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a b s t r a c t

Navigation systems are a key element in a large variety of mobile platforms, where the correct knowledge
of their position and attitude is essential in most applications. This paper focuses on the observability of
linear motion quantities (position, linear velocity, linear acceleration, and accelerometer bias). It presents
necessary and sufficient conditions, with a clear physical insight, for the observability of these variables
in 3-D. The analysis provided is based on kinematic models, which are exact and intrinsic to themotion of
a rigid-body, and different cases are presented depending on the assumptions made on the sensor suite
that is available on-board.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The design of Integrated Navigation Systems arises naturally in
the development of a large variety of mobile platforms, whether
manned or unmanned, autonomous or human-operated, as the
knowledge of the position and attitude of the vehicle is a basic
requirement for its successful operation. Moreover, for control
purposes, other quantities such as the linear and angular velocities
are also often required.

Dead-reckoning navigation systems such as Inertial Navigation
Systems (INS) provide all these quantities. However, the estimation
of the position and attitude of the vehicle is necessarily obtained
in this type of system by integrating higher-order derivatives such
as the linear acceleration and the angular velocity, which are
measured using, e.g., an Inertial Measurement Unit (IMU). As such,
and regardless of the accuracy and precision of the IMU, the errors
in the position and attitude estimates growunbounded due to non-
idealities such as noise and bias that affect the IMU’s readings [1].
These intrinsic limitations of dead-reckoning navigation systems
are usually tackled by using aiding devices such as position
and attitude sensors, e.g., the popular Global Positioning System
(GPS), inclinometers, andmagnetometers. However, evenwith the
inclusion of aiding devices, not all states are always observable, in
particular, if biases are considered and the acceleration of gravity
is not known with enough accuracy. This paper investigates the
observability of linear motion quantities of mobile platforms.
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Previous work on the study of observability of navigation
systems can be found in the literature. In [2] the observability of
INS during initial alignment and calibration at rest is analyzed.
The nominal nonlinear navigation system dynamics are perturbed
yielding linearized error dynamics which are then shown not to
be completely observable. In [3] the observability of a linearized
INS error model is also examined for a stationary vehicle and it is
reported, among other results concerning the leveling errors, that
the unobservable states, which are distributed in two decoupled
subspaces, can be systematically determined. In-flight alignment
of INS is studied in [4] where it is shown that its observability can
be improved by adequatemaneuvering. In [5] sufficient conditions
for the observability of stationary Strapdown Inertial Navigation
Systems (SDINS) are analytically derived. In [6] an observability
analysis of a GPS/INS system during two types of maneuvers,
linear acceleration and steady turn, is presented. The analysis
is based on a perturbation model of the INS and it is shown
that the observability is improved when the vehicle maneuvers.
Observability properties of the errors in an integrated navigation
systemare studied in [7], where the authors show that acceleration
changes improve the estimates of attitude and rate-gyro bias and
changes of the angular velocity enhance the lever arm estimate.
However, no theoretical results for non-trivial trajectories are
given and only simulation results are provided, which confirms
that the degree of observability of the system increases with the
richness of the trajectories described by the vehicle. To the best
of the authors knowledge, in the literature only local observability
results are known, most of them obtained in the context of
navigation systems designed around the Extended Kalman Filter
(EKF). These results, that reflect the continued adoption of EKF
techniques to solve the Navigation problem, are very intuitive and
were fundamental to motivate the need for the analysis presented
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in this paper. A related study on the observability of perspective
systems can be found in [8], which has application to vision-based
systems with perspective outputs. In [9] the authors propose a
locally convergent observer for the attitude, in 3-D, using line-
based dynamic vision, and also discuss the observability of the
corresponding system, revealing interesting group properties tied
to the underlying system structure.

