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A time differences of arrival-based homing strategy for autonomous
underwater vehicles
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SUMMARY

A new sensor-based homing integrated guidance and control law is presented to drive an underactuated autonomous underwater
vehicle (AUV) toward a fixed target, in 3-D, using the information provided by an ultra-short baseline (USBL) positioning
system. The guidance and control law is first derived at a kinematic level, expressed on the space of the time differences
of arrival (TDOAs), as directly measured by the USBL sensor, and assuming the plane wave approximation. Afterwards,
the control law is extended for the dynamics of an underactuated AUV resorting to backstepping techniques. The proposed
Lyapunov-based control law yields almost global asymptotic stability (AGAS) in the absence of external disturbances and
is further extended, keeping the same properties, to the case where known ocean currents affect the motion of the vehicle.
Simulations are presented and discussed that illustrate the performance and behavior of the overall closed-loop system in
the presence of realistic sensor measurements and actuator saturation. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Advances in sensing devices, materials, and computa-
tional power capabilities have provided the means to
develop sophisticated underwater vehicles which nowa-
days display the capability to perform complex tasks
in challenging and uncertain operation scenarios. In
the last years several sophisticated autonomous under-
water vehicles (AUVs) and remotely operated vehicles
(ROVs) have been developed, endowing the scientific
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community with advanced research tools supported in
on-board complex mission and vehicle control systems,
see [1–3]. This paper presents the design and perfor-
mance evaluation of a sensor-based integrated guidance
and control law to drive an underactuated AUV toward
a fixed target.

The topics of navigation, guidance, and control
of underwater vehicles have been subject of intense
research in the past decades, presenting numerous
challenges that range from technical limitations, arising
due to the particular nature of the surrounding oceanic
environment, to theoretical problems, which exist even
for fully actuated underwater vehicles. Indeed, while
the control of fully actuated systems is generally fairly
well understood, as evidenced by the large body of
publications, see [4–6] and the references therein, for
underwater vehicles there are still interesting questions
springing from, e.g. the lack of coupled experimentally
validated dynamic models or the inability to readily
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Figure 1. Mission scenario.

identify plant parameters, which exhibit, in general,
strong nonlinear behaviors.

To tackle the problem of stabilization of an under-
actuated vehicle a variety of solutions have been
proposed in the literature, e.g. [7–10]. In [11] a solu-
tion to the problem of following a straight line is
presented and in [12] a way-point tracking controller
for an underactuated AUV is introduced. A position
and attitude tracking controller was proposed in [13],
whereas trajectory tracking solutions for underactuated
underwater vehicles were presented in, e.g. [14, 15].
The problem of path-following has also received much
attention, see, e.g. [16, 17]. It turns out that all the
aforementioned references share a common approach:
the vehicle position is computed in the inertial coor-
dinate frame and the control laws are developed in
the body frame. Therefore, the computation of the
linear tracking error vector is heavily affected by
errors in the estimates of the attitude of the vehicle.
Sensor-based control has been a hot topic in the field
of computer vision where the so-called visual servoing
techniques have been subject of intensive research
effort during the last years, see [18, 19] for further
information.

This paper addresses the design of a sensor-based
integrated guidance and control law to drive an under-
actuated AUV to a fixed target, in 3-D. The solution
for this problem, usually denominated as homing in the
literature, is central to drive the vehicle to the vicinity
of a base station or support vessel. This task is crit-
ical to the success of long-term autonomous operation
of AUVs since it allows for the vehicle to approach

a base station or support vessel, which often offer
docking capabilities and permits the AUV to sleep,
recharge its batteries, transfer data, and download a new
mission program. Once the vehicle is close enough to
the base, different strategies are required to safely lock
the AUV in the dock. This last stage, usually denomi-
nated as docking in the literature, may vary significantly
depending on the vehicle itself, the location, and the
type of docking station. It also usually requires extra
aiding sensors, e.g. optical or electromagnetic aiding
sensors, see [20–23] for further details on this subject.

In this paper it is assumed that an acoustic emitter is
installed on a predefined fixed position in the mission
scenario, denominated as target in the sequel, and an
ultra-short baseline (USBL) sensor, composed by an
array of hydrophones, is rigidly mounted on the nose of
the vehicle, as depicted in Figure 1. During the homing
phase the target continuously emits acoustic signals
that are received by the USBL hydrophone array
and the time of arrival measured by each receiver, is
synchronized, detected, and recorded. In the approach
followed, it is assumed, for the sake of simplicity, that
the target is placed sufficiently far from the source to
allow for the successful use of the planar wave approx-
imation. This is valid when the distance between the
source and the USBL array is large when compared
with both the wavelength and the distance between the
USBL receivers, which happens during the homing
stage. A Lyapunov-based guidance and control law is
first derived at a kinematic level, directly expressed
in terms of the time differences of arrival (TDOAs)
obtained from the USBL data. The resulting control
law is then extended for the dynamics of an under-
actuated AUV resorting to backstepping techniques.
Afterwards, this strategy is further extended to the case
where known ocean currents affect the motion of the
vehicle and almost global asymptotic stability (AGAS)
[24] is achieved in both situations. The implementation
of the control laws also requires the linear velocity
of the vehicle, inertial and relative to the water, as
provided by a Doppler velocity log or a Navigation
System, and the vehicle attitude and angular velocity,
measured by an attitude and heading reference system
(AHRS). Preliminary work by the authors can be
found in [25], which was expanded and improved.
An alternative solution, which expressed the error
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kinematics in the form of a quaternion directly obtained
from the TDOAs, is detailed in [26].

