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Abstract This paper proposes a novel control archi-
tecture for quadrotors that relies twice on the Feed-
back Linearization technique. The solution comprises
a tracking inner-loop resulting from applying the men-
tioned method to the attitude and altitude dynam-
ics. The horizontal movement, and, thereby, the zero
dynamics, are stabilized without linearizing nor sim-
plifying it by resorting to the same nonlinear tech-
nique. Linear quadratic controllers with integral action
are implemented to the resulting chain of integrators
of the inner and outer loops. As a result, the inner-
loop dynamics asymptotically track the desired attitude
and altitude over a broad region of the state-space, and
the outer-loop yields a tracking system that is input-
to-state stable and exponentially stable in the absence
of external inputs. The stability of the proposed inner-
outer loop control architecture is studied, leading to
the proof of asymptotic stability in an extensive region
of the state-space. Trajectory tracking, the capacity to
overcome significant deviations on themass and inertia
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values, and the robustness to external disturbances are
evaluated using a simulation model, in which measure-
ment noise and saturation limits are considered. In addi-
tion, comparisons regarding the performance in trajec-
tory tracking of the proposed strategy and the results
obtained with similar solutions from the literature are
established. Experimental tests were conducted using a
commercially available drone, equipped with an Iner-
tial Measurement Unit, a compass, and an altimeter. A
motion capture system gives the inertial position of the
drone. The results obtained allow the validation of the
modeling and control system solution.

Keywords Unmanned aerial vehicle · Nonlinear
control system · Feedback control systems · Feedback
linearization

1 Introduction

Most recently, due to advances in electronics and man-
ufacturing processes, a miniaturization of the con-
trollers, sensors and processors, without discarding the
effectiveness of these components, became a reality.
The evolution resulted in the emergence of small con-
figurations of unmanned aerial vehicles. A relevant part
of the research conducted on these small-scale UAVs
concerns quadrotors. The decrease of the quadrotor
cost, which allows the spanning of its use beyond mili-
tary applications and academic research, in conjunction
with its singular characteristics results in being equated
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in a panoply of public and civil applications, ranging
from search and rescue activities to areamonitoring and
infrastructure inspection. In furtherance of these small
aerial vehicles being autonomous, reliable onboard sta-
bilization and trajectory tracking capabilities are imper-
ative. The number and complexity of the applications
of these systems are increasing at an impressive rate.
Thus, in order to keep track of this evolution, the con-
trolmethods appliedmust be enhanced by aiming better
performance and expanded versatility.

The study of the control of quadrotors includes var-
ious linear and nonlinear techniques. Several works
demonstrate the feasibility of controlling a quadcopter
resorting to linear techniques. Notwithstanding this
reported success of tackling the control problem with
linear techniques, applying nonlinear control methods
that consider a more comprehensive model of vehi-
cle dynamics can lead to better performance. In the
literature, it is possible to find a variety of nonlinear
approaches applied to quadrotors. Themajority of these
nonlinear strategies relies, for instance, on slidingmode
[1–4], backstepping [1,5–7] or model predictive con-
trol [8].

A different method commonly considered that has
also attracted research interest throughout the years is
Feedback Linearization. Freddi et al. used feedback
linearization to design a double loop control structure
capable of performing not only trajectory tracking but
also roll and pitch control in the event of a rotor failure
[9]. The simulation tests highlight this capacity of the
fault tolerant controller proposed. A distinct two-loop
architecture using feedback linearization is proposed in
[10]. In the referredwork, the attitude of the quadcopter
only implicitly appears in the transformation matrix
and is not a controlled state. The aerial vehicle proved to
flywith good accuracy since the control errors obtained
in hovering tests are within 3 cm for all Cartesian coor-
dinates. In [11], a single-loop controller for path fol-
lowing relying on feedback linearization with input
dynamic extension is presented. The simulation results
validate the strategy. Bonna et al., in [12], proposed a
similar single-loop control solution based on feedback
linearization with dynamic extension. The resulting
input-output linearizedmodel is controlled by resorting
to theLQR technique. The proposed dynamic nonlinear
control lawwas studied in simulation. Vallejo-Alarcon,
in [13], assumed simplifying conditions regarding the
attitude and position dynamics to develop a control
scheme that combines the feedback linearization and

backstepping techniques, having presented experimen-
tal results. In [14], Aboudonia et al. designed a feed-
back linearization controller that incorporates a dis-
turbance observer. The authors assessed the impact of
the neglected nonlinear dynamics through a simulation
study.

This work presents a novel nonlinear control archi-
tecture for quadrotors. The control problem is addressed
without simplifications or approximations of the under-
lying differential equations of the dynamic model,
which captures the fundamental dynamics of the vehi-
cle. This constitutes one of the main differences com-
paredwith someworks based on feedback linearization
found in the literature (cf. [9,13–15]), in which sim-
plifying assumptions and approximations are consid-
ered. Further, the authors also discuss the impact of the
coupling between the two resulting tracking systems
and prove the stability of the interconnected system.
The solution was tested in simulation and experimen-
tally validated resorting to an off-the-shelf quadcopter.
The reconstruction of the state-variables that are not
directly available through sensors, namely the velocity
and the Euler angles, is performed resorting to Kalman
Filters and a nonlinear attitude filter, respectively. An
inner-outer loop structure is proposed as the control
solution, where the innermost loop is responsible for
the attitude and altitude control, and the outermost
solves the horizontal positioning control. In both loops
an integral action is present. Linear Quadratic Regu-
lator and Feedback Linearization methods are consid-
ered to tackle the control problem. Although the use of
the Euler angles representation constitutes a hindrance
in attaining global asymptotic stability and state-of-
the-art works demonstrate the feasibility of achieving
global attitude tracking by resorting to a quaternion-
based control, for instance ([16]), for practical reasons,
the Euler angle parameterization is explored in this
workdue to its intuitiveness. In this direction, the result-
ing control architecture is regionally stable. Notwith-
standing, the proven region of stability of the architec-
ture is more than sufficient for most applications with
quadrotors since it completely encloses the flight enve-
lope required in non-acrobatic flights.

