))dr. N 21)

Although in this work the study was made for the CT-MMAE (con-
tinuous time), the findings still hold true for the discrete equivalent.

Given the method for updating the posterior probabilities, an error
in the estimation will always be present if the real value of the pa-
rameter does not match the value assumed by any of the models. The
number of filters has to be selected taking into account the acceptable
estimation error threshold when the system does not match any of
the models. Moreover, the added computational weight of using more
filters has to be considered. This will be discussed in Section 5.3.

The state estimation of the MMAE can be obtained with a switching
or weighted average, see [21] for details. In switching the state estima-
tion matches that of the filter with the highest posterior probability.
In the weighted average the state-estimation of all filters is averaged
using the posterior probabilities as a weighting factor:

n
kr =) p(D%;. (22)
j=1
In this work, the weighted average method is used, as it provides
low pass filtered state estimates. The resulting structure is depicted in
Fig. 2a.

The structure of the Kalman filter is presented in Fig. 2b, where s
is the Laplace indeterminate.

5.3. Baram proximity measure
The Baram Proximity Measure (BPM) is a measure proposed in [24]

for deciding which models to use in multiple-model, see for exam-
ple [21] and [25]. The BPM provides an adequate distance metric, for

1 Note that in (21) the inequality is not strict.
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Fig. 3. Kalman filter with integrative component.

stochastic systems, between the real model and the Kalman filter with
its underlying model. The BPM can be computed with:

BPM = log(|S|) +tr(S7'y)
_ r'r (23)
r= length(r)?’
where S is the residual covariance matrix of the filter and r is the
residue obtained from using the filter.

To perform the model selection using this measure, one possible ap-
proach requires the selection of the range for the unknown parameter,
and of the maximum allowed value of BPM. The first model can be
selected by increasing the parameter until the BPM of the minimum
value of the range does not exceed the maximum BPM. Afterwards,
the following models will be required to ensure that the minimum
BPM curve of the current and previous models does not exceed the
maximum. Finally, models will be added until the minimum BPM curve
of all models does not exceed the maximum allowed BPM.

5.4. Kalman filter with integrative component

The use of integral action in control is common for ensuring ro-
bustness to perturbations and to ensure null steady state error. Since
the gravitational force is unknown and the use of multiple models does
not compensate for errors in the assumed gravitational force in non-
matching cases, the height filters require a mechanism that allows for
the correction of the assumed force. For this purpose, the residue of the
filter can be used for the adjustment of the gravitational force (¢). By
creating a feedback loop to the actuation input (1) with an integrator,
it allows for the height estimate to follow the height measurement
closely, and provides a more accurate estimate of the velocity. For
tuning purposes a gain (L;) can be given to the integration, allowing
to adjust the overshoot and speed of the estimate, with a block diagram
as depicted in Fig. 3.

Since the proposed method provides a solution for the gravitational
force issue, it could be considered sufficient to use a single model
approach. However, even disregarding the gravitational force, the mass
still impacts on the dynamics of the quadrotor. Larger differences
between the assumed and real values of the mass lead to higher error
in the velocity estimate. Therefore, the use of multiple-model methods
is still beneficial.

To prove that the Integrative Kalman filter provides zero residue for
the integrated variable, it is necessary to analyze the transfer function
of the sensor measurement to the estimate. Equation

& _ L22Ms2+(L|2M—L21L,aZ)s+L,(1—L”)aZ

= (24)
p; Ms3+ LyyMs?+(Liy;M — Ly Lya)s+ L;(1—L))a,

is obtained after tedious but straightforward computations. In this
function, it can be observed that the steady state gain is one, indicating
that the filter follows the measurement of the height.

Additionally, the steady state gain for the actuation input has to be
zero. Analyzing the transfer function

b _ 2 (25)
U M+ LpyMs2+ (LM — Ly Lyay)s+ Ly(1— Lypa,’

it can be seen that the steady state gain is zero.
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6. Control

In this section, the control methods are described. The two proposed
controllers are presented: the Linear Quadratic Regulator (LQR) and
the LQR with integrative action. Additionally, the requirement of zero
steady state error is studied.

6.1. LQR

The LQR is an optimal controller for linear systems. It results from
solving an optimal control problem for minimizing the cost function

T
J :/ [x’Qx + u’Ru] dr, (26)
'

where the matrices Q and R are, respectively, the relative weight of
the error and the relative weight of the energy in the optimization. The
solution of this problem follows the Riccati equation

- M=MA+A'M-MBR'BM+Q, @7

where M is the minimizing matrix. The resulting LQR gain calculation
is given by

K=R"'"B'M. (28)

In the steady state case, M is zero and the popular algebraic Riccati
equation results, see [26] for details.

