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Abstract A non-iterative methodology for the interpolation and regularization of
multidimensional sampled signals with missing data resorting to Principal Component
Analysis (PCA) is introduced. Based on unbiased sub-optimal estimators for the mean and
covariance of signals corrupted by zero-mean noise, the PCA is performed and the signals
are interpolated and regularized. The optimal solution is obtained from a weighted least mean
square minimization problem, and upper and lower bounds are provided for the mean square
interpolation error. This solution is a refinement to a previously introduced method pro-
posed by the author Oliveira (Proceedings of the IEEE international conference on acoustics,
speech, and signal processing—ICASSP06, Toulouse, France, 2006), where three exten-
sions are exploited: (i) mean substitution for covariance estimation, (ii) Tikhonov regulari-
zation method and, (iii) dynamic principal components selection. Performance assessment
benchmarks relative to averaging, Papoulis-Gerchberg, and Power Factorization methods are
included, given the results obtained from a series of Monte Carlo experiments with 1-D audio
and 2-D image signals. Tight upper and lower bounds were observed, and improved perfor-
mance was attained for the refined method. The generalization to multidimensional signals is
immediate.

Keywords Signal reconstruction · Missing data · Principal Component Analysis ·
Non bandlimited signals

1 Introduction

The problem of interpolation of multidimensional sampled signals with missing data is cen-
tral in a series of engineering problems. Autonomous robotic surveying (Pascoal et al. 1997),
underwater positioning, remote sensing, digital communications (subject to bursts of destruc-
tive interferences), estimation and control in networked systems, and computer vision (when
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occlusions occurs) are a few of a multitude of examples where data is not available at uniform
temporal/spatial rates.

The scientific community has been active for a long time in solving interpolation and
reconstruction problems, see Benedetto and Ferreira (2000), Choi and Munson (1998), and
Marvasti (2001), and Yen (1956) and the references therein for an in-depth repository of avail-
able techniques. Iterative methods such as Papoulis–Gerchberg algorithm (P-G) (Gerchberg
1974; Papoulis 1975, 1973), the Expectation/Maximization (EM) algorithm (Roweis 1998),
and the Power Factorization method (Hartley 2003) are the most commonly used. However,
the iterative characteristics of these methods, with the correspondent computational burden,
the restricted domain of application to bandlimited signals, and the low convergence rates
verified, preclude its use in a number of relevant applications.

Primarily motivated by a terrain based navigation problem for underwater autonomous
robotic activities (Pascoal et al. 1997; Oliveira 2007), this paper extends previous work of the
authors presented in Oliveira (2006), where a new methodology was proposed for the inter-
polation of signals with missing data, that departed from the aforementioned approaches.
In this work a non-iterative methodology for the regularized interpolation of multidimen-
sional sampled signals with missing data, based on Principal Component Analysis (PCA) is
proposed. Resorting to unbiased sub-optimal estimators for the mean and covariance of mul-
tidimensional signals, corrupted by zero-mean noise, the Principal Component Analysis is
straightforward to be computed. The signal interpolation is tackled in the components space,
formulating a weighted least squares minimization problem with known optimal solution.
Moreover, based on PCA properties, corrected upper and lower bounds (relative to Oliveira
2006) for the mean square interpolation error and the interval of validity of the proposed
method are provided. Moreover, relative to the basic solution previously proposed by the
authors, three refinements are exploited: (i) mean substitution, (ii) Tikhonov regularization
and, (iii) dynamic principal components selection. It is important to remark that not only the
intervals of validity of the resulting methods are extended but these methods also outperform
the basic one.

Principal Component Analysis has already been used in interpolation problems with sam-
pled signals with incomplete data. In Shum et al. (1995), PCA is applied to sparse data from
segmented images (not directly on the complete signal, as in the present work). Also in Blanz
and Vetter (2002), PCA is computed from signals in a database (without missing data), and
is then used to perform a convex mixture of the base signals.

The structure of the paper is the following: Sect. 2 introduces unbiased estimators for the
mean and covariance of discrete time multidimensional signals and the PCA computation
procedure. Section 3 describes an efficient and unbiased estimator for the mean and covari-
ance accounting for missing data and an optimal solution for the interpolation of signals. No
assumption on the stochastic distribution of the noise present is required except that it is a
zero-mean process. Lower and upper bounds for the interpolation error variance are deduced,
exploiting the properties of the optimal transformation at hand, and the interval of validity of
the basic methodology is discussed. Based on the work developed in the previous section, in
Sect. 4, a number of refinements to the covariance estimator and for the optimal minimization
problem are introduced and discussed. A classic technique to deal with missing samples for
the covariance estimation is considered and a dynamic choice of parameters, together with
a regularization method, are presented. Results from a series of Monte Carlo experiments
with 1-D audio and 2-D image signals are summarized in Sect. 5, allowing the performance
assessment of the proposed method. Additionally, alternative methods for interpolation of
signals with missing data are tested for an in-depth benchmark of the proposed interpolator.
Finally, some conclusions are drawn and future work is unveiled in Sect. 6.
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2 PCA for signals

Principal Component Analysis was developed independently by Karhunen in statistical
theory and generalized by Loève, based on a method previously introduced by Pearson
and applied to psychometry by Hotelling, as detailed in Jolliffe (2002), Mertins (1999), and
in the references therein.