Themain contribution of this work is a novel control
structure that relies twice on the nonlinear technique
Feedback Linearization in combination with LQR con-
trol with integral action. To the best of the authors’
knowledge, there are no solutions for quadrotor con-
trol in the literature in which the Feedback Lineariza-
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tion technique is applied simultaneously for position
and attitude control in a double-loop architecture. The
outer-loop controller governs the horizontal movement
dynamics and yields a tracking system that is input-to-
state stable and exponentially stable in the absence of
external inputs. The inner-loop tackles the attitude and
altitude control problems and the resulting closed-loop
tracking system is asymptotically stable for |ϕ| < π

2
and |θ | < π

2 . The proposed strategy has integral
action embedded in both loops to deal more effectively
with constant disturbances and parameter uncertain-
ties. The interconnection between the inner and outer
loops tracking systems is studied by capitalizing on the
input-to-state stability property of the horizontal move-
ment tracking dynamics. As a result, the control strat-
egy transforms the quadrotor dynamics into a double-
loop architecture tracking system that is asymptotic sta-
ble for |ϕ| < π

2 and |θ | < π
2 . The proposed strategy

proposed results from deepening the authors’ former
works, inwhich a conventional linearmethod, [17], and
a combination between linear methods and Feedback
Linearization, [15], were considered. When compared
to the latter work, the outer-loop control law devised,
based on Feedback Linearization, results in a broader
region of proved asymptotic stability.

The novel control solution overcame extrememodel
inaccuracies and a constant external force in simula-
tion without deteriorating its performance. In detail,
the authors considered four different scenarios, arising
from combinations of variations of ±50% of the mass
value with variations of+300% and−75% of the iner-
tia values, under the influence of an external force of
1 N. The promising results evidence the importance
of the integral action. Further, in a second simulation
test, in which the authors evaluate the trajectory track-
ing capacity, the control solution outperformed similar
strategies based on Feedback Linearization from the
literature. In experimental tests conducted with a com-
mercially available vehicle, the proposed solution suc-
cessfully followed a predefined trajectory. To expand
the evaluation, the authors studied the behavior of the
solution when performing aggressive maneuvers and
when subjected to considerable constant perturbations.
To this end, an offset of −35◦ was applied to the pitch
reference while the quadrotor was hovering. Despite
the significant unexpected constant disturbance and
the consequent aggressive maneuver, which solicited
the nonlinear dynamics of the quadrotor, the vehicle
presents a stable response and returns to the desired

position. The experimental results obtained in the two
tests validate the approach. Compared to the minority
of works related to Feedback Linearization that vali-
date the respective solution with an actual vehicle, the
experimental study presented in thismanuscript ismore
extensive.

Compared to other strategies from literature, the first
advantage of the approach stems from applying the
Feedback Linearization technique that transforms the
attitude and altitude dynamics, which form the inner-
loop, and the horizontalmovement dynamics, governed
by the outer-loop, into linear and decoupled tracking
systems formed by chains of integrators. The transfor-
mation allows applying the LQR method to compute
the feedback gains and, thereby, capitalize on the large
stability margins to errors in the loop gain that this
linear method offers, namely, gain margin of infinity,
gain reduction margin of 1/2, and a minimum phase
margin of 60◦ ([18]). The second advantage is related
to the input-to-state stability property of the resulting
horizontal movement tracking system. This property is
instrumental for studying the interconnection between
the two loops and concluding the stability of the result-
ing architecture. The outer-loop control law devised
enables obtaining a more extensive region of proved
asymptotic stability when comparedwith other double-
loop architectures from the literature that also rely on
the same nonlinear control method [15,19]. The inte-
gral action is a crucial element of the solution since it
allows dealing more effectively with constant distur-
bances and significant mismatch of the model param-
eters, thus, increasing the robustness of the strategy.
The simulation and experimental results attained cor-
roborate this idea. In this direction, the inclusion of
integral action in both loops is another relevant advan-
tage relative to other strategies based on feedback lin-
earization from the literature. Against single-loop solu-
tions from literature (for instance, [11,12]), the pro-
posed structure has fewer singularities, is computation-
ally less demanding, and does not require estimating
position high-order derivatives that are more affected
by measurement noise. The disadvantage of the con-
trol solution is using the Euler angles representation,
which constitutes a clear obstacle in attaining a global
result. However, given the valencies previously men-
tioned and the extensive region of proved asymptotic
stability, the novel control architecture proposed by the
authors is advantageous with respect with other simi-
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lar strategies and can be effectively used in the vast
majority of applications with quadrotors.

This manuscript is organized as follows: first, in
Sect. 2, the underlying differential equations of the
nonlinear model and the computation of the thrust and
moments are detailed; next, the control solution design
and the proofs of asymptotic stability are presented in
Sect. 3; the simulation results obtained with the archi-
tecture are displayed and analyzed in Sect. 4; posteri-
orly, in Sect. 5, the transition to the actual aerial vehicle
is addressed through an overview of the quadcopter and
its sensors, and the description of the implementation
of the controllers and state-estimators; the experimen-
tal validation responses are displayed and evaluated in
Sect. 6; lastly, in Sect. 7, themanuscript endswith some
concluding remarks.

2 Physical model

In this section, the nonlinearmodel of theUAVbasedon
theNewton-Euler formalism is presented. Themodel is
formulated considering a body and an inertial reference
frames, denoted as, respectively, {On, XnYn Zn} and
{OI , XI YI Z I }. These reference frames are depicted
in Fig. 1.The origin of the body-fixed frame {B} is
coincident with the center of mass of the quadrotor.
The formulation of the dynamic model relies on some
frequently adopted and perfectly reasonable assump-
tions: the vehicle is symmetrical and rigid, the motor
dynamics are relatively fast and can be neglected, and
a lumped parameter describes the relationship between
the thrust and yawmoment generated by a rotor in free-
air, as discussed by [20].

Let p = (x, y, z) ∈ R
3 denote the position vec-

tor of the center of mass of the UAV in the inertial
frame. Let η = (ϕ, θ, ψ) ∈ R

3 describe the orienta-
tion vector, in terms of Euler angles, of the body-fixed
frame with respect to the inertial frame, where ϕ, θ

and ψ are the roll, pitch and yaw angles, respectively.
Let ω = (p, q, r) ∈ R

3 represent the angular velocity
described in the body-fixed reference frame. The rigid
body equations of motion of the quadcopter, according
to Mahony et al. [21], are given by:

m p̈ = −mge3 + RT e3 (1)

Iω̇ = −ω × Iω + τ (2)

where I ∈ R
3×3 corresponds to the diagonal inertia

matrix described in the body fixed-frame,m ∈ R is the

Fig. 1 Reference frames in which the nonlinear dynamics are
described

total mass of the quadrotor, g ∈ R denotes the gravity
acceleration, T ∈ R and τ = (τϕ, τθ , τψ) ∈ R

3 denote,
respectively, the total thrust andmoments applied to the
UAV airframe by the aerodynamics of the rotors, both
described in the body-fixed reference frame, e3 ∈ R

3

is a vector of zeros except for the 3rd entry which is 1,
and R ∈ SO (3) is the rotation matrix from the body-
fixed to the inertial reference frame. The Euler angles
follow the sequence of rotation Z-Y-X that is described
in [22].

