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Abstract—This paper extents the by now classic sensor fusion
complementary filter (CF) design, involving two sensors, to the
case where three sensors that provide measurements in different
bands are available. This paper shows that the use of classical
CF techniques to tackle a generic three sensors fusion problem,
based solely on their frequency domain characteristics, leads to
a minimal realization, stable, sub-optimal solution, denoted as
Complementary Filters3 (CF 3). Then, a new approach for the
estimation problem at hand is used, based on optimal linear
Kalman filtering techniques. Moreover, the solution is shown to
preserve the complementary property, i.e. the sum of the three
transfer functions of the respective sensors add up to one, both
in continuous and discrete time domains. This new class of filters
are denoted as Complementary Kalman Filters3 (CKF 3). The
attitude estimation of a mobile robot is addressed, based on data
from a rate gyroscope, a digital compass, and odometry. The
experimental results obtained are reported.

I. INTRODUCTION

The design of navigation systems, based on information
from sensors installed on board is still a topic of current
interest. One of the topics where researchers have invested their
effort is the localization system, with special focus on the mo-
bile robot attitude estimation. Nowadays, with the increasing
development of MicroElectroMechanical Systems (MEMS),
several sensors are available to estimate the robot attitude
(e.g. compass, rate-gyros, accelerometers, etc.), beyond the
odometry measure provided by encoders, usually connected to
the drive wheel motors [11], [1], [14]. However, each sensor
has different characteristics, namely in terms of dynamics and
bandwidth response. Thus, to obtain a more accurate and
robust estimate of a variable, sensor fusion techniques have
been developed, in engineering and in robotics in particular,
allowing to obtain estimates based on the measurements pro-
vided by more than one sensor [6], [5], [13].

The classical sensor fusion technique, for linear systems
corrupted by stochastic white noise uncertainties with mea-
surements also corrupted by white noise, is the celebrated
Kalman filter (KF). This method solves a Minimum Mean
Square Error (MMSE) estimation problem, that provides op-
timal estimates, based on a set of Kalman gains. However,
KF requires a complete characterization of the process and
observed noises, a task that may be difficult, or not suited
to specific problems. The main difficulty associated with this
method is the complexity in the identification of a good model
for sensors and the robotic system. Another drawback is the
high computational complexity of the solution, which involves
intensive matrix manipulation. Alternatively to the use of KF
for the data fusion, works based on other methodologies can
also be found in the literature. One such methodology is
Complementary Filtering, being a class of estimators based on

the Wiener theory for linear systems corrupted by stationary
noise, which allows the fusion of trustworthy signals with
different frequency bandwidths to produce more precise signals
in the time domain. The main advantages of Complementary
Filters (CF) are the low computational cost, the faster dynamic
response, and the more intuitive parameter tuning.

CF estimates variables considering signals provided by
two sensors in distinct and complementary frequency bands,
without the need of characterizing the stationary white noise
present [9]. In [2], one such CF estimator is used for naviga-
tion. It has been further used integrated in several navigation
systems [1], [10], [12], [8].

Optimal results can be obtained for CFs based on mea-
surements from two sensors, in the case where the noise is
stationary. Moreover, the estimators design based on sensors
working in different bands is often useful to develop redundant
measurement systems to fuse signals provided by sensors
with different dynamics. Complementary filtering allows the
estimator fine-tune for the frequency band where the sensors
provide better performance. For instance, to estimate the tilt
angle relative to gravity, an inclinometer and a rate gyro can be
used. The rate gyro provides a measure of the angular velocity
with a nice flat frequency response to about 50 Hz. However,
the angular position, if obtained from integration, is highly
affected by the bias error, quickly giving an unacceptable, ever
increasing error drift on the position signal. The inclinometer
measures tilt angle relative to gravity, does not suffer from a
drift problem, but has a low bandwidth (0.5 Hz to 6Hz) which
is too slow for many robotic applications. A CF may hence be
used for estimating both angular position and angular velocity
over a larger bandwidth with negligible drift [7]. The use of CF
has been successfully applied to estimate mobile robot attitude,
merging the signals provided by two sensors, where frequency
bands complementarity is performed by a low-pass and a high-
pass filter, both with the same cut-off frequency obtained from
the frequency response of each sensor [8], [12].