The paper is organized as follows. In Section 2, the
homing problem is introduced and the dynamics of
the AUV are briefly described. Section 3 presents the
USBL model, whereas in Section 4 a solution for the
control and guidance problem in the absence of external
perturbations is proposed. This control law is further
extended in Section 5 to the case where ocean currents
affect the motion of the vehicle. Simulation results are
presented and discussed, for both cases, and considering
sensor noise and actuator saturation, in Section 6, and
finally Section 7 summarizes the main conclusions and
results of the paper.

2. PROBLEM STATEMENT

Let {I } be an inertial coordinate frame and {B} the
body-fixed coordinate frame, whose origin is located
at the center of mass of the vehicle (see [27] for a
thorough discussion of the coordinate frame conven-
tions). Consider p=[x, y, z]T as the position of the
origin of {B}, described in {I }, v=[u,v,w]T the linear
velocity of the vehicle relative to {I }, expressed in
body-fixed coordinates, and x=[p,q,r ]T the angular
velocity, also expressed in body-fixed coordinates. The
vehicle linear motion kinematics can be written as

ṗ=Rv (1)

where R is the rotation matrix from {B} to {I } verifying
Ṙ=RS(x) (2)

where S(x) is the skew-symmetric matrix such that
S(x)y=x×y, with × denoting the cross product.

The vehicle dynamic equations of motion can be
written, in a compact form, as [27]

Mv̇ = −S(x)Mv−Dv(v)v−gv(R)+bvuv

Jẋ = −S(v)Mv−S(x)Jx

−Dx(x)x−gx(R)+Bxux

(3)

where M=diag{mu,mv,mw} is a positive-definite
diagonal mass matrix; J=diag{Jxx, Jyy, Jzz} is a
positive-definite inertia matrix; uv=�u is the force

control input that acts along the xB axis; ux=
[�q , �r ]T are the torque control inputs that affect
the rotation of the vehicle about the yB and zB
axes, respectively; Dv(v)=diag{Xu+X |u|u |u|,Yv +
Y|v|v|v|, Zw +Z|w|w|w|} is the positive-definite matrix
of the linear motion drag coefficients; Dx(x)=
diag{Kp+K|p|p|p|,Mq +M|q|q |q|,Nr +N|r |r |r |} is
the positive-definite matrix of the rotational motion
drag coefficients; bv=[1,0,0]T and

Bx=
[
0 1 0

0 0 1

]T

gv(R)=RT[0, 0, W −B]T represents the gravi-
tational and buoyancy effects, W and B, respec-
tively, on the linear motion of the vehicle; gx(R)=
S(rB)RT[0, 0, B]T accounts for the effect of the center
of buoyancy displacement relatively to the center of
mass, rB , on the vehicle rotational motion.

Matrices M, Dv(v), and Dx(x) include the hydro-
dynamic derivatives of the underwater vehicle, which
account for the interaction of the hull of the vehicle
with the surrounding fluid and capture the variation of
the forces and torques experienced by the vehicle. With
a certain abuse of language, the hydrodynamic deriva-
tives can be viewed as resulting from a Taylor series
expansion of the forces and torques about the nominal
operating condition, see [28] for a detailed introduction
of these coefficients, which were rearranged in matrix
form in [27].

Assume that the vehicle is neutrally buoyant, i.e.
W = B and therefore gv(R)=0. Further consider that
the added masses associated with the sway and heave
motions are similar, that is mv �mw, which constitutes
a reasonable assumption for most underwater vehicles
and is simply a question of plane of symmetry in the
geometry of the hull of the vehicle.

The homing problem considered in this paper can be
stated as follows:

Problem Statement: Consider an underactuated AUV
with kinematics and dynamics given by (1) and (3),
respectively. Assume that there is a target placed in a
fixed position, in 3-D, that emits continuously a well-
known acoustic signal. Design a sensor-based inte-
grated guidance and control law to drive the vehicle
toward the target using the time differences of arrival
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of the acoustic signal as measured by an USBL sensor
installed on the AUV.

3. USBL MODEL

During the homing approach phase the vehicle is far
away from the acoustic emitter, that is, the distance
from the vehicle to the target is much larger than
the distance between any pair of receivers. There-
fore, the plane-wave assumption is valid. Let ri =
[xi , yi , zi ]T∈R3, i=1,2, . . . ,N , denote the positions
of the N acoustic receivers installed on the USBL
sensor and consider a plane-wave traveling along the
opposite direction of the unit vector d=[dx , dy, dz]T,
as shown in Figure 2. Notice that both ri and d are
expressed in the body frame. Let ti be the instant of
time of arrival of the plane-wave at i th receiver and
Vp the velocity of propagation of the sound in water.
Then, assuming that the medium is homogeneous
and neglecting the velocity of the vehicle, which is
a reasonable assumption since ‖v‖�Vp, the time
difference of arrival between receivers i and j satisfies