Considering all linear transformations, PCA, based on the Karhunen-Loève (KL) trans-
form, allows for the optimal approximation to a stochastic signal in the least square sense. It is
a widely used signal expansion technique, featuring uncorrelated coefficients, with superior
performance in dimensionality reduction. These features make PCA an interesting method-
ology for many multidimensional signal processing applications such as data compression,
image and voice processing, data mining, exploratory data analysis, pattern recognition, and
time series prediction (Jolliffe 2002).

2.1 Mean and covariance

Consider a set of M multidimensional signals xi ∈ l2, i.e. with finite energy, where i =
1, . . . , M , from a discrete time real-valued stochastic process corrupted by zero mean noise,
represented as column vectors of length N after a trivial stacking operation.

When computing PCA for a set of multidimensional signals, unbiased and efficient esti-
mators for the mean and covariance of those signals are required. Basic results will now be
introduced.

Proposition 1 For a set of signals xi , where i = 1, . . . , M

(i) the estimator for the j th component of the ensemble mean mx ( j), j = 1, . . . , N is
given by:

mx ( j) = 1

M

M∑

i=1

xi ( j), j = 1, . . . , N ;

(ii) the estimator for the covariance element Rxx ( j, k), { j, k} = 1, . . . , N , where yi =
xi − mx ,

Rxx ( j, k) = 1

M − 1

M∑

i=1

yi ( j)yi (k),

are unbiased and efficient. Moreover, mx ∈ l2 and ‖Rxx‖ is finite.

The proof of this proposition resorts to basic statistical signal processing theory that can be
found for instance in Kay (1993).

2.2 Principal Component Analysis

The Principal Component Analysis can be carried out resorting to the KL transform, fol-
lowing the classical approach. The objective is to find an orthogonal basis to decompose a
stochastic signal r ∈ l2, from the same original space, to be computed as r = Uv + mx ,

where the vector v ∈ l2 is the projection of r in the basis v = UT (r − mx ). The matrix
U = [u1 u2 . . . uN ] is composed by the N orthogonal column vectors of the basis, verifying
the eigenvalue problem
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Rxx u j = λ j u j , j = 1, . . . , N , u j ∈ l2. (1)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥ · · · ≥ λN , the choice of the
first n << N principal components, leads to an approximation to the stochastic signals
given by the ratio on the covariances associated with the energy of the components, i.e.∑n

j=1 λ j/
∑N

j=1 λ j .

Departing from the perfect interpolation setup (Unser 2000), the matrix Ũ = [u1 u2 . . . un]
with dimensions RN×n is used as the approximate PCA associated transformation, thus
obtaining a sub-optimal solution. In many applications where stochastic multidimensional
signals are the key to tackle the problem at hand, this approximation can lead to large dimen-
sional reduction and thus to a computational complexity optimization.

The advantages of PCA are threefold: (i) it is an optimal (in terms of mean square error) lin-
ear scheme for compressing a set of high dimensional vectors into a set of lower dimensional
vectors; (ii) the model parameters can be computed directly from the ensemble covariance;
(iii) given the model parameters, projection into and from the bases are computationally
inexpensive operations O(nN ).

3 Interpolation using PCA

The purpose of this section is to describe a methodology, supported on PCA, allowing the
interpolation of multidimensional sampled signals with missing data, corrupted by zero mean
noise, based on the following assumption, central to the rest of this work:

Assumption 3.1 The missing information on the multidimensional sampled signals are
negligible and the available samples, in a number greater than the selected number of prin-
cipal components, are representative of the original signal.

The underlying process can result for instance from a non-homogeneous spatial survey,
due to physical or kinematic constrains, or associated with the reception of a signal in a
communication channel corrupted by bursts of noise that destroy completely the information
contained in some samples.

It is important to remark that no assumption on the stochastic characteristics of the noise
corrupting the underlying signal is required, except for the null mean, departing from the
commonly used Gaussian noise characteristics found in the literature (see examples in Blanz
and Vetter (2002) and Roweis (1998)). It is impossible to distinguish between a non null
noise mean and the signal itself, however, given the approach for the principal components
computation, this disturbance is automatically rejected.