An LQR controller is proposed for the control of the yaw angle. A
major requirement for the control is to ensure zero steady state error.
In this case, an LQR controller achieves this condition (assuming the
absence of drag effects on the dynamics). The resulting z-axis moment
calculation is

7, =-K,w+K,(y; —y), (29)

where K, and K, are the yaw rate and yaw gains, respectively. Given
the closed loop transfer function for the system with an LQR controller

v__  wKk (30)

v Is®+a,K,s+akK,’

the steady state gain is one, and the controller provides zero steady

state error. The resulting gain matrix is represented by K = [K,, K,,].
The LQR design possesses phase margin of at least 60°, infinite gain

margin, and gain reduction tolerance of —6 dB, which grants it some

robustness.

6.2. LQR with integrative action

As mentioned in Section 2, unknown gravitational force precludes
the use of standard approaches. If this component of the dynamics is
not correctly compensated, there will always be a steady state error.
There is, however, a version of the LQR controller that is capable
of controlling a system in the presence of perturbations, like unmod-
eled dynamics (a relevant example in quadrotors is wind). The LQR
controller with integrative action is a slight variation, consisting of a
cascading controller with an inner feedback of all the state variables
and an outer layer that integrates the difference between reference and
current value of the control variable, thus being proposed for the height
control.

To obtain a controller with these characteristics using LQR control,
it is only necessary to modify the model of the dynamics when cal-
culating the LQR gains. By using the modified version of the model

el nefl)

there is a state variable associated with the integration that is used for
defining the integrative control gain.
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Fig. 4. LQR with integrative component.

Having a modified model, the next step is very straightforward, just
calculate the LQR gains for the new model. Finally, from the resulting
gains, two different sets of gains are obtained. K is the vector of gains
for the state variables, K, is the gain matrix for the expanded state
vector, K, is the position gain, K, is the velocity gain, and K, is the
gain for the integrative component, selected according to K ,.:

K. =1K|I-K;] Kir=[K K;] K=[K; K]

This provides the following thrust calculation:

. Kl
T=-K;p,—K.p, + T (pzd - pz) g

which leads to the structure illustrated in Fig. 4.

One of the requirements for the control is to ensure zero steady state
error. To analyze the error, the system is separated into two compo-
nents, one that has no gravity and receives a reference height and one
that receives a zero reference height and has gravity, considered as an
input.

The transfer function for the reference height and for the gravity
are, respectively:

Kja
Pz 1% (32)
Py Ms?+K.a.s>+K,a,s+Kja,
B _ Ms (33)

g Ms3+K,a,s2+K.as+Ka,
In steady state, the gain associated to the reference height case is
unitary, which means that it goes to the desired height. In the gravity
case, the gain is zero, which implies that the gravity causes no deviation
from the desired height.

From this, it is concluded that the addition of the integrative action
provides a zero steady state error solution.

7. Linear stability analysis and steady state error analysis

The stability and assurance of zero static error of the proposed
control system architecture are central to the operation of autonomous
aerial vehicles in the presence of unknown constant parameters. To
analyze this issue, the following lemma from [21] is instrumental:

Lemma 7.1. In the case where the real system has an unknown constant
parameter that matches the underlying model of one of the filters in the
filter bank, the corresponding posterior probability will tend to one and all
the other probabilities will go to zero.

Thus the following lemma can be stated:

Lemma 7.2. For a system in the conditions of the previous lemma and
based on the Separation Theorem, there is a finite time instant T, such
that, for t > T ,,, all variables of the closed loop control system are bounded
and the yaw rate error converges to zero. Il
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The proof of the lemma is based on the assumptions previously
outlined, namely assuming that one Kalman filter is based on an
underlying model with the correct parameter. Thus, the eigenvalues
of the controller and the estimator are recovered. By the separation
principle, if the controller is stable and the estimator is stable, then the
overall system is stable.