This paper presents a detailed analytical study on the maneu-
vers that can improve observability and provides necessary and
sufficient conditions for the observability of linear motion quan-
tities (position, linear velocity, linear acceleration, and accelerom-
eter bias) assuming exact angular measurements. Four different
sensor suites are considered and definite results are provided for
all of them. The analysis is based on kinematic models, which are
exact and intrinsic to themotion of the vehicle, and builds onwell-
established observability results for linear time-varying (LTV) and
linear time-invariant (LTI) systems. For LTI systems, the concept of
observability suffices to synthesize a globally asymptotically stable
observer or filter. For LTV systems, stronger forms of observability
should be considered. As such, the present work provides not only
observability conditions but also results regarding uniform com-
plete observability, which allow one to derive globally asymptot-
ically stable observers or filtering solutions, see [10]. Preliminary
work by the authors can be found in [11].

The paper is organized as follows. In Section 2 some basic
observability definitions and results are briefly presented for the
sake of completeness. The linear motion dynamic systems whose
observability is studied are introduced in Section 3, while the
main results of the paper are derived and discussed in Section 4.
Section 5 summarizes the main conclusions of the paper.

1.1. Notation

Throughout the paper the symbol 0 denotes amatrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
A block diagonal matrix is represented as diag(A1, . . . ,An) and, if
X is a complex-valued matrix, XT and X∗ denote its transpose and
conjugate transpose, respectively. For x, y ∈ R3, x × y represents
the cross product. The pure unit imaginary number is defined as
j :=

√
−1 and the Special Orthogonal Group is denoted by SO(3).

2. Preliminary observability definitions

Consider the LTV system
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t), (1)

where x, u, and y are the state, input, and output of the system,
respectively, t ∈ [t0, +∞[, and A(t), B(t), and C(t) are continuous
matrices of compatible dimensions.

Definition 2.1 (Observability). The LTV system (1) is called observ-
able on [t0, tf ] if any initial state x(t0) is uniquely determined by
the corresponding output {y(t), t ∈ [t0, tf ]}.

Definition 2.2 (Observability Gramian and Transition Matrix). The
observability Gramian associated with the pair (A(t), C(t)),
denoted as W (t0, tf ), is given by

W (t0, tf ) =

∫ tf

t0
φT (t, t0)CT (t)C(t)φ(t, t0)dt,

where

φ(t, t0) = I +
∫ t

t0
A(σ1)dσ1 +

∫ t

t0
A(σ1)

∫ σ1

t0
A(σ2)dσ2dσ1 + · · ·

is the transition matrix associated with A(t).
Theorem 2.1. The LTV system (1) is observable on [t0, tf ] if and only
if W (t0, tf ) is invertible.

Definition 2.3 (Uniform Complete Observability). The LTV system
(1) is called uniformly completely observable if there exist positive
constants δ, α1, and α2 such that

α1I ≼ W (t, t + δ) ≼ α2I (2)

for all t ≥ t0.

Remark 1. When the system matrices A(t) and C(t) are norm-
bounded, it is easy to see that the right side of (2) is always satisfied.
This is the case of the systems under study in the paper and
therefore only the left side of (2) is considered and the existence
of α2 needs not to be addressed.

Remark 2. It is important to refer that Definition 2.3 applies only
to bounded realizations, which are in fact those considered in the
paper. For a more detailed discussion on the concept of uniform
complete observability, the reader is referred to [12], while alter-
native criteria for uniform complete controllability/observability
can be found in [13,14].

3. Linear motion kinematics

Let {I} be an inertial coordinate frame and {B} the body-fixed
coordinate frame, whose origin coincides with the center of mass
of the vehicle. Let Ip(t) ∈ R3 denote the position of the origin
of {B}, described in {I}, and v(t) ∈ R3 the velocity of the vehicle
relative to {I}, expressed in body-fixed coordinates. The linear
motion kinematics of the vehicle are given by

d
dt

Ip(t) = R(t)v(t), (3)

where R(t) ∈ SO(3) is the rotation matrix from body-fixed to
inertial coordinates, i.e., from {B} to {I}, that satisfies