Nowadays there is a large number of commercialy available
sensors that can provide measurements related to attitute. Thus,
the existence of more than two sensors in a sensor fusion
approach allows a more accurate estimate or to avoid erroneous
estimation results, thus providing redundancy and a more
robust or reliable estimate.

The contributions of this paper are threefold: i) the design
of complementary filters with three inputs, hereby denoted as
CF 3, with the purpose of merging signals provided by three
different sensors, leading to minimal realizations, stable and
with strong frquency domain interpretation; ii) to enphasize
that the optimality property of two sensors complementary
filters is lost when extending the approach for three sensors
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fusion, as thus filters are related to a non-convex estimation
problem, and iii) to design optimal linear Kalman filters for
three sensors, preserving the complementary filter property,
with optimal performance, both in continuous and discrete time
domains, denoted as CKF 3.

This paper is organized as follows: Section II presents
the synthesis and analysis of CF 3, aiming to fuse data from
threee sensors. The optimal linear Kalman filter estimator
CKF 3 design is detailed in section III, for the continuous
time domain. Section IV presents the discrete time optimal
complementary filter design and shows that the complementary
property is preserved. Section V illustrates the experimental
results obtained for the estimation of the attitude of a mobile
robot, when resorting to the filters introduced in this work.
Finally, Section VI presents some conclusions and unveils
future work.

II. COMPLEMENTARY FILTER DESIGN WITH
THREE FREQUENCY BANDS - CF 3

Complementary filters are estimators commonly used in
mobile robot navigation, allowing the fusion of two sensors
in order to estimate one unknown variable [8], [12]. However,
a different approach will be presented in this section, aiming
at the development of a robot attitude estimator inspired on
a CF, merging signals provided by three different sensors,
considering only the most reliable frequency range of each
sensor response. Thus, from each sensor only part of frequency
spectrum is used. All sensors together cover the whole spec-
trum, thus providing distortionless estimates of the unknown
quantities. These filters will be denoted as CF 3. This means
that one sensor complements others in frequency domain,
thus the name complementary. The CF 3 estimator considers
three inputs merged in different, yet complementary frequency
bands. The frequency spectrum is split in three bands. The
CF 3 is composed by a low-pass, a band-pass and a high-pass
filter. Complementarity is achieved if the estimator output has
a unitary magnitude gain over whole frequency spectrum.

To focus the reader’s attention, lets adress the problem of
attitude estimation for a mobile robot. Moreover, ψ(s) denots
the Laplace transform (LT) of the signal ψ(t), abreviated in the
sequel as ψ. Assuming that the sensors provide measurements
related to the attitude, the filters are complementary if the
following equality holds:

T1(s) + T2(s) + T3(s) = 1 (1)

where T1(s), T2(s) and T3(s) are the transfer functions from
each of the sensors i = 1, ..., 3 to the robot attitude ψ, i.e. the
CF 3 output.

Furthermore, being k1 and k2 positive parameters, then,
one possible transfer function that relates the LT of the
measured attitude ψ(s) with its estimate ψ̂(s), is:

ψ̂(s) = ψ(s) =
s2 + k1s+ k2
s2 + k1s+ k2

ψ(s) (2)

This second order transfer function can be decomposed
into three transfer functions, ensuring the equality given by
equation (1), for the purpose of obtaining the transfer function
that relates each input with the CF 3 output:

ψ̂(s) = T1(s)ψ(s) + T2(s)ψ(s) + T3(s)ψ(s) (3)
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Fig. 1. CF 3 Bode diagram.
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Fig. 2. CF 3 block diagram

where T1(s) is a high-pass filter, T2(s) a band-pass filter,
and T3(s) a low-pass filter, characterized respectively by the
following transfer functions:

T1(s) =
s2

s2 + k1s+ k2
(4)

T2(s) =
k1s

s2 + k1s+ k2
(5)

T3(s) =
k2

s2 + k1s+ k2
. (6)

Figure 1 shows the Bode diagrams corresponding to the
transfer functions given by equations (4)–(6). Unitary gain
along the whole frequency spectrum is thus obtained. All
filters have the same two eigenvalues, i.e. the roots of the
characteristic equation, given by:

pT1,2,3 = −k1 ±
√
k21 − 4k2
2

(7)

and the zeros for each filter can be obtained as follows,

zT1
=

{
0
0

, zT2
= 0 , zT3

= {} (8)

Reorganizing the transfer function given by equation (2),
the model of a CF 3 could be analytically represented as the
differential equation

¨̂
ψ = ψ̈ + k1(ψ̇ − ˙̂

ψ) + k2(ψ − ψ̂), (9)

with the corresponding block diagram depicted in Fig. 2.
Notice that the CF 3 has three inputs, allowing to merge the
measurements provided by three sensors, each one correspond-
ing to a different physical quatity, that can be denominated
generically as (attitude) position (ψ), velocity (ψ̇), and acceler-
ation (ψ̈). The position signal is filtered by the low-pass filter,
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the velocity by the band-pass filter, and the acceleration by
the high-pass filter. The filters gains can be computed based
on filters parameters without the need to know the stochastic
noise and any system physical model. Hence, to implement the
CF 3, it is only needed to take into account the complementary
filter property (as far as the frequencies spectrum is concerned)
along with the characteristic of the individual sensors used,
allocating the sensor signals to the corresponding filter input.

To analyze if the obtained CF 3 is optimal, the model
given by equation (9) has been written with a space-
state representation, considering the state and output vectors

x̂ =
[
ψ̂

˙̂
ψ

]T
and z = x̂, respectively:

˙̂x = Fx̂+Bψ̈ +K(z−Hx̂) (10)

z = Hx (11)

with:

F =

[
0 1
0 0

]
,B =

[
0
1

]
,H =

[
1 0
0 1

]
(12)

and the CF 3 gain matrix is given by,

K =

[
0 0
k2 k1

]
. (13)

Notice that the gain matrix K is sparse, with a corre-
sponding non-convex estimation problem. The most important
consequence is that optimality is lost in general, i.e. tunning
the gains k1 and k2 does not render the CF 3 optimal. To
attain optimality, a linear Kalman filter must be designed for
the problem at hand. In that case the gain matrix has the same
dimensions but the K matrix is full. The objective of the next
section is to detail the design of such optimal filter.

III. OPTIMAL COMPLEMENTARY KALMAN
FILTER DESIGN - CKF 3

In this section, the relationship between the CF 3 and
the equivalent CKF 3 is analyzed. Such approach allows the
design of a fusion solution that best suits the sensors character-
istics, preserving the the corresponding filter frequency band,
while providing optimal estimates.

Pursuing the classical Kalman filter design approach, a
full Kalman gain matrix K is obtained, with four gains to
be determined, i.e.

K =

[
k11 k12
k21 k22

]
. (14)

Using (14) in the model (10)–(12) leads to the CKF 3 filter
shown in Fig. 3. Notice that two more gains are now present
in this model, when compared with the suboptimal model
depicted in Fig. 2. Analyzing the CKF 3 structure presented in
Fig. 3, it can be concluded that the transfer functions relating
the signal from each sensor with the corresponding filter output
are as follows:

F1(s) =
ψ̂(s)

ψ̈(s)
=

1

(1 + k12)s2 + (k11 + k22)s+ k21
(15)

F2(s) =
ψ̂(s)

