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a b s t r a c t

This paper details the stability analysis of the continuous-time Kalman filter dynamics for linear time-
varying systems subject to exponentially decaying perturbations. It is assumed that estimates of the input,
output, and matrices of the system are available, but subject to unknown perturbations which decay
exponentially with time. It is shown that if the nominal system is uniformly completely observable and
uniformly completely controllable, and if the state, input, and matrices of the system are bounded, then
the Kalman filter built using the perturbed estimates is a suitable state observer for the nominal system,
featuring exponentially convergent error dynamics.
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1. Introduction

This paper details the stability analysis of the continuous-time
Kalman filter subject to exponentially decaying perturbations in
the input, output, and matrices of the system. The topic of state
estimation subject to perturbations in the dynamics of the sys-
tem has been extensively covered in the framework of robust
estimation for uncertain systems, see e.g. [1] and [2]. Existing
research on the subject ranges from results on quadratically sta-
ble linear time-invariant systems, see e.g. [3–5], to more general
approaches on generic linear time-varying (LTV) systems such as
in [6] and [7]. More recently, works such as [8–10] proposed ro-
bust filtering solutions for cases in which the matrices of the nom-
inal system are uncertain, but known to reside in a given convex
polytope.While the above-cited references consider mostly norm-
bounded uncertainties, this paper considers exponentially decay-
ing perturbations. Although this class of signals is admittedlymore
restrictive, it allows for arbitrarily large initial values for the uncer-
tainties, as well as recovering the optimal Kalman filter dynamics
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in steady state. Another difference with respect to the existing lit-
erature regards the prior knowledge of the nominal system: while
some works assume that the dynamics of the nominal system are
known and others admit that they reside in a given polytope, in
this paper the filter is implemented without knowing the nomi-
nal system dynamics, using instead estimates of the systemmatri-
ces corrupted by the aforementioned unknown perturbations. This
formulation is useful for analysis of interconnected Kalman filters
in a cascade setup. While there are a number of stability results
for cascade systems (see e.g. [11]), interconnecting time-varying
Kalman filters in such a fashion introduces additional problems, as
the estimation error of the first filter in the cascade might inject
exponentially decaying errors in the dynamics of the other filters
at several levels: in the input, the output, the matrices of the sys-
tem model, and the computation of the filter gain and error co-
variance matrix. For a practical application of the results detailed
in this paper, see e.g. [12], in which autonomous vehicles work-
ing in formation use state estimates from other agents to compute
the systemmatrices needed to implement local Kalman filters. The
above-cited paper includes a simplified version of the results de-
tailed in this paper,which considers perturbations only in the input
u(t) and output matrix C(t). In comparison, in this paper pertur-
bations are introduced inmost matrices of the systemmodel (with
the exception of the noise covariances Q(t) and R(t)) as well as
both the input and output of the system. As a result of this, the re-
sults detailed here aremore general but alsomore complex, for the
most part due to the perturbation in A(t) which induces errors in
the state transition matrix 8(t, t0).
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The rest of the paper is organized as follows. Section 2 details
the problem at hand as well as the assumptions required to
derive the results in subsequent sections. A generic LTV system
is considered, and it is assumed that estimates of the input,
output, and matrices of the system are available to implement
the Kalman filter, but subject to unknown perturbations which
decay exponentially with time. The two following sections detail
auxiliary results which are necessary to derive the main result of
this paper: in Section 3, it is shown that if the nominal system is
uniformly completely observable (UCO) and uniformly completely
controllable (UCC), then the perturbed system is also UCO and
UCC; and in Section 4, it is shown that the solution of the Riccati
equation for the Kalman filter built with the perturbed parameters
converges exponentially fast to the solution of the Riccati equation
for the nominal Kalman filter. Section 5 details the main result
of this paper: using the previous results, it is shown that the
perturbed version of the Kalman filter constitutes a suitable state
observer for the nominal LTV system, featuring error dynamics that
converge exponentially fast to zero. Finally, Section 6 summarizes
the main conclusions of this work.