7.1. Height control

The resulting A, matrix of the system is

K;:a, Kia, Kya,
0 0 T — M 0
1 0 0 0 0 0
A, = 0 Li KLA33 K. L fa4 KAES LA£6
z 21214, 21219, 15219 15219

0 Ly M, +1 I Ly, - M, ~ T,
0 0 0 -1 0 0
0 1 0 -1 0 0

a
A;;:—A;Z(I—L”) Ay =—-Ljp— == (1-Ly)

m

Ka Lja

Azs = MZ(I—L”) Azg = Mmz (1-Ly),
(€2))

where M,, is the model mass, M, is the real mass, a, is an input factor,
L are the Kalman gains and K are the controller gains. Additionally,
the B, matrix for the reference value is

B.=[o 0 0 0 1 0, (35)
and the C, matrix for the system height is

c.=0 1 0 0 0 0. (36)
The steady state is analyzed using

G, =-C.A;'B,, (37)

which yields a gain of one, as intended.
Additionally, to analyze the steady state error induced by the grav-
itational force, the matrix
T
B = [1 ]

0o 0 0 0 O (38)

is used instead of the previous one. Re-using (37), the steady state gain
obtained is zero, proving that the unknown gravitational force does not
cause steady state error.

7.2. Yaw control

The resulting A, matrix of the system is

_Kyay _Kyay
0 0 - -
1 0 0 0
Av/ = Ky ay Kyay, |’ (39)
Ly Lp —Ly-— —Lp-—
m m
Ly Ly 1 - Ly —Ly

where I, is the model inertia, /, is the real inertia, a,, is an input factor,
L are the Kalman gains and K are the controller gains. Additionally, the
B, matrix for the reference value is

Ky ay Kya

Y T
v g Ko 0], (40)

r m

sz[

and the C,, matrix for the system yaw angle is
c,=[0 1 0 0. (41)
The steady state is analyzed using

_ -1
G,=-C,A,'B,, (42)

which yields a gain of one, as intended.
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Table 1
Nominal parameters.

M (kg) I, (kg m?)
0.475 22383 x 1073

I, (kg m?)
2.9858 x 103

1. (kg m?)
4.8334 x 1073

8. Implementation

The model used for assessing the performance of the proposed
solution is the Parrot Ar.Drone 2.0 by Parrot SA. It is an off-the-shelf
commercially available, general purpose quadrotor designed for users
without any drone piloting skills. The nominal parameters of the drone
are presented in Table 1.

This model is equipped with an Inertial Measurement Unit (IMU)
composed of a triad of accelerometers, a three-axis gyroscope and a
three-axis magnetometer. Other sensors are available onboard such as
an ultrasound sensor, a barometer and two cameras. One camera on
the front and an optical-flow camera on the bottom. The rotors of
the quadrotor receive PWM commands. Therefore, before the actuation
inputs are sent to the quadrotor, these are converted to the equivalent
PWM commands for each rotor.

The initial value of the posterior probabilities p; in the MMAE,
known as the a priori probabilities, are initialized equally for the N
filters (1/N). This initialization is commonly used when there is no a
priori knowledge to support higher or lower probability at start.

The model selection was performed using the BPM analysis pre-
sented in Section 5.3, with the objective of assessing the number of
required models and the value of the unknown parameter for each
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Load

Fig. 6. Experimental setup.

model. The BPM analysis for the yaw component of the problem
addressed in this paper yields the results in Fig. 5a. Note that, for a
maximum BPM of 3.6 x 10® and for the range of values presented, the
obtained number of models is seven and the resulting inertia values
assumed for each model are as presented in the legend of the figure.

A similar analysis for the problem addressed in this paper, with only
a height and z-axis acceleration, yields the results in Fig. 5b. Here, it
can be observed that, for a maximum BPM of 5000 and for the range
of values presented, the obtained number of models is six and the mass
values assumed for each model are as presented in the legend of Fig. 5b.

For the purpose of implementing the control system in the ex-
perimental test, the AR.Drone 2.0 Quadcopter Embedded Coder [27]
was used. This package provides a target, deploying the code gen-
erated from the developed Simulink to the quadrotor, and using the
Simulink during runtime for data logging and sending commands. Wi-
Fi communication is used for deployment, data-logging, and sending
commands. This package was chosen because it provides a Simulink
based environment for development, and allows direct access to the
sensors and actuators.

To ensure the stabilization of the quadrotor, the X and Y position
and angles were regulated using a cascading PID control system for
defining the necessary torques. The sensors used were the accelerome-
ter that provides the accelerations, the ultrasound sonar that provides
the height, the gyroscope that provides the angular rates, and the
magnetometer that provides the yaw angle. An indoor multiple-camera
motion capture system (Qualisys) was used for obtaining the X and Y
position and angles. The setup of the experiment is presented in Fig. 6.
The load with constant unknown mass and inertia is added before the
flight. However, if mass or inertia change along the flights the models
will estimate the new mass and inertia and adjust the control for the
new values.

