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Abstract—In this paper a new method for a global self-
localization of mobile robots based on a PCA positioning sen-
sor to operate in unstructured environments is proposed and
experimentally validated. Unlike many existing systems that use
RGB signals to capture information from the environment, in this
work a 2D depth sensor is used, allowing the self-localization to
be performed under different illumination conditions. However,
depth sensors provide measurements corrupted with missing data,
due to limitations on the support physic principles exploited
(e.g. light that illuminates surfaces with diffuse reflection or
wave fading), which severely degrades the performance of the
estimation techniques and limits its use. The main goal of this
paper is to present a self-localization system for mobile robots
based on a PCA positioning sensor that relies on corrupted depth
measurements and the corresponding experimental validation.
The proposed method allows for the implementation of a global
self-localization system for indoor environments with higher
accuracy, that provide a Gaussian estimated position error and
work in any illumination conditions.

I. INTRODUCTION

The problem of mobile robots localization with only
onboard sensors in indoors environments has been a great
challenge to researches in mobile robotics, see [8], [3] and the
references therein. To perform this task, usually, mobile robots
are equipped with different types of sensors like compasses,
accelerometers, gyros, cameras, time of flight cameras and en-
coders, providing enough information to the measuring system
to determine its global pose, i.e., position and orientation in a
mapped environment.

Vision is one of the most popular sensors in mobile robotics
to provide measurements to solve the localization, due to the
large amount of information provided on the environment,
extracted from the RGB image [23], [22], [16], [11]. However,
in vision systems remains a general limitation related to
different environment illumination conditions that decreases
the localization systems robustness.

To avoid the above mentioned problem, some localization
systems are based on time-of-flight sensors [17]. The use of
time-to-flight sensors allows to obtain depth information about
the environment and presents a more robust system able to
cope with different light conditions. Moreover, the time-of-
flight cameras allows the capture of depth images, where the
sensor is able to receive a grid with depth information from
all field of view [1]. However, it is expensive to implement
this type of cameras in many mobile robotic platforms.

Recently, the companies PrimeSense and Microsoft devel-
oped a device primarily for video games, called Kinect, that
combines a RGB and a depth camera. Due to its low price and
a straightforward way to be connected with a computer, the

Kinect device became popular in mobile robotics community
creating several different applications of mobile robots [25],
[12], [13].

A very common problem in depth sensors, including the
Kinect depth sensor, is the existence of missing data in
signals, caused by IR beams that are not well reflected, not
returning to the depth sensor receiver. In [19], [20], a method
using the Principal Component Analysis (PCA) methodology
is presented to avoid the problem of missing data in sig-
nals and its performance is compared with other state-of-
the-art algorithms. The PCA [14] is an efficient algorithm
that converts the database into an orthogonal space creating
a database with a high compression ratio, when compared
with the amount of captured data. Moreover, the PCA allows
to develop localization systems that do not depend on any
predefined structure [15], [2], i.e, does not need to detect any
specific features about the environment. In [21], PCA is used
for terrain reference navigation of underwater vehicles.

There are different approaches in installing cameras to
develop localization systems. The most common solution is
to allow placement of cameras to look around to obtain its
position [24], [11], while some mobile robots use a single
camera looking upward [9], [26]. The use of vision from
the ceiling has the advantage that images can be considered
without scaling and are static.

While many localization systems uses the information of
extraction features to the localization of the mobile robot in
a structured environment [18], the use of PCA allows the
creation of a localization system with a great compression ratio
and without the need of extraction features.

In this work, the main purpose is the experimental valida-
tion of [19], [20] avoiding the missing data existing in a ceiling
vision localization system performed by a Kinect depth sensor.

This paper is organized as follows: Section II presents
the mobile robot platform and the motivation for the use of
Kinect in the proposed localization system; in the Section
III, the principal component analysis for signals with missing
data is detailed. For performance analysis purposes, Section
IV presents experimental results of the proposed method,
compared with the results achieved using the classical PCA
algorithm along a straight line (1D localization); in Section V
the results of the proposed method are presented and validated
in a 2D localization approach. Finally, Section VI presents
some conclusions and unveils future work.