Vp(ti − t j ) = −[dx (xi −x j )+dy(yi − y j )

+dz(zi −z j )] (4)

Denote by �1= t1− t2, �2= t1− t3, . . . ,�M = tN−1−
tN all the possible combinations of differences of
times of arrival between pairs of receivers, and let
D=[�1,�2, . . . ,�M ]T denote the corresponding vector

xB

yB

zB

d

PlaneWave

direction of propagation

ri rj

Figure 2. Plane wave and the USBL system.

of TDOAs. Define also

rx = [x1−x2, x1−x3, . . . , xN−1−xN ]T

ry = [y1− y2, y1− y3, . . . , yN−1− yN ]T

rz = [z1−z2, z1−z3, . . . , zN−1−zN ]T
and HR ∈RM×3 as

HR =[rx , ry, rz]
Then, the generalization of (4) for all TDOAs yields

D=− 1

Vp
HRd (5)

To compute the time derivative of (5) recall that the
direction of propagation d satisfies

d=RT Id (6)

where Id is the direction of propagation expressed in
the inertial frame {I }. Substituting (6) in (5) and taking
its time derivative gives

Ḋ=− 1

Vp
HR

d

dt
(RT Id) (7)

Owing to the plane-wave assumption, that assumes the
target at infinity, the direction of propagation expressed
in the inertial frame is constant. Therefore, (7) can be
simplified to give

Ḋ=− 1

Vp
HRṘT Id (8)

Substituting (2) in (8) and simplifying yields

Ḋ=− 1

Vp
HRST(x)RT Id

Recalling that S(x) is a skew-symmetric matrix and
using (6) gives

Ḋ= 1

Vp
HRS(x)d (9)

To write the time derivative of the TDOA vector D
in closed form, define HQ ∈R3×3 as

HQ = 1

Vp
HT

RHR (10)
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which is assumed to be nonsingular. This turns out to
be a weak hypothesis as it is always true if, at least,
4 receivers are mounted in concoplanar positions. In
those conditions HR has maximum rank and so does
HQ . Then,

d=−H−1
Q HT

RD (11)

Substituting (11) in (9) gives

Ḋ=− 1

Vp
HRS(x)H−1

Q HT
RD (12)

which corresponds to a closed form for the dynamics
of D.

4. CONTROLLER DESIGN

In this section an integrated nonlinear closed-loop guid-
ance and control law is derived for the homing problem
stated earlier in Section 2. Assuming that there are
no ocean currents, the idea behind the control strategy
proposed here is to steer the vehicle directly toward the
emitter. The synthesis of the guidance and control law
resorts extensively to Lyapunov’s direct method and
backstepping techniques.

To steer the vehicle toward the target, consider first
the error variable

z1 :=D+ 1

Vp
rx (13)

As z1 converges to zero, the x-axis of the vehicle aligns
itself in the direction of the target. However, this condi-
tion is not sufficient to ensure the desired behavior of
the vehicle during the homing phase as it can still move
away from the target. In order to avoid that, define a
second scalar error variable

z2 :=[1, 0, 0]v−Vd

where Vd is a positive constant that corresponds to
the desired velocity during the homing stage. When z2
converges to zero, the surge velocity u converges to
the desired velocity Vd . Since the vehicle is correctly
aligned if z1 is driven to zero, one could think that
ensuring that both z1 and z2 converge to zero, the
vehicle would always approach the target. However,

this is not true as the sway and heave velocities are left
free. Despite that, it will be shown that, with the control
law based upon these two error variables, the sway and
heave components of the velocity vector converge to
zero, which completes a set of sufficient conditions that
solves the problem at hand.

To synthesize the control law start by defining the
Lyapunov functions

V1= 1
2z

T
1HLz1 (14)

where

HL =(H−1
Q HT

R)T(H−1
Q HT

R) (15)

and

V2= 1
2 z

2
2 (16)

Computing the time derivative of (16) one obtains

V̇2= z2 ż2= z2[1, 0, 0]v̇ (17)

Replacing the dynamics of v given by (3) in (17) yields

V̇2 = z2[1, 0, 0]M−1bvuv

−z2([1, 0, 0]M−1[S(x)Mv+Dv(v)v])
Choosing

uv= [1, 0, 0]M−1[S(x)Mv+Dv(v)v]−k2z2
[1, 0, 0]M−1bv

(18)

where k2>0 is a control gain, the time derivative of
(16) becomes

V̇2=−k2z
2
2

which yields global asymptotic stability of z2. Further-
more, the convergence is exponentially fast.