9. Stability verification

In this section, a simple verification of the stability of the system is
provided. For the height, the design mass is 0.445 kg, and the real mass
is 0.47 kg. The obtained set of eigenvalues is eig = {—1.4648 + 3.0317i,
—0.7023 + 0.4351i, —3.5159, —0.1077}. As expected, all eigenvalues have
a negative real component and thus the overall closed loop system is
stable. For the yaw, the design inertia is 5.1 x 107> kg m?, and the
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Fig. 7. Root locus mass.

real inertia is 4.8 x 10~ kg m2. The obtained set of eigenvalues is
eig = {—0.9873, —5.563 + 5.981i, —196.1}. As expected, all eigenvalues
have a negative real component and thus the overall closed loop system
is stable.

Additionally, to analyze the effect of the value of the model mass
on the stability, a root locus like analysis is performed. Using

fo=C,sI - A)'B, (43)

with (34), (35), and (36), this provides the transfer function of the
system. Taking the resulting denominator den(f,), it can be re-written
in the form of

den(f,) = fiM,, + f>. (44)

Plotting the root locus for f,/f,, allows for the desired analysis and
produces the graph in Fig. 7. There is a pole in the origin for infinite
mass, and there are two eigenvalues with positive real part for masses
below 0.035 kg. All of these mass values are outside the range specified
in this paper, ensuring the stability of the system. The eigenvalues
for the minimum and maximum values of the mass considered in this
article are highlighted with thicker lines.

Finally, to analyze the effect of the value of the model inertia on
the stability, a root locus like analysis is performed. Using

f,=C,(I-A)"'B, (45)

with (39), (40), and (41), this provides the transfer function of the
system. Taking the resulting denominator den(f,,), it can be re-written
in the form of

den(f,) = fil, + f>. (46)

Plotting the root locus for f,/f,, allows for the desired analysis and
produces the graph in Fig. 8. There are two eigenvalues in the origin
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for zero inertia, and there are two eigenvalues with positive real part
for inertia above 0.035 kg m2. All of these inertia values are outside
the range specified in this paper, ensuring the stability of the system.
The eigenvalues for the minimum and maximum values of the inertia
considered in this article are highlighted with thicker lines.

10. Simulation results

To validate if the proposed solution works, a simulation was pre-
pared. The parameters of the drone used for its setup are a mass M
of 0.454 kg without a load and 0.473 kg with a load, an inertia I, of
2.966x107° kg m? without a load and 4.833x10~> with a load. The input
factors a, and a,, are set to one. The model values for the multiple-
model architecture are the same as the ones presented in Section 8.
For the purpose of the Kalman gain computations, the covariance of
the sensor noise are defined as R, = 0.03 for the z-axis acceleration,
R, = 2.4 x 1077 for the height, R; = 0.03 for the yaw rate, and as
R, =5x% 1077 for the yaw, while the process noise of the height is given
a covariance of Q, = 0.005, and the process noise of the yaw is given a
covariance of Q,, = 107, The height LQR gains are K = [0.959 1.114]
and K; = 0.477. The yaw LQR gains are K = [9.436 8.968] x 1072,
The reference value for the height is a unitary step beginning at the
start of the simulation, and for the yaw is a square wave of amplitude
7 /2. The height control results are presented first, followed by the yaw
results. First, the results for the height and yaw control are analyzed
with the load being added mid-flight, at the start of the third rotation.
Afterwards, a comparison results with changes of —20% to 20% from
the drone real values is performed.

10.1. Height control

The results for the height are presented in Fig. 9. The settling time
(5%) is at 4 s. There is no overshoot, but there was an undershoot. The
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Fig. 9. Height simulation results.

actuation does not saturate. The estimation error for the height is at
most 0.002 m, while for the velocity it peaks at about 0.04 m/s, after
adding the load. The model selection ended after 2 s at the start of the
test and after 10 s after adding the load. The selection of the closest
model is observed in both phases. The mass estimate for the no load
phase converged to the correct value, because it is a matching case. In
the load phase, the inertia has an error, as it is a non-matching case.
It can be observed that after the load is added, the steady-state error

continues to be zero.
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Fig. 10. Yaw simulation results.