II. MODEL PLATFORM

The experimental validation of the positioning system pro-
posed in this paper is performed resorting to a low cost mobile



Fig. 1. Mobile platform equipped with kinect sensor and compass

robotic platform [4], with the configuration of a Dubins car. A
Microsoft Kinect is installed on the platform, pointing upwards
to the ceiling, and a digital compass, located on the extension
arm (robot rear part) to avoid the magnetic interference from
the motors (see Fig. 1)

The Kinect includes a RGB camera with a VGA resolution
(640×480 pixels) using 8 bits and a 2D depth sensor (640×480
pixels) with 11 bits of resolution. The use of this sensor for
mobile robots localization could combine the capture of a RGB
image and a depth map about the environment, obtaining RGB-
D images, as shown in Fig. 2. This image depicts the ceiling
view captured by the Kinect installed onboard the mobile
robot. Note that it is possible to observe both the 3D shape of
the existing technical installations in the ceiling and its color.

The robot moves in an environment indoors in buildings
with some information (e.g. building-related systems such as
HVAC, electrical and security systems, etc.). It is possible to
use the signals captured by a Kinect looking upward (RGB
image, depth map or both) by an algorithm that can provide
mobile robot global position in the environment.

Due to limitations found in image-based mobile robot
localization approaches, regarding illumination changes, and
aiming the development of an efficient self-localization solu-
tion that can work in places with variation on the level of
illumination, only the Kinect depth signal is used, resorting to
an adaptation to the method proposed in [21], [6], [7], [5] to
the problem at hand.

However, as it is possible to observe in Fig. 2, due to
geometry and properties of some objects, several waves are

Fig. 2. RGB-D image of the ceiling view obtained by the kinect installed
onboard the mobile robot

not well reflected and, thus, can not be understood by the
depth sensor receiver. In the case of Kinect, such a problem
results in the appearance of points with null distance (0mm)
inside the data array with the depth values (distances to various
points in the plane), that may lead to erroneous results in
the localization system. In this paper an extension of a PCA-
based position approach will be presented aiming to cope with
the illumination variability problem common to usual vision
systems, in both cases to be validated experimentally.

III. PCA FOR SIGNALS WITH MISSING DATA

PCA [14] is a methodology based on the Karhunen-Loève
(KL) transformation that is often used in applications that need
data compression, like image and voice processing, data min-
ing, exploratory data analysis and pattern recognition. The data
reduction is obtained through the use of a database eigenspace
approximation by the best fit eigenvectors. This technique
makes the PCA an algorithm that has a high compression
ratio and requires reduced computational resources. The PCA
algorithm is used as the mobile robot position sensor in [6],
[7] .

The PCA eigenspace is created based on a set of M
stochastic signals xi ∈ RN , i = 1, . . . ,M acquired by
a Kinect depth sensor installed onboard the mobile robot,
considering an area with N mosaics in two dimensional space,
N = NxNy , where Nx and Ny are the number of mosaics in
x and y axis, respectively.

In the common PCA-based approaches, the eigenspace of
the set of acquired data is characterized by the corresponding
mean mx = 1

M

∑M
i=1 xi. However, usually these signals

obtained by sensors are corrupted with missing data. In the
case of the depth map provided by Kinect, the points where
failures occurred in the depth data reception are marked with
a null distance (0mm). Therefore, the existence of missing
data in signal xi corrupts the PCA mean value computation
creating an orthogonal space with erroneous data.

To solve the position estimation problem when data with
missing data is used, a mean substitution method is applied to
the PCA position sensor, as described below. Thus, a vector
l with length N consisting of boolean values is used to mark
the real and missed data of a signal xi. Then, considering the
jth component of acquired signal xi, the index li(j) is set to
1 if the signal xi(j) is available and it is set to 0 if there is a
missing data.

Hence, to avoid the negative impact of the sensor signals
missing data in PCA-based approaches performance, an ex-
tension to this methodology is proposed in this paper, where
instead of considering all values of the M stochastic signals to
compute the previously mentioned mean value mx, only the
correct data is used and the value corresponding to missing
data is neglected. Thus, the mean data is computed as follows:

mx(j) =
1

c(j)

M∑
i=1

li(j)xi(j), j = 1, ..., N (1)

where c(j) is the number of jth components for a set of M
signals xi ∈ RN , i = 1, . . . ,M without missing data. The
counter c is a vector with length N defined by:

c =

M∑
i=1

li (2)



In order to apply the mean substitution method to the PCA
algorithm, all missing data presented in the acquired database
is replaced by the mean value of the corresponding component,
i.e., if there is a missing data in the jth component of the ith
signal, the missing value xi(j) is replaced with the value of
mx(j). After this substitution, the decomposition of the xi(j)
into the orthogonal space follows the PCA algorithm classical
approach, i.e. v = UT (x−mx). Matrix U = [u1 u2 . . . uN ]
should be composed by the N orthogonal column vectors of
the basis, verifying the eigenvalue problem

Rxxuj = λjuj , j = 1, ..., N, (3)

Assuming that the eigenvalues are ordered, i.e. λ1 ≥ λ2 ≥
. . . ≥ λN , the choice of the first n � N principal compo-
nents leads to stochastic signals approximation given by the
ratio on the covariances associated with the components, i.e.∑

n λn/
∑

N λN .