Using the fact that the matrix HL is symmetric, the
time derivative of (14) is given by

V̇1=zT1HL ż1=zT1HL Ḋ (19)

Substituting (12), (13), and (15) in (19) gives

V̇1 = − 1

Vp

(
D+ 1

Vp
rx

)T

(H−1
Q HT

R)T

H−1
Q HT

RHRS(x)H−1
Q HT

RD (20)
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Using (10) in (20) gives

V̇1 = −(H−1
Q HT

RD)TS(x)H−1
Q HT

RD−
(
H−1

Q HT
R
1

Vp
rx

)T

×S(x)H−1
Q HT

RD (21)

Since S(x) is a skew-symmetric matrix, the first term
in (21) is zero. On the other hand, it is easy to see,
from (5) and (11), that

−H−1
Q HT

R
1

Vp
rx =−[1 0 0]T

Therefore, it is possible to rewrite (21) as

V̇1=−[1 0 0]TS(x)H−1
Q HT

RD

Finally, using the property

[1 0 0]TS(x)=−xTS([1 0 0]T),

the time derivative V̇1 is given by

V̇1=xTS([1, 0, 0]T)H−1
Q HT

RD

Following the standard backstepping technique it is now
possible to regard x as a virtual control input that can
be used to make V̇1�0. This is achieved by setting
BT
xx equal to BT

xxd , where

xd :=−K1S([1, 0, 0]T)H−1
Q HT

RD

and K1=diag{0,k12,k13}, k12>0, k13>0 is a control
gain matrix. To accomplish this define a third error
variable

z3=BT
x(x−xd)

and the augmented Lyapunov function

V3=V1+ 1
2z

T
3z3= 1

2z
T
1HLz1+ 1

2z
T
3z3

The time derivative of V3 can now be written as

V̇3 = −[S([1 0 0]T)H−1
Q HT

RD]T

×K1[S([1 0 0]T)H−1
Q HT

RD]
−z3TBT

xJ
−1[S(v)Mv+S(x)Jx

+Dx(x)x+gx(R)]

−zT3B
T
x(ẋd −S([1 0 0]T)H−1

Q HT
RD)

+z3TBT
xJ

−1Bxux

Setting

ux = (BT
xJ

−1Bx)−1[BT
x(J−1[S(v)Mv+S(x)Jx

+Dx(x)x+gx(R)]+ẋd
−S([1 0 0]T)H−1

Q HT
RD)−K3z3] (22)

where K3 is a positive-definite control gain matrix, one
obtains V̇3�0, with ẋd given by

ẋd =K1S([1 0 0]T)S(x)H−1
Q HT

RD

The following theorem states the main result of this
section.

Theorem 1
Consider a vehicle with kinematics and dynamics given
by Equations (1) and (3), respectively, moving in the
absence of ocean currents. Then, with the control law
(18) and (22), the error variable z2 converges glob-
ally asymptotically to zero and almost global asymp-
totic stability is warranted for the error variables z1
and z3. Furthermore, the sway, heave, and roll velocities
converge to zero, solving the homing problem stated in
Section 2.

Proof
Before going into the details a sketch of the proof is first
offered. The convergence of the error variables in z1, z2,
and z3 is a straightforward application of Lyapunov’s
second method. The analysis of the vehicle equations
of motion, when z1, z2, and z3 converge to zero, allows
to conclude the convergence to zero of the sway, heave,
and roll velocities.

The Lyapunov function V2 is, by construction,
continuous, radially unbounded, and positive definite.
With the control law (18), the time derivative V̇2 results
negative definite. Therefore, the origin z2=0 is a global
asymptotic stable equilibrium point. Furthermore, since

V̇2=−k2z
2
2=−2k2V2

z2 converges exponentially fast to zero.
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The function V3 is, also by construction, continuous,
radially unbounded, and positive definite for feasible
values of z1. This can be easily shown as expanding V3
gives

V3 = 1
2 (d−[1, 0, 0]T)T(d−[1, 0, 0]T)

+ 1
2z

T
3z3>0 ∀d�=[1, 0, 0]T∧z3 �=0⇔z1 �=0∧z3 �=0

Moreover, with the control law (22), the time derivative
V̇3 results in

V̇3 = −[S([1 0 0]T)H−1
Q HT

RD]TK1[S([1 0 0]T)

×H−1
Q HT

RD]−zT3K3z3

which is negative semi-definite. The derivative V̇3
has two zeros, one coincident with the origin,
(z1=0,z3=0), to which corresponds

D=− 1

Vp
rx

and the other one at (z1=(2/Vp)rx ,z3=0), to which
corresponds

D= 1

Vp
rx

that is,

V̇3=0⇔(z1=0,z3=0)∨
(
z1= 2

Vp
rx ,z3=0

)

The equilibrium point that does not coincide with the
origin corresponds to the situation where the vehicle is
aligned toward the opposite direction of the target. It
is now important to prove that this equilibrium point is
an unstable equilibrium point. To show that, consider
the function

Vi = 1
2z

T
i HLzi − 1

2z
T
3z3 (23)

where

zi =D− 1

Vp
rx

The time derivative of (23) can be written as

V̇i = [S([1 0 0]T)H−1
Q HT

RD]K1[S([1 0 0]T)

×H−1
Q HT

RD]+zT3K3z3

Since Vi (0)=0, Vi (zi ,z3) can assume strictly positive
values arbitrarily close to the origin, and V̇i is positive
definite in a neighborhood of the origin, then the origin
of Vi is unstable ([29], Theorem 4.4). Therefore, the
only stable equilibrium point of V3 is the origin (0,0).
Thus, almost global asymptotic convergence of the error
variables (z1,z3) to the origin is achieved.