10.2. Yaw control

The results for the height are presented in Fig. 10. The settling times
(5%) are at 4 s, and there is no overshoot. The actuation only saturated
at the start of each rotation. The estimation error zeroes after 1 s, and
peaks at the start of the rotations. The peaks in the load phase (approx.
0.2 max for the yaw rate) are larger due to it being a non-matching case,
causing higher error. There is a large peak during the first rotation of
each phase that is caused by the model selection and is not repeated
in the following rotations. The maximum probability is attributed to
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the closest model, but the highest inertia model is selected initially.
There is an error in the inertia estimate of the load phase, as it is a
non-matching case. The posterior probability of the closest model for
the no load phase reaches 1 during the second rotation, while for the
load phase it achieves maximum probability during the first rotation.

10.3. System parameters change comparison

The results in Fig. 11 show changes from —20% to 20% from the
drone nominal values (use of a lighter battery, different load, different
drone guard, etc.). The settling time of the height increases with the
increasing mass, but achieves low overshoot. The settling time of the
yaw is identical in all tests. The mass estimates converge in less than
5 s. Most estimates of the inertia converge in the two first rotations.
However, the 85% case almost converged only by the end of the
simulation, and the 110% case is seen converging, but would require
further excitation to converge.
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11. Experimental results

To test if the proposed solutions works, an experimental test was
prepared. The real parameters of the drone are a mass M of 0.475 kg
and an inertia I, of 4.8334 x 1073 kg m2. The input factor a, is set
to 0.9 and q,, is set to 0.52. No test was performed with a load, as it
was difficult to increase significantly the inertia without affecting the
remainder of the dynamics. The model values for the multiple-model
architectures are the same as the ones presented in Section 8. For the
purpose of the Kalman gain calculations, the covariance of the sensor
noise is defined as R; = 0.03 for the z-axis acceleration, R, = 4.6x 10~/
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Fig. 13. Yaw experimental results.

for the height, R, = 0.03 for the yaw rate, and as R, = 4.26 x 107* for
the yaw, while the process noise of the height is given a covariance of
Q. = 0.00, and the process noise of the yaw is given a covariance of
o, = 107*. The height LQR gains are K = [1.223 1.879] and K; = 1.330.
The yaw LQR gains are K = [9.446 8.975] x 102, The tests were
performed by lifting-off to a height of 1 m, followed by eight 180°

rotations, and ending with landing.
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11.1. Height control

The results of the test are presented in Fig. 12. The settling time
(5%) with a desired height of 1 m is at 7 s with a 9% overshoot. The
actuation only saturated during the lift-off. The highest probability is
attributed to the closest model. There are peaks in the probabilities of
the other models at the during lift-off and landing, but this does not
seem to affect the selection of the closest model. The model selection
in this experiment is more sensitive and slower than in the simulation,
taking 8 s to settle. The mass estimate has a low error, as it is a
matching case.

11.2. Yaw control

The results of the test are presented in Fig. 13. The settling time
(5%) with 180° rotations is at 4 s with no overshoot. There is a static
error in all rotations, where the maximum observed value is 0.25
rad. The actuation only saturates during the start of each rotation.
The probabilities evolve in a similar fashion to what was observed in
simulation, changing mostly during the rotations, but in a much slower
manner. The highest probability is attributed to the closest model after
35 s. The inertia estimate has a low error, as it is a matching case.

12. Conclusion

This paper proposed and studied the application of Multiple-Model
Kalman filtering and LQR control for transportation of unknown loads
with quadrotors. The unknown parameters tested were the mass and z-
axis inertia of the load. The sensors used for the proposed solution were
an accelerometer, an ultrasound sonar, a gyroscope, and a magnetome-
ter. The solution was studied in simulation and experimentally using
the Ar.Drone 2.0. The control and estimation systems provided low
settling times and no overshoot in simulation. Additional simulations
were performed with variations of up to 20% from the drone nominal
values. For the purpose of limiting the overshoot, variations of up to
10% are recommended. In the experiment, the settling times increased
slightly and a small overshoot was observed in the height. Zero steady
state error was achieved in simulation for the height and yaw angle
and experimentally only for the height. The parameter estimation from
the MMAE was capable of selecting the closest model in the filter bank
for both mass and inertia. Parameter errors were only detected for
non-matching cases.

CRediT authorship contribution statement

Pedro Outeiro: Methodology, Software, Validation, Writing - orig-
inal draft. Carlos Cardeira: Supervision, Writing - review & editing,
Project administration, Funding acquisition. Paulo Oliveira: Super-
vision, Writing - review & editing, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is financed by national funds through FCT, Portugal —
Foundation for Science and Technology, LP., through IDMEC, under
LAETA, projects UIDB/50022/2020, and REPLACE (LISBOA-01-0145-
FEDER-032107). This work was also supported by FCT through the
scholarship SFRH/BD/147035/2019.