η̇ = T (η)ω =
⎡
⎢⎣
1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) sec(θ) cos(ϕ) sec(θ)

⎤
⎥⎦ω

(3)

According to Leishman [20], the steady-state thrust
Ti ∈ R and yaw moment τψi ∈ R generated by a rotor
in free air can be related through a lumped parame-
ter model. The parameter, ci , can be experimentally
determined. The roll and pitch moments, τϕ ∈ R and
τθ ∈ R, result from the generated thrust of the rotor
and its arrangement relative to the center of mass of
the quadcopter. Hence, the resultant total thrust T and
moments τϕ , τθ and τψ are computed through:

⎡
⎢⎢⎣
T
τϕ

τθ

τψ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1

L −L −L L

−L −L L L

c1 −c2 c3 −c4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
T1
T2
T3
T4

⎤
⎥⎥⎦ (4)
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Fig. 2 Schematic representation of the Euler angles and forces
and moments generated by each rotor

In Fig. 2, the forces and yaw moments generated by
each rotor, the direction of rotation of each propeller,
the dimension L and the Euler angles are schematically
represented.

Let x ∈ R
12 denote the state-variables vector

x = [x y z ϕ θ ψ ẋ ẏ ż p q r ]� (5)

and let u ∈ R
4 represent the input vector

u = [
T τϕ τθ τψ

]� (6)

Then, the quadcopter dynamics can be written in the
compact form

ẋ =

⎡
⎢⎢⎣

ṗ
T (η) ω

−ge3

I−1 (Iω × ω)

⎤
⎥⎥⎦ +

⎡
⎣

06×1 06×3
1
m Re3 03×3

03×1 I−1

⎤
⎦ u (7)

with i = 1, 2, 3.

3 Control

To tackle the control problem, an inner-outer loop struc-
ture is considered in which static-state feedback lin-
earization is applied not only to the inner loop dynam-
ics, formed by the attitude and altitude equations, but
also to the zero dynamics through an outer-loop that
generates the references for the roll and pitch angles.
The solution proposed in this paper addresses the intri-
cate problem of the horizontal movement and, thereby
the zero dynamics, without linearizing nor simplifying
it. Let the desired trajectory be defined, for t ≥ 0, by

the map

r(t) :=(
pd(t), ṗd(t), p̈d(t), ψd(t), ψ̇d(t), ψ̈d(t)

)
,

(8)

which encompasses the desired position, pd, and yaw
angle, ψd , and the respective derivatives. The control
objective is to design T and τ such that the desired
trajectory is successfully tracked.

Feedback Linearization consists in a nonlinear con-
trol approach that aims to algebraically transform non-
linear dynamics of systems, through nonlinear change
of coordinates and nonlinear state feedback, into a
model that is linear in the new set of coordinates. The
linear model produced is an exact representation of the
original nonlinear model over a large set of operating
points [23]. Given a nonlinear system of the form:

ẋ = f (x) + g (x) u (9)

y = h (x) (10)

with the state vector x ∈ R
n and where f(x) ∈ R

n and
h(x) ∈ R

m are vectors of sufficiently smooth nonlin-
ear functions and g(x) ∈ R

n×m is a matrix of suffi-
ciently smooth nonlinear functions. From [24, Lemma
5.2.1], assume the former nonlinear system verifies the
conditions therein stated, the system can be modified
into a fully linear and decoupled controllable system
through the application of the following diffeomor-
phism Φ (x) ∈ R

n:

ξ j,k = φ j,k (x) = Lk−1
f h j (x) (11)

with k ∈ {1, ..., r j }, j ∈ {1, ...,m} and where L
denotes the Lie Derivative and r j represents the rel-
ative order, and of the next nonlinear static state feed-
back control law

u = −�−1(x) b(x) + �−1(x) v (12)

where v ∈ R
m denote the transformed input variables

vector, the decoupling matrix �(x) ∈ R
m×m is defined

as

�(x) =
⎡
⎢⎣
Lg1Lr1−1

f h1(x) · · · LgmLr1−1
f h1(x)

...
. . .

...

Lg1Lrm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎦

(13)
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and b(x) ∈ R
m is given by

b(x) = [Lr1
f h1(x) . . . Lrm

f hm(x)
]�

(14)

It is clear that the decoupling matrix �(x) is required to
be nonsingular. After applying the input-output feed-
back linearization, the input-output model is linear in
the new set of coordinates and is formed by a set of m
chains of r j integrators with inputs v j described by:

v j = Lrj
f h j (x) +

m∑
i=1

LgiL
rj−1
f h j (x)ui = ξ̇ j,r j

(15)

3.1 Attitude and altitude control

Let xin ∈ R
8 denote the vector of state-variables of the

inner dynamics

xin = [
z ϕ θ ψ ż p q r

]�
(16)

anduin ∈ R
4 describe the vector of inputs of the system

uin = [
T τϕ τθ τψ

]�
(17)

By recalling the nonlinear model presented in (7), it is
possible to express the inner loop dynamics with the
form described in (9) and (10):

ẋin =

⎡
⎢⎢⎣

ż
T (η)ω

−g
I−1 (Iω × ω)

⎤
⎥⎥⎦ +

⎡
⎣

04×1 04×3
cϕcθ
m 01×3

03×1 I−1

⎤
⎦ uin (18)

yin = [
z ϕ θ ψ

]�
(19)

In the majority of the works found in the literature, the
inner-loop governs the attitude dynamics. In this work,
this loop also encapsulates the altitude dynamics since
this inclusion does not yield additional singularities and
provides a straightforward computation of the thrust
magnitude required. To tackle the attitude and altitude
control problem, the strategy detailed in [15] is applied.
First, it follows from [15, Proposition 1] that the inner-
loop dynamics described by (18) and (17) with out-
put (19) have a well-defined relative degree vector
r = {2, 2, 2, 2} on the set

{
xin ∈ R

8 : |ϕ|, |θ | < π
2

}
.