3.1 Mean and covariance estimators with missing data

The estimators for the mean and covariance from Proposition 1 do not take into account possi-
ble missing values. Hence, new estimators are proposed and an indicator index l is introduced,
on which is applied the same stacking operation as in the multidimensional signals.

The index li ( j), j = 1, . . . , N is set to 1 if the j th component of signal xi ( j) is available
and zero otherwise. In the latter, the component x( j) is also set to zero, without loss of
generality. Considering the required adjustments to Proposition 1, estimators for the mean
and covariance of multidimensional signals with missing data are now presented.

Lemma 1 Given a set of M signals xi , i = 1, . . . , M, with associated indices li , the auxiliary
vector of counters c = ∑M

i=1 li , and C = ∑M
i=1 li lT

i :
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(i) the estimator for the j th component of the ensemble mean is

mx ( j) = 1

c( j)

M∑

i=1

li ( j)xi ( j), j = 1, . . . , N ;

(ii) the estimator for the covariance element Rxx ( j, k), j, k = 1, . . . , N, given yi =
xi − mx , can be computed from

Rxx ( j, k) = 1

C( j, k) − 1

M∑

i=1

li ( j)li (k)yi ( j)yi (k).

These estimators share the same properties as the ones introduced in Proposition 1.

The proof resorts only to basic signal processing tools and is omitted here (see Jolliffe (2002)
and Kay (1993) for details).

3.2 Solution to the interpolation problem

To solve the interpolation problem central to this paper, consider that each signal xi is obtained
from the original signal ri due to missing data, verifying the relation xi = Li ri , where
Li ∈ RN×N is a diagonal matrix, filled with the indicator index li . The interpolation opera-
tion is formulated as finding r̃i that minimizes the weighted l2 norm of the error. However,
due to the existence of missed samples, it is only possible to compute the estimation error
on the components of the signal which are known. Thus, the correct form of formulating the
problem is to consider only the interpolation error for the available elements.

Lemma 2 Considering the original signal ri , from which there is only available a signal
with samples indexed by Li , the optimal interpolated signal r̃i (in the minimum error energy
sense) can be obtained solving the weighted least mean square problem

min
r̃i ∈RN

‖Li (r̃i − ri )‖2
2,W,

given the symmetric positive semi-definite weight W ∈ RN×N , where the solution based on
PCA is given by

ṽi = (ŨT Li WLi Ũ)−1ŨT Li Wyi . (2)

Proof Given that a minimum energy estimation error problem can be formulated and solved
as a weighted least mean square error optimization, the problem at hand is written as

min
ṽi ∈Rn

‖Li (Ũṽi + mx − ri )‖2
2,W = ‖Li Ũṽi + Li mx − Li ri‖2

2,W,

resorting to the approximated (sub-optimal) PCA projection r̃i = Ũṽi + mx . Through the
relations xi = Li ri and yi = xi − Li mx , the following minimization is then obtained

min
ṽi ∈Rn

‖Li Ũṽi − yi‖2
2,W.

This is a weighted version of a linear least square problem, for which a well-known solution
exists, resulting in (2), where the relations LLT = L and LT = L were used. ��
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Fig. 1 Diagram describing the
interpolation of sampling signals
with missing data
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From the previous assumption, the principal components can be computed with negligible
degradation, and the signal can finally be reconstructed using the relation r̃i = Ũṽi +mx . The
relations among the underlying signals are depicted in Fig. 1. Note that the aforementioned
assumption can be interpreted as a change on the focus of the data from sample rates to the
amount of information available.

According to optimal stochastic minimization techniques (Kailath et al. 2000), the knowl-
edge on the stochastic process characteristics allows for the optimal choice of the weight
W = R−1

xx . Nevertheless, the covariance matrix is estimated from an incomplete data set,
which may lead to numerical problems. Next, an approximated and more robust numeri-
cal solution is proposed. From (1), the covariance can be decomposed as Rxx = U�UT ,
where � ∈ RN×N is the diagonal matrix, whose kth diagonal element is λk . An approxi-
mation of the covariance matrix is obtained using the approximated PCA (Mertins 1999),
i.e. R̃xx = Ũ�̃ŨT , where �̃ ∈ Rn×n contains the eigenvalues corresponding to the first n
principal components, thus

R̃−1
xx = W̃ = Ũ�̃−1ŨT .

As the number of components increases, a more accurate result is obtained, with no extra
complexity added.

A complexity analysis to the proposed methods previously introduced revealed that the
underlying complexity is O(η N 2 M). This is a consequence of the application of (2) to the
unknown samples, therefore it depends on the amount η of missing samples. It is important to
remark that the matrix ŨT Li WLi Ũ to be inverted has dimension n × n, presenting reduced
computational complexity, given the choice of n << N . Interestingly enough, this result
can be interpreted as a generalization of the classical Yen interpolator (Yen 1956) and the
minimax-optimal interpolators (Choi and Munson 1998).