During the mission, before the projection of the depth
image into the orthogonal space, the mean substitution should
be followed in order to eliminate the problem caused by
missing data in the signal x, i.e, all jth component of the
signal xi should be replaced by the corresponding mean value
mx(j).

The robot position x̂ and ŷ is still obtained by finding on a
given neighborhood δ, the mosaic whose eigenvector is nearest
of the acquired signal decomposed into the orthogonal space:

∀i‖[x̂ ŷ]T − [xi yi]
T ‖2 < δ, rPCA = min

i
‖v − vi‖2; (4)

Given the mosaic i that verifies this condition, its center
coordinates [xi yi]

T is selected as the robot position obtained
by the PCA-based sensor.

Then, the mean substitution approach is used when there
is missing data in the depth signals coming from the Kinect
sensor. Just like during the creation of the PCA eigenspace,
it must be done before the application of the PCA algorithm,
i.e, all jth component of the signal xi should be replaced by
the corresponding mean value mx(j).

IV. EXPERIMENTAL RESULTS ALONG A
STRAIGHT LINE (1D LOCALIZATION)

As concept validation, the proposed self-localization
method is initially developed considering a straight line (1D),
based on the model proposed in [6] and detailed in the
appendix A. Thus, to create the PCA eigenspace, a set of 31
depth images are captured along a straight line with 3 m of
length (sampling ratio of 0.1 m). Considering that the Kinect
depth sensor has a resolution of 640 by 480 points, and with
the purpose of reducing the amount of data stored in PCA
eigenspace, the depth images are compressed with a ratio
of 100 : 1, and transformed into vectors xi ∈ R3072, i =
1, . . . , 31.

The mobile robot follows along a straight line with constant
velocity and the position estimation is obtained using the
model proposed in [6], see Appendix A for details. The
position estimates are based on data obtained from the onboard
sensors and the commands to the actuators, assuming constant
values between sampling times (zero order hold assumption).
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Fig. 3. Results of PCA-based positioning sensor and localization estimates
from Kalman filter

A. Monte Carlo Performance Tests

To assess the mobile robot self-localization methodology
proposed in this paper, a Monte Carlo test composed of
10 experiments as described above is repeated. Images are
captured with a frequency of 5 Hz to be processed by the
PCA-based positioning sensor; Fig. 3 gives the localization
results obtained in one of those experiments. The results show
that the PCA algorithm provides a reasonable approximation
to the real robot localization. However, due to the existence
of missing data, the position obtained by the PCA algorithm
often gives incorrect results.

Analyzing Fig. 3, it is possible to see that the obtained
position often reaches errors greater than 0.1 m (distance at
which the images are acquired to the eigenspace). Figure 4
shows the results of three tests, where it is possible to see
the existence of large perturbations in the results of the PCA-
based position sensor. Thus, the fusion of this position sensor
with by a Kalman filter (KF), detailed in Appendix A, do not

0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Position error of PCA localization

Time [s]

E
rr

o
r 

[m
]

 

 
Test 1
Test 2
Test 3

0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

Position error of PCA localization with a Kalman Filter

Time [s]

E
rr

o
r 

[m
]

 

 
Test 1
Test 2
Test 3
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Fig. 5. Results of PCA-based positioning sensor and localization estimates
from Kalman filter - new method

always achieve results with an acceptable position errors. As it
is possible to see, the position error obtained by the PCA-based
position sensor often exceeds 0.1 m.

B. Monte Carlo Performance Tests with Missing Data Correc-
tion

Following the methodology proposed in Section III, suc-
cessful tests are made to check the enhanced performance of
the localization system in presence of missing data. Thus, to
validate this extension to the PCA-based approach, the same
acquired depth data has been considered.