In this direction, by resorting to the following static
state feedback control law reported in [15]

uin = −�−1
in (xin) bin(xin) + �−1

in (xin) vin (20)

where

�in(xin) =

⎡
⎢⎢⎢⎣

cθ cϕ
m 0 0 0
0 1

Ix
tθ sϕ
Iy

cϕ tθ
Iz

0 0 cϕ
Iy

− sϕ
Iz

0 0 sϕ
Iy cθ

cϕ
Iz cθ

⎤
⎥⎥⎥⎦ (21)

with t() being the shorthand form for tangent, the
inner dynamics are input-output linearized. The vector
bin (xin) encompasses the terms of the second-order
time derivative of the output that are independent of
the input. The local diffeomorphism (11) originates the
following vector of transformed state-variables:

ξ in = [
z ż ϕ ϕ̇ θ θ̇ ψ ψ̇

]� = Φ (xin) (22)

Consequently, the static state feedback control law in
conjunction with the change of coordinates (11) trans-
forms the inner dynamics into four single-input single-
output chains of two integrators. In virtue of the result-
ing dynamics being controllable, decoupled, and linear,
the Linear Quadratic Regulator control technique can
be applied.An integrator is embedded into the feedback
control in furtherance of dealing with the steady-state
error and mitigating the effect of perturbations [18].
Let the attitude error eη be defined by eη = (

η − ηd
)
,

where ηd = (ϕd , θd , ψd), with ϕd and θd denoting
the desired roll and pitch angles that result from the
outer-loop control law, and let ep = (p − pd) repre-
sent the position error. The transformed input vector
vin is defined as follows:

vin =
[

e�
3 (−kiz ζ̇ p − kzep − kż ėp + p̈d)

−Kiηζη − Kηeη − Kη̇ ėη + η̈d

]
(23)

where kiz , kz, kż, Kiη, Kη, and Kη̇ are gains that result
from the application of the LQR gain computation and
ζη and ζ p are integral states satisfying

ζ̇η = eη, ζ̇ p = ep (24)

The feedback defined in (20) and (23), in combi-
nation with the local diffeomorphism (22), yields the
following altitude and attitude tracking dynamics:
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[
e�3 ëp

ëη

]
=

[
e�

3 (−kizζ p − kzep − kż ėp)
−Kiηζη − Kηeη − Kη̇ ėη

]
(25)

The altitude and attitude tracking dynamics are asymp-
totically stable for all xin satisfying |ϕ| < π

2 and
|θ | < π

2 .

3.2 Zero dynamics control

With the inner-loop dynamics stabilized, it is now
relevant to determine the zero dynamics, by solving
the Problem of Zeroing the Output [24], and analyze
the corresponding internal dynamics of the system
described in (7). If yin = 0, then ξ in = 0 and, con-
sidering (15), vin = 0. Given (12), the input vector
uin that solves the Problem of Zeroing the Output is
computed through:

0 = bin(xin) + �in(xin) uin (26)

The first equation of the system (26) is equivalent
to equaling the height second time-derivative to zero.
Solving this equation yields:

T = mg (27)

Taking into account (7) and the former result, the hor-
izontal movement dynamics can be specified through

ẍ = g (cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ)) (28)

ÿ = g (cos(ϕ) sin(θ) sin(ψ) − sin(ϕ) cos(ψ)) (29)

An outer position control loop is required to control
these dynamics. By letting xout ∈ R

4 denote the vector
of state-variables of the outer dynamics

xout = [
x y ẋ ẏ

]�
(30)

the outer-loop dynamics can be perceived as

ẋout = f (xout, η) (31)

Since the translational control dictates the roll and pitch
angle required to track the desired trajectory, let uout ∈
R
2 describe the vector of inputs of the outermost loop

uout = (cos(ϕ) sin(θ), sin(ϕ)) (32)

Given (28) and (29), the outer-loop dynamics can be
described with the form described in (9) and (10):

ẋout =
[

0 I2
0 0

]
xout + g

⎡
⎣

0 0
cosψ sinψ

sinψ − cosψ

⎤
⎦ uout (33)

yout = [
x y

]�
(34)

Lemma 1 The outer-loop dynamics described by (33)
and (32) with output (34) have a well-defined relative
degree vector {r1, r2} = {2, 2} for any xout.

Proof Following the reasoning of the proof of [15,
Proposition 1], it is evident that the first time derivative
of the output vector yout is independent of the inputs.
From the second time derivative of the output vector,
the following decoupling matrix is obtained:

�out(ψ) =
[
g cos (ψ) g sin (ψ)

g sin (ψ) −g cos (ψ)

]
(35)

whose determinant is defined by

det (�out(ψ)) = −g2 (36)

Thereby, the decoupling matrix �out(ψ) is invertible
for any xout. Furthermore, the first condition is also
verified, LgiLk

f h j (xout) = 0 for i, j ∈ {1, 2}, k ∈
{0, ..., r j − 2}. Consequently, the outer-loop dynamics
have well-defined relative degree vector at any point
xout. ��

The sum of the entries of the relative degree vector
of the nonlinear system expressed in (33) and (34) is
equal to the number of state-variables of the referred
system,

∑2
j=1 r j = 4. Thus, the outer-loop dynamics

are possible to be input-output linearized through the
following static state feedback law

uout = �−1
out(ψ) vout (37)

Note that, in this case, the coordinates transformation
described in (11) yields

ξout = Φ (xout) = xout (38)

As a result of the static state feedback control law, the
outer-loop dynamics are now translated into two single-
input single-output chains of two integrators. Gi- ven
the Brunovsky canonical form, the LQR with integral
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action can be applied to each chain by following a pro-
cedure similar to the one used for the inner loop. The
transformed input variables are given by:

vout =
[

e�
1 (−kix ζ p − kxep − kẋ ėp + p̈d)

e�
2 (−kiyζ p − kyep − kẏ ėp + p̈d)

]
(39)

where kix , kx , kẋ , kiy , ky, kẏ are gains resulting from
the application of the LQRgain computation. The feed-
back law defined in (37) and (39) leads to the following
tracking system for the zero dynamics

[
e�1 ëp

e�2 ëp

]
=

[
e�

1 (−kix ζ p − kxep − kẋ ėp)

e�
2 (−kiyζ p − kyep − kẏ ėp)

]
(40)

Theorem 1 Let the outer-loop dynamics be described
by (32) and (33) and have its output expressed by
(34). The closed-loop tracking system (40), resulting
from applying the feedback defined by (37) and (39), is
regionally exponentially stable.