1.1. Notation

Throughout the paper the symbol 0 denotes amatrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
For a matrix A, ∥A∥ denotes its induced 2-norm, and ∥A∥F denotes
its Frobenius norm. The notation vec(A) denotes the vectorizing
operator, which returns a vector constructed by stacking the
columns of the matrix A. For a symmetric matrix P, P ≻ 0 and
P ≽ 0 indicate thatP is positive definite and positive semi-definite,
respectively.

2. Problem statement

Consider the LTV system
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t), x(t0) = x0, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Ro, and x0 ∈ Rn are the state,
input, output, and initial condition of the system, respectively.A(t),
B(t), and C(t) are matrix-valued functions of time of appropriate
dimensions. To simplify the notation throughout the text, from
hereon time-dependency of the variables is not explicitly shown
(x is used instead of x(t), for example). In general, all functions and
variables that appear in the text should be treated as time-varying
unless explicitly stated otherwise.

It is assumed that all quantities in (1) are bounded for all time,
that is, there exist positive scalar constants α1, α2, α3, α4, and α5
such that

∥x∥ ≤ α1
∥u∥ ≤ α2

and


∥A∥ ≤ α3
∥B∥ ≤ α4
∥C∥ ≤ α5

(2)

for all t ≥ t0.
The dynamics of the continuous-time Kalman filter for (1)

follow
˙̂x = Ax̂ + Bu + K[y − Cx̂]
K = PCTR−1

Ṗ = AP + PAT
+ DQDT

− PCTR−1CP,


x̂(t0) = x̂0
P(t0) = P0,

(3)

in which x̂ ∈ Rn is the state estimate of the filter, K ∈ Rn×o is the
filter gain, and P ≻ 0 ∈ Rn×n is the estimation error covariance
matrix. x̂0 and P0 are, respectively, the initial state estimate and
initial error covariance matrix. The matrices D ∈ Rn×p, Q ≽ 0 ∈

Rp×p, andR ≻ 0 ∈ Ro×o are used tomodel process and observation
noise. It is assumed that there exist positive scalar constantsα6,α7,
and α8 such that∥D∥ ≤ α6

α−1
7 ≤ ∥R∥ ≤ α7

∥Q∥ ≤ α8

(4)

for all t ≥ t0.
Now, suppose that for implementation of the Kalman filter (3)

the nominal values of A, B, C, D, u, and y are not available and that
estimates of those quantities, denoted respectively as Â, B̂, Ĉ, D̂, û,
and ŷ must be used instead. Define the errors on those estimates
as

Ã := A − Â
B̃ := B − B̂
C̃ := C − Ĉ
D̃ := D − D̂
ũ := u − û
ỹ := y − ŷ.

(5)

It is assumed that these errors decay exponentially fast with time,
that is, there exist positive scalar constants α9, α10, α11, α12, α13,
α14, λ1, λ2, λ3, λ4, λ5, and λ6 such that

∥Ã∥ ≤ α9e−λ1(t−t0)

∥B̃∥ ≤ α10e−λ2(t−t0)

∥C̃∥ ≤ α11e−λ3(t−t0)

∥D̃∥ ≤ α12e−λ4(t−t0)

∥ũ∥ ≤ α13e−λ5(t−t0)

∥ỹ∥ ≤ α14e−λ6(t−t0)

(6)

for all t ≥ t0. Note that, as a result of the boundedness of A and
Â, the norm of the associated state transition matrices, 8(t, t0)
and 8̂(t, t0) respectively, can also be bounded for finite intervals.
More specifically, for any given T > 0, there exist positive scalar
constants α15 and α16 such that

∥8(t + t∗, t)∥ ≤ α15

∥8̂(t + t∗, t)∥ ≤ α16
(7)

for all 0 ≤ t∗ ≤ T and t ≥ t0.
Using the estimates that are available, the Kalman filter

equations become
˙̂x = Âx̂ + B̂û + K̂[ŷ − Ĉx̂]
K̂ = P̂ĈTR−1

˙̂P = ÂP̂ + P̂ÂT
+ D̂QD̂T

− P̂ĈTR−1ĈP̂.