ψ̇(s)
=

k12s+ k22
(1 + k12)s2 + (k11 + k22)s+ k21

(16)

F3(s) =
ψ̂(s)

ψ(s)
=

k11s+ k21
(1 + k12)s2 + (k11 + k22)s+ k21

(17)
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Fig. 3. CKF 3 block diagram.

p1 zT3 p2 zT2(2)
−60

−50

−40

−30

−20

−10

0

10

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B
]

 

 

LP filter
BP filter
HP filter
Global gain

Fig. 4. CKF 3 Bode diagram.

and the global transfer function will be given by the following
equation,

ψ̂(s) = F1(s)ψ̈(s) + F2(s)ψ̇(s) + F3(s)ψ(s) (18)

= F1(s)s
2ψ(s) + F2(s)sψ(s) + F3(s)ψ(s) (19)

where the characteristics of the sensors where used.

Finally, equation (19) can be written as equation (3) being
T1(s) = F1(s)s

2, T2(s) = F2(s)s and T3(s) = F3(s).
Moreover, analyzing the transfer functions of each filter (15)–
(17) it can be concluded that the condition expressed by
equation (1) is also satisfied resulting a global transfer function
as follows:

ψ̂(s) =
(1 + k12)s

2 + (k11 + k22)s+ k21
(1 + k12)s2 + (k11 + k22)s+ k21

ψ(s) (20)

In conclusion, the use of the structure associated to the linear
Kalman filter lead also to a complementary filter, with the
advantage of attaining optimal performance, preserving the
minimal representation and the stability.

Figure 4 shows the Bode diagram for the CKF 3. Once
again, three filters working in complementary frequency bands
and with unitary global gain along the whole frequency spec-
trum are observed. The Bode diagrams are designed according
to the gain matrix , since there is a relationship between
the filter gains and the corresponding system eigenvalues and
zeros, which can be obtained from the transfer functions of
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each filter. Thus, all filters have the same two eigenvalues,
given by:

pT1,2,3
= −k11 + k22 ±

√
(k11 + k22)2 − 4(1 + k12)k21
2(1 + k12)

(21)

and the zeros for each filter can be obtained as follows,

zT1
=

{
0
0

, zT2
=

{
0

−k22
k12

, zT3
= −k21

k11
. (22)

The CKF 3 to provide optimal estimations, requires the
computation of the optimal gains for the matrix K, resorting to
a classical Kalman filter design. This can be achieved through
the stochastic characterization of the uncertainty present in the
sensors measurements. Being R the covariance of the white
Gaussian noise associated with the low-pass and band-pass
filters (measurement noise), and Q the covariance of the white
Gaussian noise associated with the high-pass filter (process
noise), the CKF 3 optimal gains can be obtained as usual, i.e.

K = PHTR−1 (23)

where P is the covariance of the estimation error, solution of
the algebraic Riccati equation,

FP+PFT −PHTR−1HP+Q = 0. (24)

The sensor fusion approach based on the CKF 3 depicted
in Fig. 3 considers that each sensor measures a different
physical quantities, related with the same variable. In this case
position, velocity and acceleration of the attitude angle of a
mobile robot. Furthermore, it is possible to obtain alternative
CKF 3 estimator structures tacking into account alternative
sensors to physical be merged. The CKF3 structure previously
detailed fuses position, velocity, and acceleration measure-
ments. In practice, for attitude estimation only ”position” and
”velocity” sensors are available. Thus, alternative structures
can be obtained to merge several combinations of the sensors
available.

With the purpose of implementing these new CKF 3

filtering solutions in a real application, discrete time models
must be obtained. The new discrete time models must also be
analyzed in order to study if the complementary property is
preserved. This is the purpose of the next Section.