Proof From Lemma 1, for the outer-loop dynamics,
the noninteracting control problem has solution for
all points (xout, η). Thereby, applying the control law
defined by (37) results in the reduction of the outer-loop
dynamics to two chains of two integrators. As a con-
sequence of imposing the feedback defined by (39),
the characteristic polynomial of each resulting chain
of integrators of the tracking system in closed-loop is
Hurwitz and, therefore, the linear state-variables ξout
converge exponentially to the desired position trajec-
tory for any initial state ξout (0). Furthermore, from
[15, Theorem 3], the Euler angles are asymptotically
stabilized provided the condition |ϕ| < π

2 and |θ | < π
2

is satisfied. Once ξout = xout, the horizontalmovement
tracking dynamics (40) are exponentially stable for all
xout and for all η verifying the condition |ϕ| < π

2 and
|θ | < π

2 . ��

The zero dynamics, according to the definition pre-
sented by Isidori in [24], are obtained by imposing η to
be identically zero in the outer-loop dynamics. Conse-
quently, the zero dynamics are described by

ẋout = f (xout, 0) (41)

Corollary 1 The zero dynamics globally exponentially
track the desired trajectory pd for all xout.

Proof From Theorem 1, the closed-loop tracking sys-
tem (40) that results from applying the feedback
defined by (37) and (39) to the outer-loop dynamics
is exponentially stable for all xout and for all η satisfy-
ing |ϕ| < π

2 and |θ | < π
2 . Once the zero dynamics are

defined by ẋout = f (xout, 0), the conditions regard-
ing the Euler angles are always satisfied. Therefore, the
referred zero dynamics globally exponentially track pd

for all xout. ��
The control strategy is schematized in Fig. 3.

Whereas the position and yaw references are defined by
the user, the outer-loop control determines the required
thrust direction and thus defines the pitch and roll
angles references, θd and ϕd , respectively. In this direc-
tion, the vector uout is redefined as follows:

uout = (cos(ϕd) sin(θd), sin(ϕd)) (42)

Consequently, the system (33) reshapes into

ẋout =
[

0 I2
0 0

]
xout+g

⎡
⎣

0 0
cosψ sinψ

sinψ − cosψ

⎤
⎦ uout+

[
0
Γ

]

(43)

where Γ ∈ R
2 corresponds to the interconnection term

of the horizontal movement dynamics that results from
the attitude tracking error and is given by:

Γ = g

[
cosψ sinψ

sinψ − cosψ

] ([
cos(ϕ) sin(θ)

sin(ϕ)

]
− uout

)

(44)

Note that this term is bounded by

‖Γ ‖ ≤ 2g
√
2 (45)

Further, the tracking system for the zero dynamics, first
presented in (40), reshapes into

[
e�1 ëp

e�2 ëp

]
=

[
e�

1 (−kix ζ p − kxep − kẋ ėp)

e�
2 (−kiyζ p − kyep − kẏ ėp)

]
+ Γ (46)

Bearing in mind (42), the references ϕd and θd are
extracted from the control law vector uout through the
following expressions:

ϕd = σ(arcsin (uout2)) (47)
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Fig. 3 Scheme of the proposed control solution

θd = arcsin

(
uout1

cos (arcsin (uout2))

)
(48)

Theorem 2 Consider the closed-loop system com-
prised of the nonlinear system (7) and the input-output
linearizing controller defined by (20) and (23). Con-
sider the local diffeomorphism described in (22). Let
the remaining dynamics, corresponding to the hori-
zontal movement dynamics (33), be input-output lin-
earized and controlled through (37) and (39). The
resulting closed-loop tracking system system is region-
ally asymptotically stable.

Proof From [15, Theorem 3], one states that the
application of the input-output linearizing controller,
defined by (20) and (23), and the local diffeomor-
phism expressed in (22) to the system (7) while con-
sidering the output vector (19) yields the closed-loop
(25), which comprises the altitude and attitude track-
ing dynamics, that guarantees asymptotic convergence
of the state-variables η to the desired ηd for |ϕ| < π

2
and |θ | < π

2 . Once the nonlinear system (7) compre-
hends 12 state-variables and the sum of the entries of
the relative degree vector for the output (19) is equal
to 8, exists an unobservable subsystem, characterized
by the dynamics associated with the remaining 4 state-
variables, that corresponds to the horizontal movement
dynamics expressed in (33) and (34). The interaction
between the inner-loop dynamics and the horizontal
movement corresponds to a cascade system with the
following form:

ẋout = f (xout, xin) , ẋin = h (xin) (49)

Since the only state-variables entering the outer-loop
from the inner-loop are the Euler angles, the former
equations can be rewritten as

ẋout = f (xout, η) , ẋin = h (xin) (50)

Consider the outer-loop dynamics given by (43). In the
absence of the input Γ , which models the impact of the
attitude tracking error on the outer-loop dynamics, it
follows from Theorem 1 that the outer-loop dynam-
ics, with the definition of the input vector (32) and
the output vector (34), are input-output linearized and
controlled through the feedback expressed by (37) and
(39). As a result, the closed-loop tracking system (46),
in the absence of the input Γ , i.e., Γ = 0, is exponen-
tially stable for any initial state state xout (0), ensur-
ing, thereby, the exponential convergence of the state-
variables xout to the desired trajectory pd. According
to [25, section 2.6], since the characteristic polynomial
of each resulting chain of integrators of the tracking
system (40) is Hurwitz, the resulting tracking system
(43) is input-to-state stable. Consequently, a bounded
input Γ results in bounded state trajectories and Γ con-
verging to zero imply the outer-loop tracking errors
converging to zero. From (45), one has that the input
Γ is bounded. Furthermore, from the inner-loop con-
trol, the state-variables η asymptotically converge to
the desired ηd for |ϕ| < π

2 and |θ | < π
2 . Hence,

Γ → 0 for t → ∞. Moreover, from Corolary 1, the
zero dynamics, defined by ẋout = f (xout, 0), glob-
ally exponentially track the desired trajectory pd for
all xout. Thus, following the Theorem enunciated in
[26], the resulting cascade system (50) asymptotically
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converges to (p, η) = (0, 0) provided that |ϕ| < π
2

and |θ | < π
2 . Consequently, the closed-loop tracking

system that results from applying the input-output lin-
earizing controller defined by (20) and (23), the local
diffeomorphism described in (22) and the input-output
linearizing controller expressed in (37) and (39) to the
nonlinear system (7) is asymptotically stable for all x
that satisfies the conditions |ϕ| < π

2 and |θ | < π
2 . ��

When compared to the solution reported in [15], the
outer-loop control law devised, based on FeedbackLin-
earization, enables extending the region of asymptotic
stability from the origin to all the points x satisfying the
conditions |ϕ| < π

2 and |θ | < π
2 . In this way, the state-

space region with proven asymptotic stability yields a
very comprehensive flight envelope. Themost frequent
quadrotor applications, namelymonitoring, inspection,
and surveillance, are circumscribed to a smaller flight
envelope. Regarding single-loop solutions based on
dynamic feedback linearization, the input-output lin-
earizing control law, u = −�−1(x) b(x) + �−1(x) v,
is derived from the fourth-order time derivative of the
position. Thus, bearing in mind the quadrotor dynamic
model, the resulting decouplingmatrix� and the vector
b require a large number of computations. Furthermore,
the decoupling matrix is singular for null thrust values,
in addition to the cases when |θ | = π

2 or |ϕ| = π
2

[11]. Moreover, the single-loop solutions reported in
the literature do not incorporate any integral action in
the architecture. On the other hand, the strategy pro-
posed by the authors has integral action embedded in
both loops,which enables dealingmore effectivelywith
constant disturbances and parameter variations.