P. Outeiro et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

Jimenez-Cano A, Martin J, Heredia G, Ollero A, Cano R. Control of an aerial
robot with multi-link arm for assembly tasks. In: 2013 IEEE international
conference on robotics and automation (ICRA). 2013, p. 4916-21. http://dx.
doi.org/10.1109/ICRA.2013.6631279.

Sanchez-Cuevas PJ, Heredia G, Ollero A. Multirotor UAS for bridge inspection by
contact using the ceiling effect. In: 2017 international conference on unmanned
aircraft systems (ICUAS). 2017, p. 767-74. http://dx.doi.org/10.1109/ICUAS.
2017.7991412.

Merino L, Caballero F, Martinez-de-Dios JR, Maza I, Ollero A. An unmanned
aircraft system for automatic forest fire monitoring and measurement. J Intell
Robot Syst 2012;65(1):533-48. http://dx.doi.org/10.1007/510846-011-9560-x.
UPS partners with matternet to transport medical samples via drone across
hospital system in Raleigh, N.C.. 2019, https://pressroom.ups.com/pressroom/
ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-
986, [Online; accessed 16-April-2019].

Amazon prime air website. 2019, https://www.amazon.com/Amazon-Prime-Air/
b?node=8037720011, [Online; accessed 16-April-2019].

Casau P, Sanfelice RG, Cunha R, Cabecinhas D, Silvestre C. Robust
global trajectory tracking for a class of underactuated vehicles. Automatica
2015;58:90-8. http://dx.doi.org/10.1016/j.automatica.2015.05.011, URL http://
www.sciencedirect.com/science/article/pii/S0005109815002101.

Raffo GV, Ortega MG, Rubio FR. An integral predictive/nonlinear Hoo control
structure for a quadrotor helicopter. Automatica 2010;46(1):29-39. http://dx.
doi.org/10.1016/j.automatica.2009.10.018, URL http://www.sciencedirect.com/
science/article/pii/S0005109809004798.

Cabecinhas D, Naldi R, Silvestre C, Cunha R, Marconi L. Robust landing and slid-
ing maneuver hybrid controller for a quadrotor vehicle. IEEE Trans Control Syst
Technol 2016;24(2):400-12. http://dx.doi.org/10.1109/TCST.2015.2454445.
Jeong S, Jung S. A quad-rotor system for driving and flying missions by tilting
mechanism of rotors: From design to control. Mechatronics 2014;24(8):1178-
88. http://dx.doi.org/10.1016/j.mechatronics.2014.09.006, URL http://www.
sciencedirect.com/science/article/pii/S0957415814001330.

Chipade VS, Abhishek, Kothari M, Chaudhari RR. Systematic design methodology
for development and flight testing of a variable pitch quadrotor biplane VTOL
UAV for payload delivery. Mechatronics 2018;55:94-114. http://dx.doi.org/10.
1016/j.mechatronics.2018.08.008, URL http://www.sciencedirect.com/science/
article/pii/S0957415818301351.

Lehtomaki N, Sandell N, Athans M. Robustness results in linear-quadratic
Gaussian based multivariable control designs. IEEE Trans Automat Control
1981;26(1):75-93. http://dx.doi.org/10.1109/TAC.1981.1102565.

Notter S, Heckmann A, Mcfadyen A, Gonzalez LF. Modelling, simulation and
flight test of a model predictive controlled multirotor with heavy slung load. 49,
2016, http://dx.doi.org/10.1016/j.ifacol.2016.09.032,

Sreenath K, Michael N, Kumar V. Trajectory generation and control of a
quadrotor with a cable-suspended load - a differentially-flat hybrid system.
In: 2013 IEEE international conference on robotics and automation. 2013, p.
4888-95. http://dx.doi.org/10.1109/ICRA.2013.6631275.

Dai S, Lee T, Bernstein DS. Adaptive control of a quadrotor UAV transporting a
cable-suspended load with unknown mass. In: 53rd IEEE conference on decision
and control. 2014, p. 6149-54. http://dx.doi.org/10.1109/CDC.2014.7040352.
Outeiro P, Cardeira C, Oliveira P. LQR/MMAE height control system of a
quadrotor for constant unknown load transportation. In: 2018 13th APCA
international conference on automatic control and soft computing (CONTROLO).
2018, p. 389-94. http://dx.doi.org/10.1109/CONTROLO.2018.8514545.
Outeiro P, Cardeira C, Oliveira P. MMAC height control system of a quadrotor
for constant unknown load transportation. In: 2018 IEEE/RSJ international
conference on intelligent robots and systems (IROS). 2018, p. 4192-7. http:
//dx.doi.org/10.1109/IR0S.2018.8594215.