IV. OPTIMAL DISCRETE TIME COMPLEMENTARY
KALMAN FILTER DESIGN - DCKF 3

Lets consider the purpose of implementing the CKF 3 in a
digital processor, to estimate the mobile robot attitude, where
signals are assumed to be constant between two sampling times
(zero order hold assumption). To that purpose, a discrete com-
plementary Kalman filter with three input signals (DCKF 3)
will be presented in this section. The DCKF 3 design is devel-
oped considering the sensors physical measurements that will
be merged and keeps the transfer function complementarity,
providing optimal estimates. Consider the continuous model
given by equations (10) and (11).

The step invariant discrete time linear model, for a sam-
pling time T , is given by:

x̂(k + 1) = Fx̂(k) +Bω(k) +K(z(k)−Hx̂(k)) (25)

z(k) = Hx(k) (26)
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Fig. 5. Discrete time optimal DCKF 3 block diagram (LP: ψ, BP:ψ, HP:ω).
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Fig. 6. Discrete time optimal DCKF 3 block diagram (LP: ω, BP:ψ, HP:ψ).

where ω(k) is the sampled angle rate, denoted previously as
”velocity” and the system matrices are:

F =

[
1 T
0 1

]
,B =

[
T
0

]
,H =

[
1 0
1 0

]
, (27)

corresponding to the block diagram depicted in Fig. 5. The
discrete Kalman gain K is a full matrix, with a structure similar
to that represented in equation (14), computed based on the
discrete Kalman methodology, represented briefly in the sequel
as

K = PHT(HPHT +R)−1 (28)

where P will be computed by solving the discrete time
algebraic Riccati equation [3].

Analyzing equations (25)–(27) it can be observed that
the DCKF 3 model was obtained from an estimator that
receives [ ψ(k) ψ(k) ω(k) ]

T
signals in the low, band and

high-pass filter inputs, respectively. However, as it will be
shown ahead in a specific real application, the best solution to
estimate the mobile robot attitude merging signals provided by
gyros, compass and odometry sensors corresponding to have

a DCKF 3 structure that receives [ ω(k) ψ(k) ψ(k) ]
T

as
inputs. Formaly, two of these quantities are measurements in
the Kalman filter and one is an input. Hence, an equivalent
structure has been designed to cope with the connection of the
rate-gyros, compass and odometry sensors, respectively in the
correspondent DCKF 3 input being the corresponding block
diagram depicted in Fig. 6.

Analyzing this filter, the transfer functions that relate the
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signals from each sensor with the filter output are as follows:

F1(z) =
ψ̂(z)

ψ(z)
=
z−2 − 2z−1 + 1

den(z)
(29)

F2(z) =
ψ̂(z)

ψ(z)
=

(−k12 + Tk22)z
−2 + k12z

−1

den(z)
(30)

F3(z) =
ψ̂(z)

ω(z)
=

(−Tk11 + T 2k21)z
−3 + Tk11z

−2

(1− z−1)den(z)
(31)

where

den(z) = (1− k12 − k11 + Tk21 + Tk22)z
−2+

+ (k11 + k12 − 2)z−1 + 1. (32)

The global transfer function is thus given by:

ψ̂(z) = F1(z)ψ(z) + F2(z)ψ(z) + F3(z)ω(s) (33)

Establishing T1(z) = F1(z), T2(z) = F2(z) and

T3(z) = F3(z)
1−z−1

Tz−1 , the complementary property in the
discrete-time is once again satisfied, i.e.

T1(z) + T2(z) + T3(z) = 1. (34)

Thus, the complementary property is preserved for the discrete
time filters DCKF 3.

V. EXPERIMENTAL VALIDATION

A. Simulations Results

The proposed optimal CF 3 design was tested and sim-
ulated for the attitude estimation of a mobile robot. The
estimated attitude was obtained from the measures provided
by different combinations of three sensors with different char-
acteristics, namely a rate gyro, a compass, and odometry. The
robot trajectory simulated was a round corners figure square.
The robot kept straight during 600 s and turned smoothly 90◦
to the left during 10 s. After four times, the robot was back to
the initial position having performed the round corners square
trajectory. In the performed simulations, the following noises
associated with the sensors were added to the model:

• Rate-gyros - Gaussian noise μg ∼ N(0, 2 × 10−3

and a bias of 0.8 ◦/s. However, the bias can be
compensated, without disturbing the CF 3 input signal,
because it has been observed in a real experiment
that after the temperature stabilization that occurs in
20 min the rate-gyros bias remains approximately
constant.