4 Simulation

A simulation model of the quadcopter was developed
in furtherance of studying the approach and assess-
ing its potential beforehand. The prior validation is
indeed crucial for analyzing the impact of uncertain-
ties and external disturbances that might significantly
affect the closed-loop behavior. The actuators model
was considered through the inclusion of themotor mix-
ing, described by (4), and the computation of the PWM
commands, based on the experimentally determined
equations reported in [27, Appendix A]. In this way,
the simulation comprehends the limitations imposed
by saturation as follows: the thurst T and moments τ

Table 1 Important physical quantities of the quadcopter consid-
ered in the simulation model

L[m] m [kg] Ix [kgm2] Iy[kgm2] Iz[kgm2]
0.127 0.460 2.24×10−3 2.90×10−3 5.30×10−3

required to track the references are determined by con-
trol law; posteriorly, by resorting to the motor mixing
equation, the thrust force Ti that each actuator has to
provide is calculated; finally, using the referred exper-
imental relations, the PWM commands for each rotor,
ranging from0 to 100%, are obtained.Note that the sat-
uration is only applied to the PWM commands. To fur-
ther approximate the simulation to the real quadcopter,
noise disturbances, modeled as zero-mean Gaussian
white noise with the variances being determined from
real sensory data, were included as well. The selected
sampling time for the simulationwas 0.01 seconds. The
relevant physical quantities of the quadcopter consider
in the simulation are detailed in Table 1.

Concerning the design parameters, the aim was at
position responses with a maximum overshoot lower
than 2%, a settling time lower than 5 seconds, andwith-
out static error. Given the crucial role of the rotational
responses in the stabilization of the quadcopter [16],
faster angular responses aremandatory to copewith the
references that result from the outer loop control. Thus,
the pitch and roll angles step responses should present
a settling time lower than 1 second. With respect to
the yaw angle response, once the definition of its ref-
erence is independent of the outer-loop control, it is
not required to establish a settling time requirement
as demanding. Thereby, for the latter, a settling time
lower than 3 seconds is reasonable. Furthermore, it
was shown, in [28], that an aggressive yaw control can
easily lead to saturation of multiple actuators, espe-
cially when commanding large yaw changes, and, con-
sequently, affect the control performance. Regarding
the overshoot and the static error, the angular responses
should fulfill the same requirements established for the
position responses. The Q∗ and R∗ matrices used in
the several control channels are detailed in Table 2. To
prevent a scenario in which the conditions |ϕ| < π

2 and
|θ | < π

2 are violated, the initial attitude is set in accor-
dance with this bounds. In addition, to avoid the gener-
ation of angular references ϕd and θd that can result in
the inner-loop operating in the vicinity of singularities,
a smooth saturation function with a saturation level of
less than π

2 is applied to both ϕd and θd .
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Table 2 Q∗ and R∗ matrices used in the optimal gains compu-
tation for each subsystem of the control approach

Subsystem Q∗ R∗

ϕ diag(6 × 104, 7.5 × 102, 2 × 106) 1

θ diag(6 × 104, 7.5 × 102, 2 × 106) 1

ψ diag(7.5 × 103, 50, 1 × 105) 1

x diag(6, 1 × 10−3, 30) 25

y diag(6, 1 × 10−3, 30) 25

z diag(30, 1, 85) 1

Table 3 Cases evaluated in the model parameters variation test

Case cm cI

1 0.50 0.25

2 0.50 4.00

3 1.50 0.25

4 1.50 4.00

To ascertain the performance of the proposed con-
trol and its model dependency, the impact of consid-
ering inaccurate values of the mass and the inertia of
the quadcopter is studied. Additionally, the robustness
of the control system against an external force is eval-
uated. Let m̄ and Ī = diag

(
Ix , Iy, Iz

)
represent the

nominal values detailed in Table 1 and m̃ and Ĩ denote
percentages of these values that are computed through
the following expressions:

m̃ = cmm̄ (51)

Ĩ = cI Ī (52)

The control strategy was evaluated considering four
different cases of simultaneous significant deviations
in the mass and inertia values. These cases are sum-
marized in Table 3. The references for the horizontal
position and for the altitude are steps with an amplitude
of 3 and 2m, respectively, and the reference for the yaw
angle is a ramp with a slope of 0.1 rad s−1. After 60
seconds, the system is subjected to an external force of
1N , applied with the inertial y axis positive direction.

The position and yaw angle responses obtained in
the model parameters variation test with the nonlinear
control architecture proposed are depicted in Fig. 4.
These are very promising and important results since
the performance did not deteriorate significantly even
tough significant changes in the model parameters
were simultaneously considered, an external force was

Fig. 4 Responses obtained with the nonlinear control approach
in the parameters variation test. From left to right, top to bottom:
a x inertial; b y inertial; c Height; d Yaw angle

Fig. 5 Roll and Pitch angles obtained in the parameters variation
test. From left to right: a Roll; b Pitch

applied, and the amplitude of the steps required aggres-
sive responses. Not only the responses remained stable,
but also the control performance presented a consis-
tency throughout the tests, which is reflected in the fact
that the responses respected the design criteria. The
integral action plays a major role in diminishing the
model dependence and in enhancing the performance
of the control architecture [27]. The pitch and roll
angles verified in this test are displayed in Fig. 5. It is
noticeable that the two Euler angles did not present rel-
evant variations, from case to case, throughout the first
60 seconds. After that, the effect of the constant exter-
nal force is evident. As expected, the cases in which a
smaller mass is considered present, in modulus, angu-
lar responses with higher values since this force results
in a higher acceleration.

The actuation, in terms of thrust and moments, gen-
erated during the parameters variation test is depicted
in Fig. 6. Predictably, the higher mass cases required
higher thrust values to perform the trajectory. From
the external force application at 60 seconds stems the
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Fig. 6 Thurst andMoments obtained in the parameters variation
test. From left to right, top to bottom: a Thrust; b Roll Moment;
c Pitch Moment; d Yaw Moment

highermoment values verified during the test. In partic-
ular, case 3 displays the higher moments values since it
conjugates the smaller mass and higher inertia, which
translates into beingmore affected by the external force
and requiring a higher actuation value to overcome it.