(8)

Note that, due to the perturbations in the parameters of the system,
both the filter gain K̂ and the solution of the Riccati equation P̂will
deviate from their nominal counterparts K and P. The new filter
equations (8) will be referred to as Perturbed Kalman Filter (PKF)
equations from hereon for the sake of convenience.

The observability Gramian associated with the pair (A, C) is
defined as

WO(t1, t2) =

 t2

t1
8T(σ , t1)CT(σ )R−1(σ )C(σ )8(σ , t1) dσ ,

and the controllability Gramian associated with the pair (A,D)
follows

W C (t1, t2) =

 t2

t1
8(t1, σ )D(σ )Q(σ )DT(σ )8T(t1, σ ) dσ .

The pair (A, C) is said to be UCO if and only if there exist positive
scalar constants δ1 and γ1 such that

γ −1
1 ≤ dTWO(t, t + δ1)d ≤ γ1
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for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. Similarly, the pair (A,D) is said
to be UCC if and only if there exist positive scalar constants δ2 and
γ2 such that

γ −1
2 ≤ dTW C (t, t + δ2)d ≤ γ2

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. If the pair (A, C) is UCO and the
pair (A,D) is UCC, then the state estimate x̂ of the Kalman filter (3)
converges globally exponentially fast to the state x of the nominal
LTV system (1), see [13].

The problem considered in this paper is the stability analysis of
the PKF, that is, to show that, if the nominal pairs (A, C) and (A,D)

are UCO and UCC respectively, then the state estimate of the PKF
(8) also converges exponentially fast to the state of the nominal
LTV system (1). The approach detailed in this paper is divided into
three sub-problems:

1. Show that the perturbed pairs (Â, Ĉ) and (Â, D̂) are also UCO
and UCC, respectively, which allows to establish useful bounds
on P̂;

2. Show that the solution P̂ of the perturbed Riccati equation in
(8) converges to the solution P of the nominal Riccati equation
in (3), which entails that the perturbed Kalman gain K̂ also
converges to the nominal K;

3. Finally, prove that the state estimate x̂ of the PKF (8) converges
exponentially fast to the state x of the nominal system (1).

3. Uniform complete observability and uniform complete
controllability

This section focuses on showing that uniform complete
observability of the nominal pair (A, C) entails uniform complete
observability of the perturbed pair (Â, Ĉ), and that uniform
complete controllability of the nominal pair (A,D) entails uniform
complete controllability of the perturbed pair (Â, D̂).

The following proposition is needed to prove the main results
of this section:

Proposition 1. Define the deviation of 8̂(t, t0) from 8(t, t0) as

8̃(t, t0) := 8(t, t0) − 8̂(t, t0). (9)

For any given constant δ > 0, there exist positive scalar constants α17
and λ7 such that

∥8̃(t + δ, t)∥ ≤ α17e−λ7(t−t0) (10)

for all t ≥ t0.

Proof. Differentiating 8̃(t + τ , t) with respect to τ yields

∂8̃(t + τ , t)
∂τ

=
∂8(t + τ , t)

∂τ
−

∂8̂(t + τ , t)
∂τ

= A(t + τ)8(t + τ , t) − Â(t + τ)8̂(t + τ , t) (11)

for all t ≥ t0. Using (9) in (11), it can be shown that

∂8̃(t + τ , t)
∂τ

= A(t + τ)8̃(t + τ , t) + Ã(t + τ)8̂(t + τ , t) (12)

for all t ≥ t0. Solving (12) with the initial condition 8̃(t, t) = 0
yields, for any given δ > 0,