Ṙ(t) = R(t)S[ω(t)],

where ω(t) ∈ R3 is the angular velocity of the vehicle,
expressed in body-fixed coordinates, and S(ω)R3×3 is the skew-
symmetric matrix such that S(ω)x is the cross product ω ×

x. The position of the vehicle in inertial coordinates is often
available, e.g., when there is a GPS receiver installed on-board.
However, in underwater robotics, for instance, GPS is unavailable
and alternative positioning sensors are required [15]. Acoustic
positioning systems are common, e.g., long baseline (LBL) or ultra-
short baseline (USBL) sensors. In the latter case, the USBL (in the
so-called inverted configuration) typically measures the position
of an external fixed mark relative to the position of the vehicle,
expressed in body-fixed coordinates, and thus the position of the
vehicle is only available indirectly. Indeed, if p(t) ∈ R3 denotes the
measurement of the USBL as it was just described, it satisfies

p(t) = RT (t)[Ipm −
Ip(t)],

where Ipm ∈ R3 denotes the inertial position of the mark. In
this framework, the kinematics of the vehicle can be described,
indirectly, by

ṗ(t) = −S[ω(t)]p(t) − v(t). (4)

An essential element of Navigation Systems is the IMU,
which usually contains two triads of orthogonally mounted
accelerometers and rate gyros. Assuming that the IMU is installed
at the center ofmass of the vehicle and alignedwith the body-fixed
coordinate frame {B}, the rate gyros provide the angular velocity of
the vehicle, ω(t), and the accelerometers measure

a(t) = v̇(t) + S[ω(t)]v(t) − g(t) + b(t), (5)
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where g(t) ∈ R3 denotes the acceleration of gravity and b(t) ∈ R3

the bias of the accelerometer, both expressed in body-fixed coor-
dinates. Ideal accelerometers would not measure the gravitational
term but in practice this termmust be considered due to the inher-
ent physics of these sensors, see [16] for further details. The term
S[ω(t)]v(t) corresponds to the Coriolis acceleration of the vehicle
and must also be considered. The measurements provided by the
rate gyros are also usually corrupted by biases. However, these bi-
ases can be compensated using an Attitude and Heading Reference
System (AHRS) and there are several solutions for this problem in
the literature, see e.g. [17,18] for almost globally asymptotically
stable attitude observers, which also account for the rate gyro bias,
or [19] for a globally asymptotically stable solution.

In the remainder of this section four different dynamic
systems will be introduced that describe the linear motion
of the vehicle and its relation with the various sensors. The
differences between the proposed dynamics depend upon the
sensor suite considered. As it was seen, both (3) and (4) describe
the evolution of the position of the vehicle given the information
provided by the sensors installed on-board. In what concerns
observability properties they are equivalent assuming exact
angular measurements. Throughout the paper, and without loss of
generality, (4) is preferred due to its particular structure. Finally,
it is assumed that ω(t) and its derivative are bounded, and that
ω(t) is continuous, which is true for all manned and unmanned
platforms.

3.1. Navigation with calibrated accelerometer

The first case considered in the paper is not, at first, a
simple one, but its observability analysis turns out to be quite
straightforward after an appropriate state transformation. It is
considered here that the vehicle is equipped with a positioning
sensor and a calibrated accelerometer, together with a triad of rate
gyros or an AHRS, to provide the angular velocity of the vehicle.

The derivative of the linear position is given by (4), whereas
the derivative of the velocity may be obtained from (5). The
acceleration of gravity is assumed locally constant in inertial
coordinates. Thus, the derivative of this quantity when expressed
in body-fixed coordinates is given by

ġ(t) = −S[ω(t)]g(t).

The system dynamics can then be written as
ṗ(t) = −S[ω(t)]p(t) − v(t)
v̇(t) = −S[ω(t)]v(t) + g(t) + a(t)
ġ(t) = −S[ω(t)]g(t)
y(t) = p(t),

(6)

where a(t) is here considered as a deterministic input and y(t)
denotes the system output, available for the estimation of the
system state.