To illustrate the improved performance of the novel
control solution compared to the previous approach
developed by the authors, [15], an additional case, with
cm = 0.25 and cI = 4, was simulated. The responses
obtained with both solutions are presented in Fig. 7.
The novel control solution recovered the desired ref-
erence after being impacted by the external force of
1N. On the other hand, the approach reported in [15]
presented an unstable behavior when subjected to the
external force. Hence, the underlying improvement of
the new control strategy translates into a higher degree
of robustness.

To evaluate the capacity of the proposed control
solution to follow a predefined trajectory, one was cre-
ated and given as reference. This trajectory, excluding
the take-off, is formed by rectilinear and semicircu-
lar sections with constant linear and angular veloci-
ties, respectively, and is defined with a constant yaw
angle equal to zero. To the end of confronting the
proposed control solution performance with strategies
found in the literature relying on Feedback Lineariza-
tion or Linear Quadratic Regulator techniques, simula-
tion responses obtained with these comparable strate-
gies are presented as well.

In Fig. 8, the simulation results attained with the
proposed methodology (IOFL) are displayed in con-

Fig. 7 Responses obtained with the nonlinear control approach
and the strategy reported in [15] for cm = 0.25 and cI = 4. From
left to right, top to bottom: a x inertial; b y inertial; c Height; d
Yaw angle

Fig. 8 Responses obtained during trajectory tracking in simula-
tion with the nonlinear control approach developed and compa-
rable strategies found in the literature. From left to right, top to
bottom: a x inertial; b y inertial; c height; d yaw angle

junction with the responses obtained with the follow-
ing strategies from the literature: double-loop solution
resulting from applying the LQR technique to the lin-
earized model [17] (LQR); double-loop architecture in
which a static feedback linearization control law gov-
erns the attitude and altitude dynamics, and the lin-
earized zero dynamics are rendered stable by employ-
ing the LQR method (FL+LQR) [15]; single-loop con-
trol structure based on Feedback Linearization with
dynamic extension (DFL) [12]. From the referred fig-
ure, it can be concluded that the strategies yielded a suc-
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Table 4 Root-mean-square error obtained in simulationwith the
proposed nonlinear control approach and comparable strategies
from the literature

Strategy x [m] y [m] z [m] ψ [◦]
LQR [17] 0.0814 0.0633 0.0479 0.0302

FL+LQR [15] 0.0742 0.0576 0.0385 0.0216

DFL [12] 0.0729 0.0566 0.0484 0.0216

IOFL 0.0688 0.0525 0.0270 0.0216

cessful following of the desired trajectory. Concerning
the yaw angle time response, the methodology fulfills
the objective.

In order to facilitate comparison, the root-mean-
square error obtained with each control solution tested
is detailed in Table 4. It is noticeable that the control
approach devised attained smaller position and yaw
angle root-mean-square error values. Hence, the pro-
posed solution performed better than the comparable
strategies found in the literature.

5 Implementation

The commercially available Parrot AR. Drone 2.0 was
used to validate the devised control architecture. The
referred vehicle possesses a 3-axis accelerometer, a 3-
axis gyroscope, a barometric pressure sensor, two ultra-
sonic transducers, and a 3-axis compass. These sensors
measure the altitude, acceleration, angular velocity, and
magnetic field of the quadcopter. The Parrot AR.Drone
2.0 generates thrust through brushless motors. These
motors are controlled by feedingPWMcommands, cor-
responding to the percentage of the full speed of the
rotor, computed from the control law through experi-
mentally determined relations. For further details con-
cerning this computation, see [15].

In furtherance of implementing the control approach
in the quadrotor, the “AR Drone 2.0 Quadcopter
EmbeddedCoder” [29]was used. This Simulink project
provides direct access to the sensors and the actuators
of the quadcopter. In Fig. 9, the connections estab-
lished between the computer running the motion cap-
ture system Qualisys, the host computer, where the
Simulink model is compiled, and the hardware board
of the UAV, where the control and estimation compu-
tations are performed, are summarized. The computer
where the Qualisys is running transmits the data to the

Fig. 9 Network Diagram describing the connections between
the computer running the Qualisys TrackManager, the host com-
puter and the UAV

Host
Computer

Qualisys
Computer

Parrot AR
Drone 2.0

Fig. 10 Experimental setup

host computer through an ethernet cable using the User
Datagram Protocol (UDP). The data received is sent
through a Wi-Fi connection, also using UDP, to the
quadrotor. The Simulink model is compiled to C-Code
and a binary file, executable on the quadrotor operat-
ing system, is generated and deployed to its hardware
board. Awireless File Transfer Protocol (FTP) connec-
tion assures the deployment. Additional UDP connec-
tions are configured to communicate in real-time with
the generated code deployed running in the quadrotor
board.

For attitude estimation, the nonlinear filter devel-
oped by Madeiras et al. [30] was used. This filter fuses
the accelerometer and gyroscope measurements and is
proved to be uniformly asymptotically stable assuming
a bounded pitch angle (|θ | < π/2). The linear veloci-
ties were estimated by resorting to a Kalman Filter as
described in [27]. The inner-outer loop control archi-
tecture and the estimation solution were implemented
with a sampling timeof 0.01 seconds. The experimental
setup is depicted in Fig. 10.
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Fig. 11 Trajectory tracking in 3D space obtained with the non-
linear control solution

6 Experimental Results

The first experimental test consists of evaluating the
capacity of performing a predefined trajectory iden-
tical to the one tested in simulation. Comparisons
between the experimental and the simulation responses
are drawn.

Implementing the control structure based on the
Feedback Linearization technique with zero dynam-
ics stabilization led to the experimental results that
are exhibited in Fig. 11. By observing this figure, one
notices the success attained by the proposed approach
in tracking the trajectory. It is relevant to highlight the
inclusion of the take-off in the results displayed and
the fact of the altimeter not measuring heights infe-
rior to 0.30m. Furthermore, it is worth pointing out the
use of a heavier battery. Notwithstanding this change
in the total mass of the quadrotor, the integral action
included was able to overcome it, which led to a good
performance.

The transition of the controllers from the simula-
tion design to the validation with the actual quad-
copter was managed by conducting hovering and step
responses tests prior to the trajectory tracking exper-
iment. Whereas the attitude and altitude controllers
designed in simulation led to a behavior that fulfilled
the objectives, the outer-loop controllers had to be
adjusted. The matrices Q∗ and R∗ used in this adjust-
ment are detailed in Table 5.