8̃(t + δ, t) =

 δ

0
8(t + δ, t + τ)Ã(t + τ)8̂(t + τ , t) dτ (13)
for all t ≥ t0. Taking the norm of (13), it follows that

∥8̃(t + δ, t)∥

≤

 δ

0
8(t + δ, t + τ)Ã(t + τ)8̂(t + τ , t) dτ


≤

 δ

0
∥8(t + δ, t + τ)∥ ∥Ã(t + τ)∥ ∥8̂(t + τ , t)∥ dτ (14)

for all t ≥ t0. Substituting (6) and (7) in (14) yields

∥8̃(t + δ, t)∥ ≤

 δ

0
α9α15α16e−λ1(t+τ−t0) dτ

= α9α15α16e−λ1(t−t0)
 δ

0
e−λ1τ dτ

=
α9α15α16

λ1
(1 − e−λ1δ)e−λ1(t−t0)

for all t ≥ t0. Thus, there exist positive scalar constants α17 and λ7
such that (10) is verified for all t ≥ t0. �

The following result establishes uniformcomplete observability
of the perturbed pair (Â, Ĉ).

Lemma 1. Suppose that the pair (A, C) of the nominal system (1) is
UCO. Then, the perturbed pair (Â, Ĉ) is UCO.

Proof. The observability Gramian of the pair (A, C), repeated here
for the sake of clarity, is given by

WO(t1, t2) =

 t2

t1
8T(σ , t1)CT(σ )R−1(σ )C(σ )8(σ , t1) dσ .

As the pair (A, C) is assumed to be UCO, it follows that there exist
positive scalar constants δ1 and γ1 such that

γ −1
1 ≤ dTWO(t, t + δ1)d ≤ γ1 (15)

holds for all t ≥ t0 andd ∈ Rn, ∥d∥ = 1. The observability Gramian
for the perturbed pair (Â, Ĉ) follows

ŴO(t1, t2) =

 t2

t1
8̂

T
(σ , t1)ĈT(σ )R−1(σ )Ĉ(σ )8̂(σ , t1) dσ ,

or, using (5) and (9),

ŴO(t1, t2) = WO(t1, t2) + 01(t1, t2) − 02(t1, t2) − 03(t1, t2),

with

01(t1, t2) =

 t2

t1


8T(σ , t1)C̃T(σ )R−1(σ )C̃(σ )8(σ , t1)

+ 8̃
T
(σ , t1)ĈT(σ )R−1(σ )Ĉ(σ )8̃(σ , t1)


dσ ≽ 0,

02(t1, t2) =

 t2

t1


8T(σ , t1)C̃T(σ )R−1(σ )C(σ )8(σ , t1)

+ 8T(σ , t1)CT(σ )R−1(σ )C̃(σ )8(σ , t1)

dσ ,

and

03(t1, t2) =

 t2

t1


8̃

T
(σ , t1)ĈT(σ )R−1(σ )Ĉ(σ )8(σ , t1)

+ 8T(σ , t1)ĈT(σ )R−1(σ )Ĉ(σ )8̃(σ , t1)

dσ .



44 D. Viegas et al. / Systems & Control Letters 89 (2016) 41–46
The norm of 02(t1, t2) satisfies

∥02(t1, t2)∥ =

 t2

t1


8T(σ , t1)C̃T(σ )R−1(σ )C(σ )8(σ , t1)

+ 8T(σ , t1)CT(σ )R−1(σ )C̃(σ )8(σ , t1)

dσ


≤

 t2

t1

8T(σ , t1)C̃T(σ )R−1(σ )C(σ )8(σ , t1)

+ 8T(σ , t1)CT(σ )R−1(σ )C̃(σ )8(σ , t1)
 dσ

≤ 2
 t2

t1
∥8(σ , t1)∥2

∥C̃(σ )∥ ∥C(σ )∥ ∥R−1(σ )∥ dσ .