3.3 Lower and upper bounds

In order to evaluate the quality of the signal’s interpolation, the variance of the interpolation
error per signal sample, σ 2, is defined as,

σ 2 ≡ E[‖r̃ − r‖]
N − 1

.

The next step consists of defining the lower and upper bounds for σ 2. In the sequel, assume
that n components are used from the total of N available. Lower and upper bounds on σ 2

can be found given the PCA stochastic approximation properties, i.e,

123



Multidim Syst Sign Process (2010) 21:25–43 31

N∑

i=n+1

λi ≤ E[‖r̃ − r‖2
2] ≤

N∑

i=1

λi ,

where the lower bound represents the situation of best possible interpolation when limited to
n principal components, and the upper bound represents the fact that the interpolated signal
does not exceed the variance of the original signal.

When evaluating the above expression for the missing data case, it has to be considered
the fact that no interpolation error exists on the known samples of the signal. As a result,
the bounds must be adjusted to the ratio of missing samples in the signal, represented by
η ∈ [0, 1],

η

N∑

i=n+1

λi ≤ E[‖r̃ − r‖2
2] ≤ η

N∑

i=1

λi .

Scaling the bounds to a per sample basis, leads to the final result

η

∑N
i=n+1 λi

N − 1
≤ σ 2 ≤ η

∑N
i=1 λi

N − 1
. (3)

A simple validation on the bounds for certain values of η can be made. Consider the extreme
case where η = 0, i.e. there is no missing samples. The bounds for this case are both null,
which is correct because no interpolation error is present and consequently, a null value for
σ 2 is obtained. Now consider the case η ≈ 1, which means that almost no samples of the
signal are available and the interpolation will correspond to the signal’s variance as stated in
the upper bound for high levels of η.

Assumption 3.1 can be interpreted as providing conditions when the interpolation is well
posed or when the corresponding numerical tools can be applied. The number of samples
available are required to be greater than to the selected number of principal components, i.e.
N (1 − η) > n. This leads to the following validity interval deduced from Assumption 3.1,

0 ≤ η <
N − n

N
. (4)

Interestingly enough, no limitation on the amount of missing data was found for the
application of the method. Furthermore, the upper bound can be used to study the required
performance for a transmission channel or to help on the design of the robotic survey mission,
for a given terrain, in order to achieve a prescribed level of interpolation precision.

4 Extensions to the interpolation solutions

In this section, refinements to the solutions proposed in Sect. 3 and in Oliveira (2006) are
presented. The motivation for the incorporation of these alternative methods is to include
basic and frequently used tools associated to these type of problems. Hence, the extensions
to the existing solutions consists of a different approach to the estimator of the covariance in
presence of missing data, a regularization method to the least squares minimization problem
and an expansion of the validity interval.

4.1 Mean substitution method

When dealing with the estimation of covariance based on missing data, several methods are
available (Jolliffe 2002). An important group of such methods corresponds to the techniques
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that add no extra computational complexity. A classical technique is the mean substitution
method. The missing sample on the j th component of the i th variable is replaced by the
corresponding component of the mean, i.e. the missing value xi ( j) is filled with the value
mx ( j). Although originally the data set has missing samples, due to the mean substitution
method, the estimator for the covariance from Proposition 1 is now applicable.

The choice on the mean substitution technique resorts to the fact that it leads to a positive
semi-definite covariance matrix, in opposition to the estimator from Lemma 1. Also, better
results are achieved for large values of missing data, when compared with common methods
as Pairwise or Listwise (Jolliffe 2002). More sophisticated methods can be used, for example
the Expectation Maximization (EM) algorithm (Roweis 1998). However, it leads to a more
computationally consuming solution.

4.2 Dynamic principal components selection

Consider now the case when Assumption 3.1 is not verified, i.e. the available samples are
less than or equal to the assigned number of principal components n. Under this situation,
the solution to the minimization problem presented in Lemma 2 is ill-conditioned, result-
ing a violation on the validity interval given by (4). An alternative approach is suggested
next, to be applied in those cases: the number of components used for the computation of
the minimizing solution is set to the nearest integer below the current number of available
samples. As a result of this procedure, the proposed reconstruction algorithm is extended to
any amount of missing samples. Assumption 3.1. is always verified, given the adjustment on
the principal components used relative to the existing information. Note that the lower and
upper bounds in (3) remain valid throughout the whole interval η ∈ [0, 1[.

4.3 Tikhonov regularization

The solution to the interpolation problem introduced in Sect. 3 is obtained from a weighted
least squares minimization problem. Thus, a regularization technique can be employed as
a complement to the dynamic selection of the number of principal components, to ensure
numerical robustness. A commonly used technique is the Tikhonov regularization, for which
a well-known solution exists (Tikhonov et al. 1990).