• Compass - Gaussian noise μc ∼ N(0, 2 × 10−3) and
a magnetic perturbation of 20 sin(ψc);

• Odometry - Gaussian noise μo ∼ N(0, 4× 10−6) and
a bias of 0.5 ◦/s. Such a value could change in a real
control loop implementation.

Once known the sensors stochastic characteristics, the
attitude estimation was simulated considering several fusion
alternatives, with the corresponding optimal gains. For the
two sensor fusion case (CF ), the attitude is estimated by the
classical discrete Kalman Filter with two inputs, thus optimal
but with only a subset of the sensors available. For the three
sensor fusion case, the CKF 3 solutions were exploited. In
both cases the estimators parameters were tuned, resulting
in optimal gains. Tables I and II show the Mean Square

TABLE I. MSE FOR DIFFERENT CF - SIMULATION RESULTS

Low-pass High-pass MSE [ rad2 ]

ψ̇rate−gyros ψodometry 2.01× 10−3

ψ̇rate−gyros ψcompass 2.02× 10−3

ψcompass ψodometry 2.62× 10−2

ψcompass ψ̇rate−gyros 2.53× 10−2

ψodometry ψcompass 1.41× 102

ψodometry ψ̇rate−gyros 1.41× 102

TABLE II. MSE FOR DIFFERENT CF 3 - SIMULATION RESULTS

Low-pass Band-pass High-pass MSE [ rad2 ]

ψ̇rate−gyros ψcompass ψodometry 1.91× 10−3

ψ̇rate−gyros ψodometry ψcompass 1.91× 10−3

ψcompass ψ̇rate−gyros ψodometry 2.70× 10−2

ψcompass ψodometry ψ̇rate−gyros 2.61× 10−2

ψodometry ψ̇rate−gyros ψcompass 1.46× 102

ψodometry ψcompass ψ̇rate−gyros 1.46× 102

Error (MSE) for the different combinations, considering the
classical CF structure (with two inputs) and the proposed CF 3

structure with three inputs, respectively. Analyzing Table I it
can be observed that the CF inputs combination that provides
estimations with less MSE is the one that has the rate-gyro
signal as input of the low-pass filter and the odometry as input
of the high-pass filter. The same combination adding now the
compass as input of the band-pass filter, thus resulting in a
CF 3, is the best solution. See Table II) where a slighly better
performance is achieved. Furthermore, the addition of more
one sensor increases the estimator robustness when in presence
of erroneous signals or sensor faults.

B. Experimental Results

Aiming to validate the proposed methodology in a real ap-
plication, the DCKF 3 has been implemented using a low cost
mobile robotic platform [4], with the configuration of a Dubins
car. Such a platform is equipped with two encoders coupled
to the motors, a digital compass located on the extension arm
(robot rear part) to avoid the magnetic interference from the
motors, and a rate-gyro over the platform (Fig. 7). To test
the mobile robot attitude estimation the proposed DCKF 3

was tested considering a trajectory combining both straight
lines (constant attitude) with semi-circumferences (linear at-
titude changing) allowing to assess the localization system
operation under different experimental conditions. The tests
were performed with a 0.1 m · s−1 robot velocity and 5 Hz of
sampling frequency. During the robot motion the real mobile
robot trajectory is measured allowing the comparison of the
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Fig. 7. Mobile robot platform
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TABLE III. CF ESTIMATION ERROR ANALYSIS - EXPERIMENTAL

RESULTS

quantity average variance

ψ̂ [rad] −3.73× 10−2 1.9× 10−2

ω̂ [rad/s] −1.7× 10−3 5.3× 10−3

estimated position with the real one (ground truth test) and
the corresponding error is analyzed. As it is possible to see in
Fig. 8 the attitude and the angular velocity estimated by the
DCKF 3 are very close to the ground truth (Table III).