Comparing Fig. 5 with Fig. 3, it is possible to observe
that the proposed method is able to eliminate the existing
missing data and provide a position value with better accuracy.
Analyzing the results presented in Fig. 6, it is possible to see
that the results now obtained present position errors smaller
than 0.1 m. Once the proposed method is able to compute
the robot position with a better accuracy, its fusion with the
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Fig. 6. Localization errors of tests along a straight line - new method
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Fig. 7. Distribution of the estimated position error for both methods,
considering a PCA grid with 0.1 m

odometry, through a KF, always provides a smoothly results
and near of the real robot localization.

Finally, analyzing the histogram of the position error ob-
tained by the PCA-based position sensor after the 10 performed
tests (see Fig. 7), it is possible to see that the error of both
methods is approximately Gaussian with a mean error close to
zero.

Considering that the data to create the PCA eigenspace are
acquired with 0.1 m of distance, it is possible to observe that all
estimated position errors are less than the sampling distance of
PCA eigenspace, while that considering signals with missing
data, only about 68 % of results (1 standard deviation) are
inside of this distance.

V. CONCEPT VALIDATION IN 2D LOCALIZATION

In order to solve the problem of 2D localization, a new
PCA eigenspace is created with a set of captured depth images
along a grid map with a distance of 0.3m (in x and y axis)
in an area of 5m× 4.5m (Fig. 8). The captured depth images
are cropped with a circular mark allowing the rotation and
comparison of captured depth images when the robot is in the
same position, but with different attitude, during a mission. In
order to compress the amount of data, the depth images are
sampled with a compression ratio of 100 : 1 and converted into

Fig. 8. Grid map and depth image processing to create a PCA eigenspace



a vector that will be added to PCA eigenspace. In [7], [5], the
authors followed a similar approach using a RGB camera but
the method revealed to be sensitive to illumination conditions.

During an experiment, it is possible to estimate the robot
attitude and position, as well as the angular motion speed and
the robot angular slippage, using only the signals obtained by
the onboard sensors (Kinect, compass and encoders), through
a self-localization sensor based in two KF and one PCA
algorithm, with an architecture as detailed in Fig. 9.

Attitude
and

angular slippage

estimator
(KF)

Circular crop

and
image rotation

PCA
Position
estimator

(KF)

LPV

Self-localisation sensor

θlw encoder

θrw encoder

ψcompass

depth image

ω̂slippage

ψ̂robot

ω̂robot

(x, y)PCA

(x̂, ŷ)robot

Fig. 9. Architecture of the self-localization sensor

The following notation is used in Fig. 9:

• ψcompass - orientation angle given by the compass;

• θrwencoder - angle given by the encoder of the right
wheel;

• θlwencoder - angle given by the encoder of the left
wheel;

• (x, y)PCA - coordinates given by the PCA sensor;

• (x̂, ŷ)robot - estimated robot coordinates in the world
referential;

• ω̂robot - estimated angular speed;

• ω̂slippage - estimated differential slippage.

Detailing the architecture of the self-localization sensor
presented in Fig. 9, the KF depicted on the left of the figure
implements the attitude optimal estimator model that is re-
sponsible to estimate the mobile robot attitude and the angular
slippage (see Appendix C). Once all acquired depth images
for the PCA database are taken with the same orientation and
compressed with a circular crop (Fig. 8), then during a mission,
the acquired depth images must be rotated to zero degrees
of attitude, using the compass angle, and compressed with
the same circular crop. The position estimator (on the right
of the figure) implements a Linear Parameter-Varying (LPV)
model as a function of the estimated angular speed in a KF,
fusing it with the position obtained by the PCA algorithm (see
Appendix B).

Resorting to this architecture, it is possible to estimate the
position, attitude and angular slippage of the mobile robot with
a global stable error dynamic. For more details about this self-
localization architecture see technical report [7].

A. Results for 2D localization

To test the mobile robot self-localization performance of
the proposed approach in a environment (considering 2D
localization), several tests are performed with the classical
lawnmower type trajectory, combining both straight lines and
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Fig. 11. Map with estimated position considering a ground truth path.

curves, with a 0.1 m · s−1 robot speed and 5 Hz of sampling
frequency. During the robot motion the real mobile robot
trajectory is measured allowing the comparison of the esti-
mated position with the real one (ground truth test) and the
corresponding position errors analyzed.