Then, using the bounds in (2), (4), (6), and (7), it follows that there
is a positive scalar constant α18 such that

∥02(t, t + δ1)∥ ≤ α18e−λ3(t−t0)

for all t ≥ t0, which in turn implies that

dT02(t, t + δ1)d ≤ α18e−λ3(t−t0) (16)

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. Similar steps can be carried
out for 03(t1, t2) using Proposition 1 and the bounds in (2), (4), (6),
and (7), and it follows that there exists a positive scalar constant
α19 such that

dT03(t, t + δ1)d ≤ α19e−λ7(t−t0) (17)

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. Thus, (15), (16), and (17) imply
that

dTŴO(t, t + δ1)d ≥ γ1 − α18e−λ3(t−t0) − α19e−λ7(t−t0)

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. Then, for any 0 < γ3 < γ1,
there exists a t1 ≥ t0 such that

dTŴO(t, t + δ1)d ≥ γ3

for all t ≥ t1 and d ∈ Rn, ∥d∥ = 1. In turn, this implies that there
exists a positive scalar constant δ3 ≥ δ1 such that

dTŴO(t, t + δ3)d ≥ γ3

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. As the perturbed observability
Gramian is a definite integral of bounded functions of time, it also
follows that there is a γ4 > 0 such that

dTŴO(t, t + δ3)d ≤ γ4

for all t ≥ t0 and d ∈ Rn, ∥d∥ = 1. Thus, the perturbed pair (Â, Ĉ)
is UCO. �

The following result establishes uniformcomplete observability
of the perturbed pair (Â, Ĉ).

Lemma 2. Suppose that the pair (A,D) of the nominal system (1) is
UCC. Then, the perturbed pair (Â, D̂) is UCC.

Proof. The proof for this result is very similar to the proof
for Lemma 1, as the same steps can be followed using the
controllability Gramian instead of the observability Gramian. �

These results will be useful to study the convergence of the
perturbed Riccati equation in (8), as they allow to establish bounds
for P̂. To be more specific, if the LTV system (1) is UCO and UCC,
then there exist positive scalar constants δ4, α20, and α21 such that
α−1
20 ≤ ∥P∥ ≤ α20

α−1
21 ≤ ∥P̂∥ ≤ α21

for all t ≥ t0 + δ4, see [13].
4. Stability of the Riccati equation

This section focuses on showing that the solution P̂ of the Riccati
equation in (8) converges to the nominal solution of (3) and thus
that the gain K̂ of the PKF also converges to the nominal Kalman
gain K.

Define the deviation of P̂ from P as

P̃ := P − P̂. (18)

Taking the time derivative of (18) and using (3), (5), and (8) yields

˙̃P = Ṗ −
˙̂P (19)

= AP + PAT
+ DQDT

− PCTR−1CP

− ÂP̂ − P̂ÂT
− D̂QD̂T

+ P̂ĈTR−1ĈP̂

= F(P̃) + G(C̃) + H(Ã) + J(D̃),

in which

F(P̃) = (A − PCTR−1C)P̃ + P̃(A − PCTR−1C)T + P̃CTR−1CP̃,

G(C̃) = P̂

C̃TR−1C̃ − C̃TR−1C − CTR−1C̃


P̂,

H(Ã) = ÃP̂ + P̂ÃT,

and

J(D̃) = D̃QDT
+ DQD̃T

− D̃QD̃T.

The following result establishes a sufficient condition for the
exponential convergence of the dynamics of (18).

Lemma 3. Suppose that the LTV system (1) is UCO and UCC and
verifies the bounds in (2) and (6). Then, P̃ converges exponentially fast
to the origin, in the sense that, for any given initial condition P̃(t0),
it is possible to choose positive scalar constants α and λ such that
∥P̃∥ ≤ αe−λ(t−t0) for all t ≥ t0.