Figure 9 shows the dead-reckoning position computed
using the Linear Parametric Varying (LPV) model proposed
in [5] considering now the angular velocity computed by
the estimated attitude numerical differentiation obtained from
DCKF 3. Analyzing the results depicted in Fig. 9 it can
be observed that the dead-reckoning results are close to the
ground truth trajectory.

VI. CONCLUSIONS

This paper introduced a new class of complementary filters
extenting the by now classic sensor fusion complementary filter
(CF) design. In the cases addressed in this work, three sensors
are usedt providing measurements in different bands. First,
an extension (CF 3) is proposed, but leads to a sub-optimal
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Fig. 9. Estimated dead-reckoning - experimental results

solution. Then, the problem at hand was reformulated and
casted as a optimal linear Kalman filtering (CKF 3). Moreover,
this solution is shown to preserve the complementary property,
i.e. the sum of the three transfer functions of the respective
sensors add up to one. The same synthesis and analyzes was
done for the discrete time case, thus leading to DCKF 3 filters
domains, that were shown to preserve the complementary
property.
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[4] C. Cardeira and J. Sá da Costa. A low cost mobile robot for engineering
education. In Proceedings of IECON 2005, the 31st Annual Conference
of the IEEE Industrial Electronics Society, pages 2162–2167, Raleigh,
USA, April 2005.

[5] F. Carreira, J.M.F. Calado, C. Cardeira, and P. Oliveira. Enhanced pca-
based localization using depth maps with missing data. Journal of
Intelligent & Robotic Systems, 77:341–360, 2015.

[6] A. Cavallo, A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C. Natale,
and S. Pirozzi. Experimental comparison of sensor fusion algorithms
for attitude estimation. In Proceedings of IFAC 2014, the 19th World
Conference of the International Federation of Automatic Control, pages
7585–7591, Cape Town, South Africa, August 24-29 2014.

[7] K. Craig. Sensor fusion - its hot! : Complementary filtering to
meet demanding performance requirements. Mechatronics in Design,
page 16, November 2009.

[8] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel. A complemen-
tary filter for attitude estimation of a fixed-wing uav. In Proceedings
of IROS 2008, the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 340–345, Nice, September 22-26 2008.
IEEE.

[9] W.T. Higgins. A comparison of complementary and kalman filtering.
IEEE Transactions on Aerospace and Electronic Systems, 11(3):321–
325, 1975.

[10] V. Kubelka and M. Reinstein. Complementary filtering approach to
orientation estimation using inertial sensors only. In Proceedings
of ICRA 2012, the IEEE International Conference on Robotics and
Automation, pages 599–605, St. Paul, MN, May 14-18 2012.

[11] G. Pang and H. Liu. Evaluation of a low-cost mems accelerometer
for distance measurement. Journal of Intelligent and Robotic Systems,
30(3):249–265, 2001.

[12] A. Pascoal, I. Kaminer, and P. Oliveira. Navigation system design using
time-varying complementary filters. IEEE Transactions on Aerospace
and Electronic Systems, 36(4):1099–1114, October 2000.

[13] S. Sabatelli, F. Sechi, L. Fanucci, and A. Rocchi. A sensor fusion
algorithm for an integrated angular position estimation with inertial
measurement units. In Processings of the DATE 2011, the Conference
& Exhibition on Design, Automation & Test in Europe, pages 1–4,
Grenoble, March 14-18 2011. IEEE.

[14] Y. Wang, N. Li, and M. Liu. Design and implementation of an ahrs
based on mems sensors and complementary filtering. Advances in
Mechanical Engineering, 3:3, 2014.

173