As it is possible to see in Fig. 10, that the position results
obtained by the PCA algorithm is very close to the ground truth
trajectory. Therefore, fusing the kinematic model of the robot
with the position obtained by PCA in the KF allows estimating
position values with a very good accuracy (see Appendix B
for details).

Figure 11 shows the position estimated with the ground
truth trajectory and the position obtained by the odometry.
Comparing the results of the odometry with the estimated
position it is possible to see an angular slippage in motion,
that is increasing the difference between the estimated attitude
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Fig. 13. Distribution of the estimated position error for both axis, considering
a PCA grid with 0.3 m

and the one obtained by the odometry along time. This angular
slippage is caused by systematic errors, such as uncertainties
in the dimensions of the wheels, eccentric shaft problems,
misalignment of the shafts, etc. It is possible to observe that
in the initial part of the trajectory the estimator obtains a
result close to the odometry. However, the localization system
can approximate the estimated position with the ground truth
trajectory.

Furthermore, analyzing Fig. 12, it is possible to observe the
existence of an angular slippage of −0.5 rad · s−1 (positive
for slippage in clockwise direction), that is detected at 40 s by
the attitude estimator. Looking at Fig. 10 after 40 s (instant
which is detected angular slippage), the results of the position
estimator are closer to the ground truth path than the odometry.

Finally, analyzing the histograms of Fig. 13 it is possible
to conclude that the statistical distribution of the estimated
position errors is approximately Gaussian with a mean close
to zero. Moreover, comparing the variation of the distribution
with the distance of the grid map acquired to create the
PCA eigenspace, it is possible to see that, the proposed self-
localization system is able to estimate the position with an error
less than the distance between the acquired depth images, as
happened with the localization in 1D.

VI. CONCLUSIONS

The existence of missing data in image is sometimes
inevitable and it can induce a positioning system to an er-

roneous localization. In this paper an extension of a PCA
methodology aiming to avoid the negative impact of missing
data in signals is developed and experimentally validated. The
proposed localization system is based only on a Kinect sensor
installed onboard, looking upwards to the ceiling, where the
depth sensor often provides signals with missing data, caused
by IR beams that not were reflected.

All tests were successfully performed, allowing to conclude
that the proposed approach can be useful in a number of
mobile robotics applications where the existence of missing
data is inevitable and causes a localization systems perfor-
mance degradation. Moreover, the proposed method allows to
validate the application of the Kinect depth sensor, in a mobile
robot localization system based on a extension of a classical
PCA algorithm to operating in unstructured environments. The
propose localization system is optimal and globally stable,
under the Gaussian approaches resorting to classical Kalman
filtering techniques.

The method was successfully validated in a self-
localization system, using only onboard sensors and estimates
the position with a global stable error dynamics.

In the future, the proposed localization method will be
implemented in a path following control approach, where the
self-localization system will be integrated in a control close
loop. Later, in order to increase the self-knowledge about the
place, the proposed PCA algorithm will be updated to create a
dynamic PCA database. This development will allow an archi-
tecture able to perform different tasks like obstacle avoidance,
robot-human interaction, rescue activities or integration in a
multi-robots platform for collaborative work.

APPENDIX

For the sake of readability of this paper, this appendix
shows the models and estimators used for the 1D and 2D
validation experiments. These models and estimators may be
found, with more detail, in [7].

A. Model for position estimation in 1D localization

The mobile robot kinematic model that describes the move-
ment in a straight line (1D) is

ẋ = u+ b+ µ1 (5)

ḃ = 0 + µ2 (6)

considering the following assumptions:

• the slippage velocity is constant or slowly varying (i.e.
ḃ = 0);

• the noise in the actuation (motors are in closed loop)
and the slippage velocity are assumed as zero-mean
uncorrelated white Gaussian noise, µi ∼ N(0, σ2

i ).

Expressing the model dynamics in a state-space system
with x = [x b]T ,

ẋ =

[
0 1
0 0

]
x +

[
1
0

]
u+

[
1 0
0 1

] [
µ1

µ2

]
(7)

y = [1 0]x + γ (8)

The output of this system y is the positioning sensor mea-
surement described Section III. Since the position estimator is



processed in a digital processor, the discrete model is obtained
assuming that the vehicle velocity u is constant (zero order
hold assumption) between two consecutive processing times,
resulting

x(k + 1) =

[
1 T
0 1

]
x(k) +

[
T
0

]
u(k) +

[
T T 2/2
0 T

]
µ(k)

(9)
y(k) = [1 0]x(k) + γ(k) (10)

The design of a linear time-invariant Kalman filter for the
underlying model described above is by now classic and the
reader is referred to [10].