With the purpose of ensuring a suitable reconstruction of the signal, it is desirable to
have a smooth transition between the available and the recovered samples. To satisfy this
requirement, a regularization term can be added to the reformulated minimization problem.
The first order difference matrix D ∈ R(N−1)×N (Tikhonov et al. 1990) and the auxiliary
matrix Li ∈ RN×N , which is a diagonal matrix filled with the complementary values of the
indicator index li , are considered.

Lemma 3 Considering the original signal ri , from which there is only available a signal
with samples indexed by Li , the optimal interpolated and regularized signal r̃i , given the
auxiliary matrices D ∈ R(N−1)×N and Li ∈ RN×N , can be obtained solving the weighted
least mean square problem with two terms expressed as

min
ṽi ∈Rn

‖Li (r̃i − ri )‖2
2,W + ‖αD(Li ri + Li r̃i )‖2

2,

with the solution that can be obtained resorting also to the PCA decomposition as

ṽi = (ŨT Li WLi Ũ + α2�T �)−1(ŨT Li Wyi − α2�T �), (5)
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where� ≡ DLi Ũ is the regularization matrix,� ≡ D(Li ri +Li mx ), andα is a regularization
parameter.

Proof The minimization problem, including the specified regularization term, can be written
as

min
ṽi ∈Rn

‖Li Ũṽi − yi‖2
2,W + ‖αD(Li ri + Li r̃i )‖2

2.

This problem can be rewritten, using the relation r̃i = Ũṽi + mx , as

min
ṽi ∈Rn

‖Li Ũṽi − yi‖2
2,W + ‖αDLi Ũṽi + αD(Li ri + Li mx )‖2

2.

Considering the definitions of � and � above, this minimization problem results in the
compact form

min
ṽi ∈Rn

∥∥∥∥∥

(
Li Ũ
α�

)
ṽi −

(
yi

−α�

)∥∥∥∥∥

2

2,W

.

This is also a weighted least mean square problem with the solution given by (5). ��

The regularization parameter acts as a scaling factor involving the least square term and
the regularization term of the minimization problem. For α = 0, equation (5) reduces to the
unregulated least squares solution presented in (2). Also, the Tikhonov regularization has
a filtering feature which rejects principal components that are small (relative to α), while
retaining components that are large. Thus, the value for α is set depending on the value of
the smallest eigenvalues of the principal components that are desired to be disregarded.

A number of advantages associated to the application of a regularization technique can
be delineated; (i) more adequate results are obtained, according to the choice of the regu-
larization term, which privileges suitable solutions; (ii) the unregulated solution of equation
(2) may result in an amplification of the corresponding interpolation error, in case of severe
lack of samples, leading to an inaccurate result; (iii) there is no significant increment on the
computational complexity, as the matrix (ŨT Li WLi Ũ + α2�T �) to be inverted, preserves
the dimension of the unregulated solution.

5 Results for performance assessment

In this section, the results from the application of the proposed methodologies in Sect. 3 and
the respective refinements from Sect. 4, to 1D audio and 2D image signals, are presented and
discussed. Additionally, a performance assessment of other alternative methods is summa-
rized to benchmark the proposed methods. It is important to remark that the generalization
to multidimensional signals is immediate.

5.1 Alternative methods for interpolation of signals with missing data

Three alternative methods are considered to solve the interpolation problem in presence of
missing data.
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5.1.1 Papoulis–Gerchberg method

The first is the Papoulis–Gerchberg algorithm (P-G) (Gerchberg 1974; Papoulis 1975, 1973),
that has been extensively used to solve the missing data problem in band-limited signals. It is
an iterative method that recovers partially known signals under a smoothness constraint which
implies the vanishing of a known subset of the samples of the Discrete Fourier Transform
(DFT) of the data. This algorithm can only be applied to band-limited signals, in opposi-
tion to the interpolation of multidimensional signals using PCA, which does not rely on
any assumption on the signal bandwidth. The implementation of one iteration of this algo-
rithm involves: 1) the computation of the Fast Fourier Transform (FFT) of the signal with
the unknown samples, 2) the application of a band-limiting filter, 3) the computation of the
Inverse Fast Fourier Transform (IFFT), and finally 4) the replacement of the missing samples
by the estimated data. The complexity of the algorithm resorts to O{k × S(3 + 2 log2 S)},
where S is the total number of samples of the signal, k the number of iterations, and the use
of optimized Discrete Fourier Transforms is assumed.