Leishman RC, Macdonald JC, Beard RW, McLain TW. Quadrotors and accelerom-
eters: State estimation with an improved dynamic model. IEEE Control Syst Mag
2014;34(1):28-41. http://dx.doi.org/10.1109/MCS.2013.2287362.

Loianno G, Brunner C, McGrath G, Kumar V. Estimation, control, and planning
for aggressive flight with a small quadrotor with a single camera and IMU.
IEEE Robot Autom Lett 2017;2(2):404-11. http://dx.doi.org/10.1109/LRA.2016.
2633290.

Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: Modeling, estimation,
and control of quadrotor. IEEE Robot Autom Mag 2012;19(3):20-32. http://dx.
doi.org/10.1109/MRA.2012.2206474.

Gelb A. Applied optimal estimation. MIT press; 1974.

Fekri S. Robust adaptive MIMO control using multiple-model hypothesis testing
and mixed-u synthesis (Ph.D. thesis), Instituto Superior Técnico; 2002.

12

[22]

[23]

[24]

[25]

[26]

[27]

Mechatronics 73 (2021) 102455

Chang CB, Athans M. State estimation for discrete systems with switching
parameters. IEEE Trans Aerosp Electron Syst 1978;AES-14(3):418-25. http://dx.
doi.org/10.1109/TAES.1978.308603.

Hassani V, Pedro Aguiar A, Pascoal AM, Athans M. Further results on plant
parameter identification using continuous-time multiple-model adaptive esti-
mators. In: Proceedings of the 48h IEEE conference on decision and control
(CDC) held jointly with 2009 28th Chinese control conference. 2009, p. 7261-6.
http://dx.doi.org/10.1109/CDC.2009.5400434.

Baram Y. Information, consistent information and dynamic system identifica-
tion (Ph.D. thesis), Massachusetts Institute of Technology; 1976.

Gaspar T, Oliveira P, Silvestre C. Model-based filters for 3-D positioning of ma-
rine mammals using AHRS- and GPS-equipped UAVs. IEEE Trans Aerosp Electron
Syst 2015;51(4):3307-20. http://dx.doi.org/10.1109/TAES.2015.140748.
Friedland B. Control system design: An introduction to state-space methods.
Dover Publications; 2005.

Lee D. AR.Drone 2.0 support from embedded coder. 2017, https://www.
mathworks.com/hardware-support/ar-drone.html.

Pedro Outeiro is a Ph.D. student from Instituto Superior
Técnico (IST), Lisbon, Portugal. He completed his master’s
degree in mechanical engineering with a thesis on Control
and Estimation Methods for Unknown Load Transportation
with Quadrotors. He received three diplomas for academic
excellence and one for academic merit during his studies.

Carlos B. Cardeira was born in Quinjenje, Angola, and
received the engineering and master of science degrees in
1986 and 1991, in electrical engineering from Instituto
Superior Técnico in Lisbon — Portugal. In 1994 he received
the Ph.D. in electrical engineering and computer science
from the Institut National Polytechnique de Lorraine in
Nancy — France. He is a member of the Center of Intelligent
Systems of the IDMEC research laboratory and teaches at
Instituto Superior Técnico in Lisbon courses in Mechatronics
Systems, Industrial Automation and Informatics areas. He
made several post-docs and sabbatical leaves, namely in
IRIT and LAAS in Toulouse — France, CERN in Geneva
— Switzerland and Schneider-Electric in Seligenstadt —
Germany.