B. Model for position estimation in 2D localization

The classic differential drive mobile robot model is given
by

ẋ = u cos θ (11)
ẏ = u sin θ (12)

θ̇ = ω (13)

where u is the common mode speed, x and y are the robot
coordinates in the world referential, θ is the orientation angle
of the robot in the world referential and ω is the angular speed.

However, the classic non-linear model for differential drive
mobile robots can be rewritten for a new state variables,
becoming in a Linear Parameter Varying (LPV) model. Thus,
differentiating: (11)–(13):

ẍ = −uω sin θ = −ωẏ (14)
ÿ = uω cos θ = ωẋ (15)

θ̈ = ω̇ (16)

and choosing as state vector x = [x ẋ y ẏ]T , a new LPV
model for differential drive mobile robot is obtained:

ẋ =

A︷ ︸︸ ︷ 0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

x (17)

θ̇ = ω (18)

Considering the LPV model (17)–(18) and assuming that
ω is constant between two sampling times (zero order hold
assumption), the follow discrete model can be obtained (see
[7] for more details):

x(k + 1) =

A(ω)︷ ︸︸ ︷ 1 sinωT
ω 0 1

ω + cosωT
ω

0 cosωT 0 − sinωT
0 1

ω −
cosωT

ω 1 sinωT
ω

0 sinωT 0 cosωT

x(k)+

+


T 1−cosωT

ω2 0 −ωT−sinωT
ω2

0 sinωT
ω 0 − 1−cosωT

ω
0 ωT−sinωT

ω2 T 1−cosωT
ω2

0 1−cosωT
ω 0 sinωT

ω


︸ ︷︷ ︸

G(ω)

v(k)

(19)

y(k) =

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x(k) (20)

Finally, in order to estimate the mobile robot position,
the Linear Parameter Varying (LPV) model (19–20) is fused
with the position obtained by the PCA-based position sensor,
through the KF presented in Fig. 14, where and x(k) and y(k)
are the position obtained by the PCA sensor in instant k and
x̂(k) and ŷ(k) are the estimated position in the same instant.

K z−1 C

A(ω(k))

x(k), y(k)

+

+ x̂(k + 1)

x̂(k)

x̂(k), ŷ(k)

−

+

ω(k)

Fig. 14. Block diagram of the position estimator

C. Model for attitude and angular slippage estimation in 2D
localization

The model that describes the angular motion of the differ-
ential drive mobile robot is

ψ̇ = ω + s (21)
ṡ = 0 (22)

where ω is the angular speed, ψ is the attitude of the robot
and s is the angular slippage in differential motion.

Considering the state vector θ = [ψ s]T , the kinematic
model in state space can be defined by:

θ̇ =

[
0 1
0 0

]
θ +

[
1
0

]
ω (23)

Assuming that signals processing is performed by a digital
processor, ω and ψ are constant between sampling times (zero
order hold assumption), allowing to obtain the discrete model
of attitude:

θ(k + 1) =

A︷ ︸︸ ︷[
1 T
0 1

]
θ(k) +

B︷ ︸︸ ︷[
T
0

]
ω(k) (24)

y(k) = [ 1 0 ]︸ ︷︷ ︸
C

θ(k) (25)



ψ(k)

+
K2

+

ŝ(k + 1)
z−1 T

+ +

β(k + 1)
z−1

β(k)

+

ψ̂(k)

αl(k)
−

αr(k) + r
L

∆ψ0(k)

+

+ +

K1

+−

ŝ(k)

Fig. 15. Block diagram of the attitude and angular slippage estimator

Applying a KF to the discrete model (24–25), following the
steps described in [7], the optimal attitude and angular slippage
estimator presented in Fig. 15 is obtained, where ψ(k) is the
angle of compass captured in instant k, r is the radius of the
wheels, l is the distance between wheels, αr(k) and αl(k) are
the lengths of the paths of left and right wheels (that can be
read directly from the encoders onboard) and ψ̂(k) and ŝ(k)
are the estimated attitude and angular slippage of the robot,
respectively.

Finally, the angular speed of the robot applied in LPV (20)
is obtained through a numerical difference of the estimated
attitude of the robot:

ω̂(k) =
ψ̂(k)− ψ̂(k − 1)

T
(26)
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