To complete the stability analysis all that is left to
do is to show that the sway, heave, and roll velocities
converge to zero. The dynamics of the sway and heave
velocities can be written as

[
v̇

ẇ

]
=

⎡
⎢⎢⎣

−Yv +Y|v|v|v|
mv

mw

mv

p

−mv

mw

p − Zw +Z|w|w|w|
mw

⎤
⎥⎥⎦

[
v

w

]

+
⎡
⎢⎣−mu

mv

ur

mu

mw

uq

⎤
⎥⎦

From the definition of the desired angular velocity
xd , when z1 converges to zero, so does xd . On the
other hand, when z3 converges to zero, the pitch and
yaw components of the angular velocity converge to
the corresponding components of the desired angular
velocity. Therefore, taking the limit of the pitch and
yaw velocities when z=(z1, z2,z3) converges to zero
yields

lim
z→0

[
q

r

]
=0

On the other hand, u converges to the desired
velocity Vd .

Therefore, the dynamics of the sway and heave
velocities can be written as the linear time-varying
system (LTVS) driven by a vanishing disturbance ud(t)

[
v̇

ẇ

]
=A(t)

[
v

w

]
+ud(t) (24)
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where

A=

⎡
⎢⎢⎣

−Yv +Y|v|v|v|
mv

mw

mv

p

−mv

mw

p − Zw +Z|w|w|w|
mw

⎤
⎥⎥⎦

Let

E(t)= 1
2 [A(t)+AT(t)].

Notice that, using the assumption mv =mw, E(t)
is a negative definite diagonal matrix. Consider the
Lyapunov-like function

Vl = 1
2z

T
l zl

where

zl =
[

v

w

]

It is straightforward to show that

V̇l = zTl E(t)zl +zTl ud

� −Kl‖zl‖2+‖zl‖‖ud‖
where Kl>0 corresponds to the absolute value of an
upper bound for the maximum eigenvalue of E(t) for
t>t0. Let 0<�<1. Then,

V̇l � −(1−�)Kl‖zl‖2−�Kl‖zl‖2+‖zl‖‖ud‖

� −(1−�)Kl‖zl‖2−�Kl‖zl‖
(

‖zl‖− 1

�Kl
‖ud‖

)

� −(1−�)Kl‖zl‖2 ∀‖zl‖� 1

�Kl
‖ud‖

Therefore (24) is input-to-state stable (ISS) with ud as
input (see [30]). Since ud converges to zero, it follows
that so do the sway and heave velocities.

Finally, although the dynamic equations of the roll
velocity are cumbersome, it is easy to see, from (3),
that they are similar to the equations of a second-order
underdamped pendulum [31] driven by a vanishing
torque, as the sway, heave, pitch, and yaw velocities

converge to zero. Indeed, the dynamics of the roll may
be written as

ṗ(t) = f (t, p(t),u(t)),

f (t, p(t),u(t)) = −g1(t)sin

(
�0+

∫ t

t0
p(�)d�

)

−g2(t)p(t)+u(t)

where g1(t) and g2(t) are strictly positive bounded
functions and u(t) accounts for the effect of the
remaining velocities on the dynamics of p(t) and
converges to zero. The first function, g1(t), accounts
for the restoring buoyancy torque, while g2(t)=
Kp+K|p|p|p| represents the drag torque. Therefore, it
is easy to show that

−p1 sin

(
�0+

∫ t

t0
p(�)d�

)
− p2 p(t)−Um

� f (t, p(t),u(t))�− p3 sin

(
�0+

∫ t

t0
p(�)d�

)

−p4 p(t)+UM (25)

for all time t>t∗, where �0, p1, p2, p3, p4, Um , and
UM are positive constants. The left and right side of
(25) correspond to the velocity dynamics of an under-
damped pendulum driven by a constant torque. Since
u(t) converges to zero, it is possible to choose t∗ such
thatUm andUM are small enough so that the velocity of
these underdamped pendulums converges to zero [31].
Therefore, from (25), it follows that the roll velocity
converges to zero. �

5. CONTROL IN THE PRESENCE OF OCEAN
CURRENTS

In this section the results from the previous sections are
generalized for the case where known ocean currents
are present. Consider that the vehicle is moving with
water relative velocity vr =[ur , vr , wr ]T, expressed
in the body-fixed coordinate frame, as measured by a
Doppler Velocity Log, and that the water is also moving
with constant velocity vc relatively to the inertial frame,
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also expressed in body-fixed coordinates. Then, the
dynamics of the vehicle can be rewritten as

Mv̇r = −S(x)Mvr −Dvr (vr )vr +bvuv

Jẋ = −S(vr )Mvr −S(x)Jx−Dx(x)x

−gx(R)+Bxux

(26)

and the velocity of the vehicle relative to the iner-
tial frame, expressed in body-fixed coordinates, is
v=vr+vc.

Under these conditions it is possible to conclude
that the guidance and control strategy synthesized in
Section 4 does not solve the current homing problem,
as the new control objective is to align the velocity of
the vehicle relatively to the inertial frame toward the
target instead of the x-axis of the vehicle. Consider the
vehicle reference relative velocity vR given by

vR :=[Vd , 0, 0]T

that corresponds to a desired velocity relative to {I }
and expressed in {B} of

vd =vR+vc

The vehicle is moving toward the target when the
velocity vector v is aligned with the direction of the
target, which corresponds to a desired TDOA vector
given by

Dd =− 1

Vp
HRdd

where

dd = vR+vc
‖vR+vc‖

Obviously the previous statement is only valid if Vd +
Vc cos(�c)>0, where Vc cos(�c) represents the projec-
tion of the current on the vehicle’s x-axis. Otherwise,
it would be impossible for the vehicle to approach the
target as the surge vehicle velocity is lower than the
projection of the current velocity.