5.1.2 Averaging method

The second technique considered is an averaging technique, proposed as a naive procedure
for recovering missing data. It consists of a non-iterative and computationally inexpensive
method. The average of a local window, of length H , centered in the missing sample is
computed and this value is assigned to the corresponding unknown sample. It is expected
that the more complex methods previously proposed always outperforms this conceptually
simple averaging technique.

5.1.3 Power factorization method

The third method considered is Power Factorization, as proposed in Hartley (2003), and
represents the state of the art for modern reconstruction methods. This approach can be con-
sidered as a solution to low-rank approximation problems, in which a matrix of measured
data must be approximated by a matrix of given low rank. The proposed method is iterative
for approximating a data matrix, possibly with missing entries, with another matrix of small
rank r , “provably convergent to a unique global optimum,” as claimed informally by the
authors. In this work, an implementation available from the authors of the benchmark survey
(Buchanan and Fitzgibbon 2005), will be used in the 2D signal, for comparison purposes.

5.2 Results for 1D signals

The performance of the mean and covariance estimators in the presence of missing data
previously proposed and the interpolation method introduced above, will be analyzed next
when applied to an audio signal. The results obtained with the extensions discussed in Sect. 4
will also be included. Moreover, the bounds deduced for the interpolation under missing data
are checked. Finally, the alternative algorithms are assessed. The results are achieved via a
series of Monte Carlo experiments (20 for each parameter combination).

An audio signal (voice and musical instruments), as depicted in Fig. 2, was selected for the
performance assessment study. The sampling frequency is 8192H z with a size of S = 8000
samples. The length of mosaics is selected as N = 20, with a total number of mosaics,
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Fig. 2 Example of a 1D Signal, corresponding to the audio signal used for testing, with a length of 8000
samples
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Fig. 3 On the left, mean estimate according to Lemma 1 for η ∼ 0.3 (green). On the right, the SN R(mx , m̃x )

for η ∈ [0.02, 0.98]

M = S − N + 1 = 7981. The choice of an audio signal is just for illustrative purposes
and it should be remarked that the proposed methodologies are applicable to any type of
signal.

5.2.1 Assessment of the mean estimator

The first step in the estimation process is to compute the ensemble mean from the selected M
mosaics. The results from applying the mean estimator proposed in Lemma 1, for a missing
data η ∼ 0.3, are shown in the left panel of Fig. 3.

Further analysis on the performance is possible when varying the ratio of lost samples
over the interval η ∈ [0.02, 0.98]. The results are shown through the signal to noise ratio
(SNR) computed as,

SN R(a, b) = 10 log10

( ‖a‖2

‖a − b‖2

)
,

for the ensemble mean of the original signal mx and for the estimated ensemble mean from
the signal with missing samples m̃x , i.e. SN R(mx , m̃x ). The outcome of this experience is
included also in Fig. 3, right panel.

5.2.2 Assessment of the covariance estimator

After the estimation of the mean, the estimation of the covariance matrix from the selected
mosaics is computed. Results from Lemma 1 on the evolution of some covariance element’s
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Fig. 4 Examples of the estimate of some covariance elements according to Lemma 1 (green) and mean sub-
stitution technique (pink), with η ∼ 0.3. Additionally, SN R(mx , m̃x ) for each technique for η ∈ [0.02, 0.98],
in the lower left panel

estimation (in green) are depicted in Fig. 4. Additionally, in the interval η ∈ [0.02, 0.98], it
is computed the signal to noise ratio for the covariance matrix of the original signal and for
the estimated covariance matrix from the signal with missing samples, i.e. SN R(Rxx , R̃xx ),
with the results incorporated in the lower right panel of Fig. 4.

From the results obtained, it can be concluded that the estimators introduced in Lemma 1
are accurate since the obtained values for the mean and covariance are close to the compu-
tation of the covariance with the full signal, thus the estimators are shown to be efficient.
Moreover, it always outperforms the mean substitution method, given the fact that the mean
substitution method leads to a biased estimator. A smooth degradation along the increasing
amount of missing data is verified for both techniques.

5.2.3 Applying the interpolation method

The results of the interpolation method to the audio signal (a l2 signal), based on the mean
and covariance estimators introduced in Lemma 1 can be found in Fig. 5, namely for the
interval [2000, 2400], with a ratio of missing samples η = 0.3 (in red in Fig. 5). Note that the
interpolated signal (in green) recovers accurately the missing information when compared
to the original signal (in black).