3.2. Navigation with known gravity

In Section 3.1 the gravity was unknown and the accelerometer
was assumed to be calibrated. In this section the accelerometer
measurements are assumed corrupted by an unknown bias but
the gravity is supposed to be known. Although possible from the
practical point of view, e.g., if the magnitude of the gravity is
known, aswell as the attitude of the vehicle, this is not a very useful
situation as any misalignment in the gravity acceleration vector
expressed in body-fixed coordinatesmay result in severe problems
in the overall acceleration compensation. Nevertheless, it presents
an interesting theoretical problem and provides insight to the
more general setup, which is presented in Section 3.4. Moreover,
it is also found in practical applications when a high-accuracy
AHRS is available, which allows one to determine the acceleration
of gravity in body-fixed coordinates with enough accuracy. The
system dynamics that reflect these assumptions are given by

ṗ(t) = −S[ω(t)]p(t) − v(t)
v̇(t) = −S[ω(t)]v(t) − b(t) + a(t) + g(t)
ḃ(t) = 0
y(t) = p(t),

(7)

where a(t) and g(t) are assumed to be deterministic inputs.

3.3. Dynamic accelerometer bias estimation

This section introduces a class of systems suitable for the
estimation of the bias of an accelerometer assuming exact angular
and linear velocity measurements, in body-fixed coordinates. This
is particularly interesting, for example, if one has available a
calibration table which permits the generation of high-resolution
trajectories with known velocities. Furthermore, the most general
setup, which is presented in Section 3.4, is an extension of this
framework and therefore insight on the observability of this setup
translates into insight on the observability properties of the most
general setup. The system dynamics read as

v̇(t) = −S[ω(t)]v(t) + g(t) − b(t) + a(t)
ġ(t) = −S[ω(t)]g(t)
ḃ(t) = 0
y(t) = v(t),

(8)

where a(t) is again assumed to be a deterministic input and the
output of the system is the velocity of the origin of the body-fixed
coordinate frame.

3.4. Navigation with gravity and accelerometer bias dynamic estima-
tion

The general setup regarding the estimation of linear motion
quantities of mobile platforms is presented in this section. Both
the acceleration of gravity and the bias of the accelerometer are
supposed unknown and the system dynamics can be written as

ṗ(t) = −S[ω(t)]p(t) − v(t)
v̇(t) = −S[ω(t)]v(t) + g(t) − b(t) + a(t)
ġ(t) = −S[ω(t)]g(t)
ḃ(t) = 0
y(t) = p(t),

(9)

where a(t) is assumed to be a deterministic input.

4. Main results

4.1. Navigation with calibrated accelerometer

This section examines the observability of the dynamic system
(6), which has been derived in the past by the authors to propose
a navigation filter with a calibrated accelerometer. In [20] it was
shown that the system is observable. In practice, stronger forms
of observability are convenient in order to guarantee the stability
of state observers or filters. That is established in the following
theorem.

Theorem 4.1. The LTV system (6) is uniformly completely observable.

Proof. In compact form, the dynamic system (6) can be rewritten
as
ẋ1(t) = A1(t)x1(t) + B1u1(t)
y1(t) = C1x1(t),
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where u1(t) = a(t) is the input of the system,

x1(t) =

p(t)
v(t)
g(t)


∈ R9

is the vector of states of the system,

A1(t) =


−S[ω(t)] −I 0

0 −S[ω(t)] I
0 0 −S[ω(t)]


,

B1 =

0
I
0


,

and C1 = [I 0 0]. Consider the state transformation

x1(t) := T1(t)x1(t),

with

T1(t) := diag(R(t),R(t),R(t)). (10)

Notice that (10) is a Lyapunov transformation matrix as

• T1(t) is continuously differentiable for all t;
• Both T1(t) and Ṫ1(t) are bounded for all t , where

Ṫ1(t) = diag(R(t)S[ω(t)],R(t)S[ω(t)],R(t)S[ω(t)]);

• det[T1(t)] = 1.