To solve the homing problem in the presence of
currents consider the error variables

z1 :=D+ 1

Vp
HRdd (27)

and

z2 :=[1, 0, 0]vr −Vd

The convergence of the error variable z2 to zero can
be achieved following a similar procedure as the one
presented in Section 4. Defining the Lyapunov function

V2= 1
2 z

2
2

it is straightforward to show that setting

uv= [1, 0, 0]M−1[S(x)Mvr+Dvr (vr )vr ]−k2z2
[1, 0, 0]M−1bv

(28)

the time derivative of V2 becomes V̇2=−k2z22. There-
fore, z2 converges exponentially fast to zero.

To drive z1 to zero, consider the same Lyapunov
function as in Section 4,

V1= 1
2z

T
1HLz1

Using the fact that HL is symmetric the time derivative
of V1 is given by

V̇1=zT1HL ż1 (29)

Since the velocity of the fluid expressed in the inertial
coordinate frame is constant, the time derivative of vc
is v̇c=−S(x)vc. On the other hand, vR is a constant
vector. Therefore, the time derivative of dd reads as

ḋd = − 1

‖vR+vc‖S(x)vc−
d

dt
‖vR+vc‖

‖vR+vc‖2 (vR+vc)

= − 1

‖vR+vc‖S(x)vc

+ (vR+vc)TS(x)vc
‖vR+vc‖2 dd (30)

Since S(x) is a skew-symmetric matrix, and from the
definition of dd , it is possible to rewrite (30) as

ḋd = −S(x)dd + vTRS(x)vc
‖vR+vc‖2dd

+ 1

‖vR+vc‖S(x)vR (31)
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From (12) and (31), it is straightforward to conclude
that the time derivative of z1 can be written as

ż1 = − 1

Vp
HR

[
S(x)H−1

Q HT
RD+S(x)dd

− vTRS(x)vc
‖vR+vc‖2dd − 1

‖vR+vc‖S(x)vR

]
(32)

Substituting (15), (27), and (32) in (29) gives

V̇1 = −
(
D+ 1

Vp
HRdd

)T

(H−1
Q HT

R)T

×H−1
Q HT

R
1

Vp
HRS(x)[H−1

Q HT
RD+dd ]

+zT1 (H−1
Q HT

R)TH−1
Q HT

R
1

Vp
HR

×
[
vTRS(x)vc
‖vR+vc‖2dd+

1

‖vR+vc‖S(x)vR

]
(33)

Substituting (10) in (33) gives

V̇1 = −
(
H−1

Q HT
RD+ 1

Vp
H−1

Q HT
RHRdd

)T

×S(x)[H−1
Q HT

RD+dd ]+zT1 (H−1
Q HT

R)T

×
[
vTRS(x)vc
‖vR+vc‖2dd + 1

‖vR+vc‖S(x)vR

]

= −(H−1
Q HT

RD+dd)TS(x)[H−1
Q HT

RD+dd ]

+zT1 (H−1
Q HT

R)T

[
vTRS(x)vc
‖vR+vc‖2dd

+ 1

‖vR+vc‖S(x)vR

]
(34)

Since S(x) is skew-symmetric, it is possible to simplify
(34), as given by

V̇1 = (H−1
Q HT

Rz1)
T

×
[
vTRS(x)vc
‖vR+vc‖2dd + 1

‖vR+vc‖S(x)vR

]
(35)

Finally, rearranging the terms of (35), the time deriva-
tive of V1 is given by

V̇1= Vd
‖vR+vc‖x

TS([1 0 0]T)xc

where

xc=H−1
Q HT

Rz1− 1

‖vR+vc‖
[
(H−1

Q HT
Rz1)

Tdd
]
vc

Just like in Section 4, it is now possible to regard
x as a virtual control input that one can use to make
V̇1�0. This is achieved by setting BT

xx equal to BT
xxd ,

with

xd :=−K1S([1, 0, 0]T)xc

whereK1=diag{0,k12,k13}, k12>0, k13>0, is a control
gain matrix. To accomplish this, consider a third error
variable defined as

z3=BT
x(x−xd)

and the augmented Lyapunov function

V3=V1+ 1
2z

T
3z3= 1

2z
T
1HLz1+ 1

2z
T
3z3

The time derivative of V3 can be written as

V̇3 = − Vd
‖vR+vc‖[S([1, 0, 0]T)xc]T

×K1S([1, 0, 0])Txc
−zT3B

T
x(J−1[S(v)Mv+S(x)Jx

+Dx(x)x+gx(R)])

+zT3B
T
x

(
−ẋd + Vd

‖vR+vc‖S([1, 0, 0]T)xc

)

+zT3B
T
xJ

−1Bxux

For the sake of simplicity the derivative of xd is not
presented here. Now, setting

ux = (BT
xJ

−1Bx)−1

×
[
BT
x

(
J−1[S(v)Mv+S(x)Jx+Dx(x)x
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+gx(R)]+ẋd − Vd
‖vR+vc‖S([1, 0, 0]T)xc

)

−K3z3

]
(36)

where K3∈R2×2 is a positive-definite control gain
matrix, V̇3 becomes

V̇3 = − Vd
‖vR+vc‖[S([1, 0, 0]T)xc]T

×K1[S([1, 0, 0]T)xc]−zT3K3z3 (37)

which is negative semi-definite.
The following theorem is the main result of this

section.