A performance study for a variation on the ratio of lost samples in the interval η ∈
[0.02, 0.98] is depicted in Fig. 6, for the basic method in Sect. 2 and for the possible combi-
nation of refinements. The dynamic number of principal components is always employed so
that the method is not limited by the validity interval. The regularization parameter was set
to α = 0.6η2, when applicable.
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Fig. 5 1D signal interpolation under missing data (green) with N = 20, n = 6, and η = 0.3
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Fig. 6 Error variance for the proposed method and extensions, for η ∈ [0.02, 0.98]. Upper and lower bounds
and validity point are depicted in black, for N = 20 and n = 6. The error bars show the ± one standard
deviation across the 20 runs for each η. For the regularized solutions α = 0.6 η2

Several conclusions can be drawn from Fig. 6, given the bounds computed from the
estimator introduced in Lemma 1 and the validity interval obtained using (4). The bounds
deduced for the interpolation under missing data are observed (in black) and clearly indi-
cate the interval of possible results of the error’s variance. The advantages on the use of the
Tikhonov regularization are obvious: for values of η beyond the validity point, the regulated
solution keeps the data integrity, making it possible to meet the proposed bounds, even when
in presence of severe lack of data. Despite of the poor performance on the estimation of
covariance for the mean substitution method, as in Fig. 4, the values of the error variance for
the several options on the interpolation method are similar.

It is important to remark that the covariance is estimated based on the available sam-
ples. Consequently, a degradation on the bounds is verified as these are computed from the
eigenvalues of the estimate of the covariance.
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Fig. 7 Signal interpolation error variance with the proposed PCA based method for constant number of
components (n = 6), for η ∈ [0.02, 0.98] and mosaic length N = 10, . . . , 30

5

10

15

20

25

30

5
10

15
20

25
30

0

0.005

0.01

0.015

n

N

σ
2

Fig. 8 Signal interpolation error variance with the proposed PCA interpolation method with constant ratio
of missing samples η ∼ 0.3, for a selected number of principal components n = 4, . . . , N and mosaic length
N = 5, . . . , 30

The performance of the proposed methodology depends on three parameters: the ratio
of missing samples η, the mosaic length N , and the number of principal components n. To
study the impact of these parameters on the overall interpolation performance, the results of
a series of Monte Carlo experiments with the same signal are summarized next. In Fig. 7, the
value for n is fixed, making it possible to show the influence of the mosaic length, and the
ratio of missing samples on the interpolation results. On the other hand, in Fig. 8 the impact
of the length of the mosaic and the selected number of components is depicted, for a fixed
ratio of missing data.

Some conclusions can be drawn from the results obtained: (i) a smooth performance deg-
radation was found in all the large combinations of parameters considered; (ii) in general the
bounds are tight and are verified for every N ; (iii) for constant missing data rates, the perfor-
mance depends on the number of components used, where the selection of fewer components
leads to an inaccurate interpolation, due to the disregard of significant components, while
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Fig. 9 1D Signal interpolation SN R(r, r̃) for η ∈ [0.02, 0.98] with the PCA interpolation method (in red),
the methods introduced in Sect. 5.1 and with no interpolation applied (in black)

selecting more components (thus including noisy components) increases the error variance,
and (iv) longer mosaics are preferable as a better performance is achieved (with the number
of components chosen kept constant), still it becomes more computationally demanding.
The points (iii) and (iv) of this list corresponds to a performance compromise that should be
tackled according to the type of application.

A comparison on the overall performance is depicted in Fig. 9 for the proposed method of
interpolation and for the alternative methods introduced in Sect. 5.1. The goal is to assess the
differences in the SN R(r, r̃) obtained for each algorithm. The P-G algorithm is an iterative
method, which is compared to the non-iterative method proposed. Thus, for a fair assessment
between methods, two runs differing in the number of iterations of the P-G algorithm are
conducted. In order to implement the P-G algorithm it is necessary to set the bandwidth of
the filter. The value is selected such that the main harmonics of the signal are present on
the corresponding bandwidth thus leading to more advantageous results. For the signal in
Fig. 2 the bandwidth was set to B = 1300, with results in green with line styles dashed
and dot dashed, for the first and the 50th iteration results, respectively. Regarding the PCA
interpolation method, all extensions are employed with the regularization parameter set to
α = 0.6η2. For the averaging method the window size is H = 7 and is depicted in blue.

A graceful degradation on the SN R(r, r̃) for all methods was observed for increasing
ratios of missing samples, as depicted in Fig. 9. As expected, the averaging method (in
green) is always outperformed by the PCA interpolation and by the P-G methods, even when
only one iteration of the P-G method (in pink) is considered. It is possible to conclude on the
benefits of the proposed method, central to this paper, and the corresponding extensions where
an improvement in excess of 10d B compared to the missing data signal can be achieved.
Interestingly enough, equivalent results were obtained only after 50 iterations of the P-G
algorithm.

5.3 Results for 2D signal

A second example of application is presented throughout this section. A classic 8 bit black
and white image with a size of 512∗512 pixels, which is depicted on the left panel of Fig. 10,
will be used. Also in the same figure, on the center panel, is an example of that image with
missing data (η = 0.3) and the corresponding interpolated image on the right, where the
methods detailed in Sect. 4 were used.