Then, the new system dynamics can be written as
ẋ1(t) = A1x1(t) + B1(t)u1(t)
y1(t) = C1x1(t),

(11)

where

A1 =

0 −I 0
0 0 I
0 0 0


, B1(t) =

 0
R(t)
0


,

and C1(t) = [RT (t) 0 0]. It is easy to compute the observability
Gramian associated with the pair (A1, C1(t)) on [t, t + δ], given by

W 1(t, t + δ) =


δI −

δ2

2
I −

δ3

6
I

−
δ2

2
I

δ3

3
I

δ4

8
I

−
δ3

6
I

δ4

8
I

δ5

20
I

 ,

which does not depend on t and is positive definite for all δ > 0.
Moreover, for any fixed δ > 0, there exists a lower bound for the
minimum eigenvalue of W 1(t, t + δ). Therefore, (11) is uniformly
completely observable, and it follows that (6) is also uniformly
completely observable as both systems are related through a
Lyapunov transformation [21]. �

4.2. Navigation with known gravity

This section examines the observability of the dynamic system
(7). Notice that, for constant angular velocity the system is
always observable. Thus, one can expect the system to be always
observable, as in Section 4.1. Before going into the observability
analysis, the following proposition is introduced.

Proposition 4.2. Let f(t) : [t0, tf ] ⊂ R → Rn be a continuous
and i-times continuously differentiable function on I := [t0, tf ],
T := tf − t0 > 0, and such that

f(t0) = ḟ(t0) = · · · = f(i−1)(t0) = 0.
Further assume that

max
t∈I

‖f(i+1)(t)‖ ≤ C .

If

∃ : ‖f(i)(t1)‖ ≥ α,
α > 0
t1 ∈ I

then

∃ : ‖f(t0 + δ)‖ ≥ β.
0 < δ ≤ T

β > 0

Proof. The proof is presented in Appendix. �

The following theorem is the main result of this section.

Theorem 4.3. The LTV system (7) is uniformly completely observable.

Proof. In compact form, the dynamic system (7) can be rewritten
as
ẋ2(t) = A2(t)x2(t) + B2u2(t)
y2(t) = C2x2(t),

(12)

where

u2(t) =

[
a(t)
g(t)

]
∈ R6

is the input of the system,

x2(t) =

p(t)
v(t)
b(t)


∈ R9

is the vector of states of the system,

A2(t) =


−S[ω(t)] −I 0

0 −S[ω(t)] −I
0 0 0


,

B2 =

0 0
I I
0 0


,

and C2 = [I 0 0]. Consider the Lyapunov transformation

x2(t) := T2(t)x2(t),

with

T2(t) := diag(R(t),R(t), I).

Then, the new system dynamics can be written as
ẋ2(t) = A2(t)x2(t) + B2(t)u2(t)
y2(t) = C2(t)x2(t),

where

A2(t) =

0 −I 0
0 0 −R(t)
0 0 0


,

B2(t) =

 0 0
R(t) R(t)
0 0


,

and C2(t) = [RT (t) 0 0]. Let

R[1](t, t0) :=

∫ t

t0
R(σ )dσ



P. Batista et al. / Systems & Control Letters 60 (2011) 101–110 105
and

R[i](t, t0) :=

∫ t

t0
. . .

∫ σi−1

t0
R(σi)dσi . . . dσ1,

where (.)[i] represents the i-th integral of the quantity. Then, it is
a simple matter of computation to show that the transition matrix
associated with A2(t) is given by

φ2(t, t0) =

 I −(t − t0)I R[2](t, t0)
0 I −R[1](t, t0)
0 0 I


and, if W 2(t0, tf ) denotes the observability Gramian associated
with the pair (A2(t), C2(t)),

dTW 2(t0, tf )d =

∫ tf

t0
‖d1 − (τ − t0)d2 + R[2](τ , t0)d3‖

2dτ

for all

d =

d1
d2
d3


∈ R9, ‖d‖ = 1.

Define

f(τ ) := d1 − (τ − t)d2 + R[2](τ , t)d3

for all t ≥ t0, δ > 0, and τ ∈ [t, t + δ]. Notice that

dTW 2(t, t + δ)d =

∫ t+δ

t
‖f(τ )‖2dτ .

The first three derivatives of f(τ ) are given by

d
dτ

f(τ ) = −d2 + R[1](τ , t)d3,

d2

dτ 2
f(τ ) = R(τ )d3,

and

d3

dτ 3
f(τ ) = R(τ )S[ω(τ )]d3.