Theorem 2
Consider a vehicle with kinematics and dynamics given
by Equations (1) and (26), respectively, moving in the
presence of ocean currents. Then, with the control law
(28) and (36), the error variable z2 converges globally
asymptotically to zero and almost global asymptotic
stability is warranted for the error variables in z1 and
z3. Furthermore, the sway, heave, and roll velocities
converge to zero, solving the homing problem stated in
Section 2 in the presence of constant ocean currents.

Proof
The proof of convergence of the error variables z1,
z2, and z3 is similar to the one presented in Theorem
1. When z1, z2, and z3 converge to zero so do the
heave and sway velocities. Using similar arguments as
in Theorem 1, the resulting roll motion converges to
zero, which completes a set of sufficient conditions that
ensures that the proposed control law solves the homing
problem.

The convergence analysis of the error variable z2
is the same as the one presented in Theorem 1 and
therefore it is omitted.

The Lyapunov function V3 is, by construction,
continuous, radially unbounded, and positive definite
for feasible values of z1. It can be easily shown that
V3 satisfies

V3 = 1
2 (d−dTd )T(d−dTd )+ 1

2z
T
3z3

>0∀d�=dTd∧z3 �=0⇔z1 �=0∧z3 �=0

Moreover, using the control law (36), its time deriva-
tive is given by (37), which is negative semi-definite.
In order to proceed the solution of V̇3=0 must be
computed. Recalling that K1=diag{0,k12,k13}, it is
straightforward to conclude that

V̇3=0⇔xc=[�, 0, 0]T∧z3=0

After a few computations, it can be shown that

V̇3=0⇔(z1=0,z3=0)∨
(
z1= 2

Vp
HRdd ,z3=0

)

from which can be concluded that the time derivative
of V3 has two zeros, one coincident with the origin
and another that corresponds to the situation where the
direction of the final desired velocity dd points in the
opposite direction of the target. However, this last zero
turns out to correspond to an unstable equilibrium point
of V3. To show this, consider the function

Vi = 1
2z

T
i HLzi − 1

2z
T
3z3

where

zi=D− 1

Vp
HRdd

and the time derivative of Vi can be written as

V̇i = Vd
‖vR+vc‖[S([1, 0, 0]T)xc]T

K1S([1, 0, 0]T)xc+zT3K3z3

Since Vi (0)=0, Vi (zi ,z3) assumes strictly positive
values near the origin, and V̇i is positive definite in
a neighborhood of the origin, then the origin of Vi
is unstable ([29], Theorem 4.4). Therefore, the only
stable equilibrium point of V3 is the origin (0,0), thus
achieving almost global asymptotic convergence of the
error variables (z1,z3).

The completion of the proof follows the proof of
Theorem 1. �

6. SIMULATION RESULTS

To illustrate the performance of the proposed integrated
guidance and control laws three computer simulations
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Figure 3. USBL semi-spherical geometry.
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Figure 4. Trajectory described by the vehicle.

are presented in this section. In the simulations a simpli-
fied model of the SIRENE vehicle was used, assuming
the vehicle is directly actuated in force and torque [3].

In the first simulation there are no external distur-
bances. The vehicle starts at position [0, 0, 50]Tm
and the acoustic pinger is located at position
[500, 500, 500]Tm. The control parameters were
chosen as follows: K1=diag(0,10−4,10−4), k2=
0.025 and K3=diag(40,40). The magnitude of the
gains was chosen in simulation by taking into account
the resulting performance of the closed-loop system
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Figure 5. Time evolution of body-fixed velocities of the
vehicle.
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Figure 6. Time evolution of Euler angles and control inputs.

and the actuation signal characteristics. The desired
velocity was set to Vd =2m/s, and a semi-spherical
symmetric USBL sensor, with seventeen receivers, was
placed on the vehicle’s nose, as shown in Figure 3.
Figure 4 shows the trajectory described by the vehicle,
whereas Figure 5 depicts the evolution of the linear and

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1758–1773
DOI: 10.1002/rnc



1770 P. BATISTA, C. SILVESTRE AND P. OLIVEIRA

0

2

4

6

8
x 10–3

||z
1|

| (
s)

–2

–1.5

–1

–0.5

0

z 2
 (

m
/s

)

0 50 100 150 200 250 300
0

0.5

1

1.5

t (s)

0 50 100 150 200 250 300

t (s)

0 50 100 150 200 250 300

t (s)

||z
3|

| (
°/

s)

Figure 7. Time evolution of the error variables ‖z1‖, z2, ‖z3‖.

angular velocities. The evolution of the control inputs,
as well as the roll, pitch, and yaw Euler angles, is
shown in Figure 6. From the figures it can be concluded
that the vehicle is driven toward the target describing
a smooth trajectory. The control inputs are smooth and
the resulting angular and lateral velocities converge to
zero, as expected. For the sake of completeness, the
evolution of the error variables is shown in Figure 7,
more specifically, the evolution of z2 and the norms of
z1 and z3. This plot clearly shows the convergence to
zero of the error variables.