Paulo Oliveira (SM IEEE) received the Ph.D. degree in
Electrical and Computer Engineering in 2002, and the Habil-
itation in Mechanical Engineering in 2016, all from Instituto
Superior Técnico (IST), Lisbon, Portugal. He holds a joint
position as Full Professor in the Mechanical Engineering and
Electrotechnical and Computer Engineering Departments of
IST, since 2020, and Senior Researcher in the Associated
Laboratory for Energy, Transports, and Aeronautics. His
research interests are in the area of Autonomous Robotic
Vehicles with a focus on the fields of Mechatronic Systems
Integration, Sensor Fusion, GPS and Positioning Systems,
and Guidance, Navigation and Control Systems (GNC). He
is author or coauthor of more than 85 journal papers (90%
in first quartile), and 180 conference communications and
participated in more than 40 European and Portuguese
research projects, over the last 30 years.


http://dx.doi.org/10.1109/ICRA.2013.6631279
http://dx.doi.org/10.1109/ICRA.2013.6631279
http://dx.doi.org/10.1109/ICRA.2013.6631279
http://dx.doi.org/10.1109/ICUAS.2017.7991412
http://dx.doi.org/10.1109/ICUAS.2017.7991412
http://dx.doi.org/10.1109/ICUAS.2017.7991412
http://dx.doi.org/10.1007/s10846-011-9560-x
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-986
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-986
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-986
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-986
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1553546776652-986
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011
http://dx.doi.org/10.1016/j.automatica.2015.05.011
http://www.sciencedirect.com/science/article/pii/S0005109815002101
http://www.sciencedirect.com/science/article/pii/S0005109815002101
http://www.sciencedirect.com/science/article/pii/S0005109815002101
http://dx.doi.org/10.1016/j.automatica.2009.10.018
http://dx.doi.org/10.1016/j.automatica.2009.10.018
http://dx.doi.org/10.1016/j.automatica.2009.10.018
http://www.sciencedirect.com/science/article/pii/S0005109809004798
http://www.sciencedirect.com/science/article/pii/S0005109809004798
http://www.sciencedirect.com/science/article/pii/S0005109809004798
http://dx.doi.org/10.1109/TCST.2015.2454445
http://dx.doi.org/10.1016/j.mechatronics.2014.09.006
http://www.sciencedirect.com/science/article/pii/S0957415814001330
http://www.sciencedirect.com/science/article/pii/S0957415814001330
http://www.sciencedirect.com/science/article/pii/S0957415814001330
http://dx.doi.org/10.1016/j.mechatronics.2018.08.008
http://dx.doi.org/10.1016/j.mechatronics.2018.08.008
http://dx.doi.org/10.1016/j.mechatronics.2018.08.008
http://www.sciencedirect.com/science/article/pii/S0957415818301351
http://www.sciencedirect.com/science/article/pii/S0957415818301351
http://www.sciencedirect.com/science/article/pii/S0957415818301351
http://dx.doi.org/10.1109/TAC.1981.1102565
http://dx.doi.org/10.1016/j.ifacol.2016.09.032
http://dx.doi.org/10.1109/ICRA.2013.6631275
http://dx.doi.org/10.1109/CDC.2014.7040352
http://dx.doi.org/10.1109/CONTROLO.2018.8514545
http://dx.doi.org/10.1109/IROS.2018.8594215
http://dx.doi.org/10.1109/IROS.2018.8594215
http://dx.doi.org/10.1109/IROS.2018.8594215
http://dx.doi.org/10.1109/MCS.2013.2287362
http://dx.doi.org/10.1109/LRA.2016.2633290
http://dx.doi.org/10.1109/LRA.2016.2633290
http://dx.doi.org/10.1109/LRA.2016.2633290
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MRA.2012.2206474
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb20
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb21
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb21
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb21
http://dx.doi.org/10.1109/TAES.1978.308603
http://dx.doi.org/10.1109/TAES.1978.308603
http://dx.doi.org/10.1109/TAES.1978.308603
http://dx.doi.org/10.1109/CDC.2009.5400434
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb24
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb24
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb24
http://dx.doi.org/10.1109/TAES.2015.140748
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb26
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb26
http://refhub.elsevier.com/S0957-4158(20)30121-5/sb26
https://www.mathworks.com/hardware-support/ar-drone.html
https://www.mathworks.com/hardware-support/ar-drone.html
https://www.mathworks.com/hardware-support/ar-drone.html

	Multiple-model control architecture for a quadrotor with constant unknown mass and inertia
	Introduction
	Problem statement
	Physical model
	Height dynamics
	Yaw dynamics
	Inertia behavior analysis

	Control architecture
	Estimation
	Kalman filter
	Multiple-model adaptive estimation
	Baram proximity measure
	Kalman filter with integrative component

	Control
	LQR
	LQR with integrative action

	Linear stability analysis and steady state error analysis
	Height control
	Yaw control

	Implementation
	Stability verification
	Simulation results
	Height control
	Yaw control
	System parameters change comparison

	Experimental results
	Height control
	Yaw control

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