Notice that all three derivatives are normbounded for τ ∈ [t, t+δ],
uniformly in t . Suppose that d1 ≠ 0. Then, there existsα1 > 0 such
that

‖f(t)‖2
= α2

1

for all t ≥ t0. Moreover, notice that d
dτ ‖f(τ )‖2 has an upper bound,

which does not depend on t . As, in addition to that,

dTW 2(t, t)d =

∫ t

t
‖f(τ )‖2dτ = 0

for all t ≥ t0 it follows, using Proposition 4.2, that

∃ ∀ : dTW 2(t, t + δ1)d ≥ β1.
δ1 > 0 t ≥ t0
β1 > 0

Suppose now that d1 = 0 and d2 ≠ 0. Then, there exists α2 > 0
such that d
dτ

f(τ )


τ=t

 = α2

for all t ≥ t0. In addition to that, f(t) = 0 and ‖
d2

dτ2 f(τ )‖ has
an upper bound, which does not depend on t . Therefore, using
Proposition 4.2 twice, it follows that

∃ ∀ : dTW 2(t, t + δ2)d ≥ β2.
δ2 > 0 t ≥ t0
β2 > 0
Finally, consider the last case where d1 = d2 = 0 and therefore
‖d3‖ = 1. Then, d2

dτ 2
f(τ )


τ=t

 = 1

for all t ≥ t0 and again, as ‖
d3

dτ3 f(τ )‖ is bounded from above,
uniformly in t , and

f(t) =
d
dτ

f(τ )


τ=t

=
d2

dτ 2
f(τ )


τ=t

= 0

for all t ≥ t0, it follows, using Proposition 4.2 twice, that

∃ ∀ : dTW 2(t, t + δ3)d ≥ β3.
δ3 > 0 t ≥ t0
β3 > 0

Either way,

∃ ∀ ∀ : dTW 2(t, t + δ)d ≥ β,

δ > 0 t ≥ t0 d ∈ R9

β > 0 ‖d‖ = 1

which means that (12) is uniformly completely observable. As the
LTV systems (7) and (12) are related by a Lyapunov transformation,
it follows that (7) is also uniformly completely observable. �

4.3. Dynamic accelerometer bias estimation

This section presents observability conditions for dynamic
accelerometer bias estimation. Before going into the details, some
straightforward but very useful and inspiring properties regarding
the observability of the system are presented and discussed.

In compact form, the dynamic system (8) can be written as
ẋ3(t) = A3(t)x3(t) + B3u3(t)
y3(t) = C3x3(t),

(13)

where u3(t) = a(t) is the input of the system,

x3(t) =

v(t)
g(t)
b(t)


∈ R9

is the vector of states of the system,

A3(t) =


−S[ω(t)] I −I

0 −S[ω(t)] 0
0 0 0


,

B3 =

 I
0
0


,

and

C3 = [I 0 0].

Within this framework, suppose that the angular velocity ω(t) is
constant. In this situation, the dynamic system (13) is LTI and thus,
to assess the observability of the system, it suffices to check the
rank of the observability matrix O3 associated to the pair (A3, C3),

O3 :=


C3

C3A3

C3A2
3

. . .

C3An−1
3

 . (14)
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After a few algebraic manipulations it is possible to write (14) as

O3 = DV8



I 0 0
−Λ I −I
Λ2

−2Λ Λ

−Λ3 3Λ2
−Λ2

Λ4
−4Λ3 Λ3

...
...

...

Λ8
−8Λ7 Λ7


D∗

V3,

where DV8 := diag(V, . . . , V), D∗

V3 := diag(V∗, V∗, V∗), V is a
unitary matrix, i.e., V ∈ {X ∈ R3×3

: XTX = I}, and

Λ =


‖ω‖j 0 0
0 −‖ω‖j 0
0 0 0


.

Thus, it is immediate to conclude that
• for ω = 0, rank[O3] = 6 and
• for ω ≠ 0, rank[O3] = 8.