The results for the PCA interpolator and for the alternative methods are shown in Fig. 11.
On the top row of Fig. 11, a series of images with several ratios of missing samples in the
interval η ∈ [0.2, . . . , 0.95] are depicted. The second row illustrates the results obtained
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Original Image Image with missing data, η=0.3 Interpolated Image, η=0.3

Fig. 10 2D Signal interpolation with the PCA interpolation method, where N = H ∗ H = 7 ∗ 7 = 49, n = 7
and α = 0.006 η2
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Fig. 11 Results of 2D signal interpolation when alternative methods are applied, see 5.1 and the references
therein for details
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Fig. 12 2D Signal interpolation SN R(r, r̃) for η ∈ [0.02, 0.98], with the PCA interpolation method (red),
the methods introduced in 5.1, and for the original image with missing data (in black)

with the PCA interpolation method. Next, the results for the averaging method with square
mosaics N = H ∗ H = 7 ∗ 7 = 49 are presented. In the fourth and fifth rows, results for
the P-G algorithm with a filter bandwidth B = 50 for Iter=1 and Iter=50, respectively,
are depicted. The last two rows are the reconstruction achieved with the Power Factorization
method, for a rank 1 and a rank 50 decomposition, respectively, using the software available
from the authors of Buchanan and Fitzgibbon (2005). From a careful inspection, it is imme-
diate to conclude that all methods performed worst than the one central to this work. The
advantage is even more interesting for high levels of missing data, i.e. η > 0.5.

To assess the performance of several classical and modern state of the art methods avail-
able, a comparison similar to the one presented for the 1D signal, i.e. resorting to the
SN R(r, r̃), is carried out for the image in Fig. 10, with the results shown in Fig. 12. The
parameters were kept as the ones established in Figs. 10 and 11. All methods presented a
graceful degradation with the augment of missing data. For values above 0.75 the Power
Factorization method fails (in cyan), next the P-G method fails, and finally, only for an
excess of 0.9 of missing data, the averaging and the PCA based reconstruction method fail. In
the case of the Power Factorization method, marginal performance increases can be obtained
for higher rank approximation, however the performance collapses for smaller amounts of
missing data.

The PCA reconstruction algorithm is sub-optimal, mainly due to the ambiguity on the
choice of the mosaic dimension. To study the impact of this parameter on the overall per-
formance of the proposed method, a study was carried out for a constant value of η = 0.3,
for square mosaics H ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11}. The results are presented in Fig. 13, with
the number of components n = 3 . . . N . Note that for a small percentage of components
(20 % typical), the best performance is achieved, as can be seen in the plateau on the figure.
As the computational requirements to obtain the PCA decomposition increases with the size
of the mosaic, but very similar levels of performance are obtained, a moderate size for the
mosaic size is advisable to be chosen (4 to 6). For larger percentages of components used,
the performance of the the method degrades, due to the lack of information in the images to
accurately compute all the components required.

From the results of the proposed method for the 2D signal in Fig. 12 it can be concluded
that the PCA interpolation algorithm’s performance is coherent and seems to be independent
from the signal and its dimensionality. For the 2D signal, the PCA interpolator clearly stands
as the method with the best results. For large values of η, due to severe lack of information,
a pronounced degradation in the SN R is verified. The advantages of the proposed method
are once again evident.
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Fig. 13 Study on the proposed reconstruction method, based on the SN R(r, r̃), for a fixed missing data
scenario of η = 0.3, and variable number mosaic size H and number of components n < H ∗ H

6 Conclusions and future work

A new methodology to interpolate and regularize sampled signals with missing data is
presented, supported on estimates from two efficient sub-optimal estimators for the mean
and covariance of the underlying signals. Three refinements to the basic method in Oliveira
(2006) are included with positive impact on the overall performance: (i) mean substitution,
(ii) dynamic principal components selection and, (iii) Tikhonov regularization. These exten-
sions naturally increased the numerical robustness of the interpolation method and removed
the original limitations on the interval of validity, thus paving the way to the application of
the present methods to a number of real problems in the interpolation of multidimensional
signals. Tight upper and lower bounds were presented and validated through a series of tests,
with improved performance when compared with local averaging, the Papoulis–Gerchberg,
and the Power Factorization methods. No bandlimited nor Gaussian noise assumptions are
required for the signals and noise present, respectively. Sensitivity studies on a series of
parameters in the estimators revealed a graceful degradation on the interpolation perfor-
mance. Ultimately, the application of the proposed methodology to data obtained in a series
of surveying missions at sea, with unmanned underwater vehicles, is expected to be the
key enabling tool to tackle terrain based navigation problems with feature based techniques
(Oliveira 2007).
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