Proof. First, note that when there are no perturbations in Â, Ĉ, and
D̂, the dynamics of P̃ follow

˙̃P = F(P̃), (20)

whose origin is globally exponentially stable (GES), see [14].
Defining
P̃v = vec(P̃)

Fv(P̃) = vec(F(P̃))

Gv(C̃) = vec(G(C̃))
Hv(Ã) = vec(H(Ã))

Jv(D̃) = vec(J(D̃)),

the systems (19) and (20) can be represented respectively as

˙̃Pv = Fv(P̃) + Gv(C̃) + Hv(Ã) + Jv(D̃) (21)

and

˙̃Pv = Fv(P̃). (22)

Then, as the origin of (22) is GES, there exist positive constants c1,
c2, c3, and c4 and a Lyapunov function V : [0, ∞[×Rn2

→ R that
satisfy
c1∥P̃v∥

2
≤ V (t, P̃v) ≤ c2∥P̃v∥

2

∂V
∂t

+
∂V

∂P̃v

Fv(P̃) ≤ −c3∥P̃v∥
2 ∂V

∂P̃v

 ≤ c4∥P̃v∥
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for all t ≥ t0, see [11, Theorem 4.14]. On the other hand, there
exists a t1 ≥ t0 forwhich the termG(C̃) can be bounded as follows:

∥G(C̃)∥ =

P̂ 
C̃TR−1C̃ − C̃TR−1C − CTR−1C̃


P̂


≤ ∥P̂∥
2
∥C̃TR−1C̃ − C̃TR−1C − CTR−1C̃∥

≤ α2
21


∥C̃TR−1C̃∥ + 2∥C̃TR−1C∥


≤ α7α

2
21∥C̃∥

2
+ 2α5α7α

2
21∥C̃∥ (23)

for all t ≥ t1. Now, define C̃v := vec(C̃) and note that
∥C̃∥ ≤ ∥C̃∥F = ∥C̃v∥

∥Gv(C̃)∥ = ∥G(C̃)∥F ≤
√
n∥G(C̃)∥.

(24)

Using (24) in (23), it is clear that there exist positive scalar
constants α22 and α23 such that

∥Gv(C̃)∥ ≤ α22∥C̃v∥ + α23∥C̃v∥
2

for all t ≥ t1. Defining Ãv := vec(Ã) and proceeding in the same
manner, it is straightforward to show that there exists a positive
scalar constant α24 such that

∥Hv(Ã)∥ ≤ α24∥Ãv∥

for all t ≥ t1. Finally, defining D̃v := vec(D̃) it can be shown that
there exist positive scalar constants α25 and α26 such that

∥Jv(D̃)∥ ≤ α25∥D̃v∥ + α26∥D̃v∥
2

for all t ≥ t0. Then, the derivative of V along the trajectories of (21)
follows

∂V
∂t

+
∂V

∂P̃v


Fv(P̃) + Gv(C̃) + Hv(Ã) + Jv(D̃)


≤ −c3∥P̃v∥

2
+ c4∥P̃v∥


α22∥C̃v∥ + α23∥C̃v∥

2

+ α24∥Ãv∥ + α25∥D̃v∥ + α26∥D̃v∥
2


.

Choosing any θ such that 0 < θ < 1, it is straightforward to show
that

∂V
∂t

+
∂V

∂P̃v


Fv(P̃) + Gv(C̃) + Hv(Ã) + Jv(D̃)


≤ −c3(1 − θ)∥P̃v∥

2

for all

∥P̃v∥ ≥
c4
c3θ


α22∥C̃v∥ + α23∥C̃v∥

2
+ α24∥Ãv∥

+ α25∥D̃v∥ + α26∥D̃v∥
2


,

and thus (21) is input-to-state stable (ISS) with Ãv , C̃v , and D̃v as
inputs on the interval [t1, +∞[ [11, Theorem 4.19]. As (6) implies
that Ãv , C̃v , and D̃v decay exponentially with time, it follows that
P̃ also does decay exponentially fast for t ≥ t1 [11, Lemma 4.7].
Then, since neitherP nor P̂ (and, consequently, P̃) growunbounded
between t0 and t1, see [15], it follows that there exist positive scalar
constants α and λ such that ∥P̃∥ ≤ αe−λ(t−t0), which concludes the
proof. �

5. Stability of the perturbed Kalman filter

Following the previous results, it is now possible to show
that the PKF (8) is indeed a suitable state observer for the LTV
system (1).
Theorem 1. Suppose that the LTV system (1) is UCO and UCC and
that the bounds in (2), (4), and (6) hold for all t ≥ t0 Then, the
PKF (8) is a state observer for the LTV system (1) with exponentially
convergent error dynamics in the sense that, for any given initial
condition x̃(t0) := x(t0)− x̂(t0), it is possible to choose positive scalar
constants α and λ such that the estimation error x̃ := x − x̂ follows
∥x̃∥ ≤ αe−λ(t−t0) for all t ≥ t0.

Proof. First, note that as a consequence of Lemma 3 the deviation
of K̂ from the nominal Kalman gain K, defined as K̃ := K − K̂,
converges exponentially fast to zero. Using (1), (5), and (8), it can
be shown that the time derivative of x̃ follows

˙̃x = f (x̃) + f̃ (x̃, C̃, K̃) + g(ũ, ỹ, Ã, B̃, C̃, K̃), (25)

in which

f (x̃) = (A − KC) x̃

are the error dynamics of the Kalman filter (3),

f̃ (x̃, Ã, C̃, K̃) =


KC̃ + K̃Ĉ − Ã


x̃,

and

g(ũ, ỹ, Ã, B̃, C̃, K̃) =


K̃C̃ − KC̃ + Ã


x + Bũ + B̃û + K̂ỹ. (26)

Now, consider the system

˙̃x = f (x̃) + f̃ (x̃, Ã, C̃, K̃). (27)

This system can be regarded as a perturbation of the linear system
˙̃x = f (x̃) which, under the assumptions of the theorem, is GES.
Then, since the terms that multiply x̃ in f̃ (x̃, Ã, C̃, K̃) converge ex-
ponentially fast to zero, there exists a t1 ≥ t0 such that the system
(27) is also GES on the interval [t1, +∞[, see [11, Lemma 9.1].

Taking the norm of both sides of (26) and using the bounds in
(2) and (6), it follows that there exist positive scalar constants α27,
α28, α29, α30, α31, and α32 such that

∥g(ũ, ỹ, Ã, B̃, C̃, K̃)∥ ≤ α27∥K̃∥ ∥C̃∥ + α28∥Ã∥

+ α29∥B̃∥ + α30∥C̃∥ + α31∥ũ∥ + α32∥ỹ∥

for all t ≥ t0. Then, using the same method that was used in the
proof of Lemma 3, it is straightforward to show that, for all t ≥ t1,
the system (25) is ISS with ũ, ỹ, Ã, B̃, C̃, and K̃ as inputs. Then, since
all those quantities converge exponentially fast to zero, the error
dynamics (25) also converge exponentially fast to the origin for
t ≥ t1 [11, Lemma 4.7]. Finally, as under the assumptions of the
theorem neither x nor x̂ can grow unbounded between t0 and t1, it
follows that there exist positive scalar constants α and λ such that
∥x̃∥ ≤ αe−λ(t−t0) for all t ≥ t0. �

6. Conclusions

This paper detailed the stability analysis of the continuous-time
Kalman filter dynamics for linear time-varying systems subject
to exponentially decaying perturbations. It was assumed that
estimates of the input, output, and matrices of the system are
available, but subject to unknown perturbations which decay
exponentially with time. It was shown that if the nominal system
is uniformly completely observable and uniformly completely
controllable and if the state, input, and matrices of the system
verify the bounds specified in Section 2, then the Kalman filter
built using the perturbed estimates is a suitable state observer
for the nominal system, featuring exponentially convergent error
dynamics.
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