Simulations responses for trajectory tracking were
obtained with these new controllers in furtherance of
comparingwith the experimental results. In Fig. 12, the

Table 5 Q∗ and R∗ matrices used in the controllers adjustment

Subsystem Q∗ R∗

x diag(10, 1 × 10−2, 40) 30

y diag(10, 1 × 10−2, 40) 30

Fig. 12 Responses obtainedwith the quadrotor during trajectory
tracking with the proposed nonlinear control approach. From left
to right, top to bottom: a x inertial; b y inertial; c Height; d Yaw

simulation and experimental responses are depicted.
From the observation of this figure, one concludes that
the control solution proposed allows a good following
of the trajectory. The similarities between the simula-
tion and the experimental results evidence the prox-
imity between the nonlinear model developed and the
actual system. The higher deviations visible in the x
and y responses, corresponding to the maximum error
obtained, stem from the horizontal drift verified dur-
ing the take-off. This drift occurs since the outer-loop
control is only activated once the vehicle is at an alti-
tude superior to 0.60m. Excluding the take-off, the
experimental response does not deviate more than 5cm
from the simulated response. A continuous oscillation
caused by high-order effects, which were discarded
in simulation, is verified in the experiment. Its small
amplitude legitimates the high-order effects neglect in
the quadrotor model construction.

The roll and pitch angles references generated by
the outer-loop control and the estimates obtained dur-
ing the take-off and the following of the trajectory are
depicted in Fig. 13. It is noticeable that these angles
presented reduced values during the experimental test.
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Fig. 13 Roll and pitch angles references generated and the
respective responses obtained during trajectory tracking in exper-
imental test using the nonlinear control approach. From left to
right: a Roll; b Pitch

The sudden variations in the first twenty seconds result
from offsetting the positional drift that arises during
the take-off. Moreover, the inner-loop capacity to cope
with the references generated by the zero dynamics con-
trol is demonstrated by the responses displayed in this
figure.By embarking on amore detailed analysis, unex-
pected zero-value references are detected, especially on
the right graph. The outer-loop control is deactivated
whenever the communication with the motion capture
system fails. In these situations, the angular references
are set to zero, which leads to these unexpected values
and, subsequently, to x and y deviations. As a conse-
quence, the error increases.

The thrust force and moments computed by the con-
trol structure are shown in Fig. 14. The heavier bat-
tery used led to higher values of thrust. Regarding the
moments, the higher values were required when the
position control was activated, since the quadcopter
had to compensate for the positional drift that occurred
during the take-off. Throughout the tracking, due to
the trajectory not being aggressive, the actuation did
not present abrupt variations.

The transformed-input vectors vin and vout com-
puted during the take-off and trajectory tracking are
exhibited in Fig. 15.

From Fig. 16, where the PWM commands are dis-
played, one notes that the actuation did not saturate
during the take-off and the trajectory tracking.

In Table 6, the trajectory tracking root-mean-square
error obtained in simulation and with the real sys-
tem is detailed. The experimental validation values are
close to the ones obtained in simulation, with particular
emphasis on the height response that presented approx-
imately the same error. Concerning the other outputs,
the error increased with the transition to the actual
UAV,whichwas predictable since higher-order dynam-

Fig. 14 Thrust and Moments computed during the trajectory
tracking with the proposed nonlinear control approach. From
left to right, top to bottom: a Thrust; b Roll Moment; c Pitch
Moment; d Yaw Moment

Fig. 15 Transformed-inputs computed during trajectory track-
ing in experimental test using the nonlinear control approach.
From left to right: a Inner-Loop; b Outer-Loop

Fig. 16 PWM Commands computed during trajectory tracking
with the nonlinear control approach

ics effects were discarded in the model considered. The
root-mean-square error obtained for the inertial coor-
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Table 6 Root-mean-square error obtained in simulation and
in the experimental test with the proposed nonlinear control
approach

x [m] y [m] z [m] ψ [◦]
Simulation 0.0688 0.0525 0.0270 0.0216

Experimental 0.0706 0.0583 0.0272 0.1889

Fig. 17 Responses obtained in the second experiment. From left
to right, top to bottom: (a) Position; (b) Euler Angles; (c) Thrust;
(d) Moments

dinates is mostly due to the static error in the following
of ramp inputs. Furthermore, the inertial coordinate x ,
once is the subsystemmore subjected to this type of ref-
erence, presents the higher value of root-mean-square
error. Nonetheless, the errors obtained are reduced and
validate the control strategy proposed.

In furtherance of deepening the study, the behav-
ior of the control solution when performing aggressive
maneuvers and when subjected to considerable con-
stant perturbations is evaluated. To this end, an experi-
ment, consistingof suddenly applying anoffset of−35◦
to the pitch reference generated by the outer-loopwhile
the quadrotor is hovering, was carried out. The results
obtained in this experiment are displayed in Fig. 17.
Despite the significant unexpected constant perturba-
tion and the consequent aggressive maneuver, which
solicited the nonlinear dynamics of the quadrotor, the
vehicle presents a stable response and returns to the
desired position. The integral action embedded in both
loops is indeed crucial for the control strategy to deal
effectively with unexpected significant constant per-
turbations. A video of this experiment is available in
https://www.youtube.com/watch?v=B0J3SmaxQS0.

7 Conclusion

An inner-outer loop control structure, with proof of
asymptotic stability for |ϕ| < π

2 and |θ | < π
2 , was

devised, relying twice on the nonlinear technique Feed-
back Linearization in combination with LQR control
with integral action, and successfully validated not only
in simulation but also experimentally.

In the simulation, the proposed control solution han-
dled combined significant deviations in the mass and
inertia values, even when subjected to a constant exter-
nal force, without considerably affecting its responses.
The solution potential was also evaluated for trajec-
tory tracking, having performed favorably compared
to other strategies from the literature that rely on the
same control methods applied.

The solution was successfully implemented on an
off-the-shelf quadrotor. The results obtained in trajec-
tory tracking validated the proposed strategy and, given
themanifest similarities between the attained responses
with the actual aerial vehicle and in simulation, evi-
denced the satisfactory degree of accuracy of themodel
considered. The second test conducted further empha-
sized the importance of the integral action: besides
decreasing the model dependency of the control struc-
ture, as demonstrated in simulation, this action also
allows overcoming significant constant perturbations.
The latter experiment evidenced the stable behavior of
the control system when performing more aggressive
maneuvers.
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