In the second simulation the vehicle has to coun-
teract an ocean current with velocity [0,−1,0]Tm/s,
expressed in the inertial frame. The control param-
eters are the same as in the previous simulation.
Figure 8 shows the trajectory described by the vehicle,
whereas the linear and angular velocities are depicted
in Figure 9. The evolution of the control inputs and
the roll, pitch, and yaw Euler angles is depicted in

Figure 10. As expected the trajectory and control
inputs are smooth and the angular, sway, and heave
velocities also converge to zero.

The third simulation is similar to the second but
realistic sensor noise was considered, as well as actu-
ators saturation. In particular, the measurements of the
vehicle velocity relative to the water were assumed to be
corrupted by zero-mean white Gaussian noise with stan-
dard deviation of 0.01m/s. The AHRS was assumed
to provide the roll, pitch, and yaw Euler angles, also
corrupted by white Gaussian noises with standard devi-
ation of 0.03◦ for the roll and pitch and 1◦ for the yaw,
and the angular velocity corrupted with Gaussian noise
with standard deviation of 0.1◦/s. The noise of the
USBL sensor is also zero-mean white Guassian noise,
and the standard deviation of the error on the TDOAs
was set to 1�s. Figure 11 shows the trajectory described
by the vehicle, whereas the evolution of the linear and
angular velocities is depicted in Figure 12. Finally, the
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Figure 8. Trajectory described by the vehicle in
the presence of currents.
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Figure 9. Time evolution of body-fixed velocities of the
vehicle in the presence of currents.

evolution of the control inputs and roll, pitch, and yaw
Euler angles is depicted in Figure 13. The effect of the
measurement noise is visible in the evolution of the
control signals but it should be noted that the trajectory
described by the vehicle is not significantly affected,
in spite of the presence of realistic measurement noise.
The saturation effect is also noticeable during the first
few seconds of the simulation, when the torques �q and
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Figure 10. Time evolution of Euler angles and control inputs
in the presence of currents.
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Figure 11. Trajectory described by the vehicle in
the presence of ocean currents, sensors noise, and

actuator saturation.

�r saturate. However, the attitude quickly converges to
the desired one and the actuation enters the linear zone.
It should be noticed that, if the thrust force �u is not
enough to achieve the desired steady-state velocity Vd ,
the proposed solution may fail to achieve its purpose
in the presence of strong ocean currents.

While the configuration of the USBL sensor does not
affect the results of the first two simulations since these

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:1758–1773
DOI: 10.1002/rnc



1772 P. BATISTA, C. SILVESTRE AND P. OLIVEIRA

0 100 200 300
0

1

2

t (s)

u r
 (

m
/s

)

0 100 200 300
–0.2
–0.1

0
0.1
0.2

t (s)

v r
 (

m
/s

)

0 100 200 300
–0.04
–0.02

0
0.02
0.04

t (s)

w
r (

m
/s

)

0 100 200 300

–2

0

2

t (s)

p 
(°

/s
)

0 100 200 300
–10
–5
0
5

10

t (s)

q 
(°

/s
)

0 100 200 300
–2

0

2

t (s)

r 
(°

/s
)

Figure 12. Time evolution of body-fixed velocities of the
vehicle in the presence of currents, sensors noise, and actu-

ator saturation.

are carried out in the absence of measurement noise,
it does impact on the results of the third simulation
since the measurements of the USBL are corrupted with
noise. The semi-spherical configuration that was chosen
does not favor any particular direction of the target.
In the absence of strong currents the attitude of the
vehicle quickly converges to a situation where the target
is placed in a direction closer to the direction of the x-
axis of the vehicle. A sharp-pointed configuration of the
hydrophones of the USBL would reduce the effect of
the measurement noise on the overall close-loop system
since this configuration privileges the directions close
to the x-axis of the vehicle. It would, however, increase
the sensitivity of the system if the initial attitude of
the vehicle was such that the target was placed in a
direction far away from the x-axis of the vehicle.

7. CONCLUSIONS

The paper presented a new homing sensor-based
integrated guidance and control law to drive an under-
actuated autonomous underwater vehicle (AUV) to a
fixed target, in 3-D, using the information provided by
an ultra-short baseline (USBL) positioning system. The
guidance and control laws were first derived at a kine-
matic level, expressed as Time Differences Of Arrivals
measured by the USBL sensor, and then extended to
the dynamics of an AUV resorting to backstepping
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Figure 13. Time evolution of Euler angles and control inputs
in the presence of currents, sensors noise, and actuator

saturation.

techniques. Almost global asymptotic stability was
achieved for the guidance and control law in the pres-
ence (and absence) of known ocean currents. Realistic
simulation results, in the presence of sensor noise and
actuators saturation, were presented and discussed.
These simulations show that good performance is
achieved with the proposed solutions.
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