From this first result it is already possible to say that the system
(13) is not observable for, at least, some trajectories of ω(t), and
this is not a surprise. Indeed, for ω(t) = 0, both the gravity
and the bias are constant in body-fixed coordinates (and inertial
coordinates too) and it is impossible to distinguish between them
solely based on the velocity measurements. However, in this
situation, it is straightforward to show that it would be possible
to design an observer for both v(t) and the quantity g(t) − b(t).
When ω is constant but nonzero, the degree of observability of the
system increases. In this situation it is also straightforward to show
that the non-observable subspace is given byv
g
b


= span

0
ω
ω


.

Thus, it is still possible to estimate both v(t) and g(t) − b(t). This
fact is important and will be exploited shortly as it suggests that
g(t) − b(t) is observable regardless of the trajectory described
by the angular velocity. Also, since the non-observable subspace
for constant non-null angular velocity is related to the axis of
rotation, it is expectable that, if the axis of rotation changes, the
system becomes observable. Before presenting the main results,
which confirm this conjecture, a Lyapunov state transformation is
introduced that greatly simplifies the analysis of the system.

In Section 4.1 the observability of the system was assessed
through the use of an orthogonal Lyapunov transformation that
renders the pair (A1, C1) time invariant. Although the application
of this technique to (13) does not render the pair (A3(t), C3(t))
time-invariant, it is still useful as it reduces the number of time-
varying elements of the new dynamics. Coupled with this, it has
been shown that both v(t) and g(t) − b(t) are observable for
constant angular velocities. These two ideas motivate the state
transformation

x3(t) := T3(t)x3(t), (15)

with

T3(t) :=

R(t) 0 0
0 R(t) −R(t)
0 0 I


.

Notice that (15) is a Lyapunov state transformation as
• T3(t) is continuously differentiable for all t;
• Both T3(t) and Ṫ3(t) are bounded for all t , where

Ṫ3(t) =

R(t)S[ω(t)] 0 0
0 R(t)S[ω(t)] −R(t)S[ω(t)]
0 0 0


;

• det[T3(t)] = 1.
The fact that (15) is a Lyapunov transformation suffices to establish
the equivalence of observability properties between x3(t) and
x3(t).

The dynamics of x3 are given by
ẋ3(t) = A3(t)x3(t) + B3(t)u3(t)
y3(t) = C3(t)x3(t),

(16)

where

A3(t) =

0 I 0
0 0 −R(t)S[ω(t)]
0 0 0


, B3(t) =

R(t)
0
0


,

and C3(t) = [RT (t) 0 0]. It is a simple matter of computation to
show that the transition matrix associated with A3(t) is given by

φ3(t, t0) =

 I (t − t0)I (t − t0)R(t0) − R[1](t, t0)
0 I R(t0) − R(t)
0 0 I


and, if W 3(t0, tf ) denotes the observability Gramian associated
with the pair (A3(t), C3(t)),

dTW 3(t0, tf )d =

∫ tf

t0
‖d1 + (τ − t0)d2

+ (τ − t0)R(t0)d3 − R[1](τ , t0)d3‖
2dτ

for all

d =

d1
d2
d3


∈ R9, ‖d‖ = 1.

The following theorem provides a necessary and sufficient
condition for the observability of (8).

Theorem 4.4. The LTV system (8) is observable on [t0, tf ] if and only
if the direction of the angular velocity ω(t) changes for some t1 ∈

[t0, tf ] or, equivalently,

∀ ∃ : S[ω(t1)]d ≠ 0.
d ∈ R3 t1 ∈ [t0, tf ]
‖d‖ = 1

(17)

Proof. Let

f(τ ) := d1 + (τ − t0)d2 + (τ − t0)R(t0)d3 − R[1](τ , t0)d3

and notice that

dTW 3(t0, tf )d =

∫ tf

t0
‖f(τ )‖2dτ .

If d1 ≠ 0 then

‖f(t0)‖2
= ‖d1‖

2
= α2

1 > 0.

Moreover, notice that d
dτ ‖f(τ )‖2 is a continuous function and

therefore it has an upper bound on any non-empty limited closed
interval (Weierstrass Theorem). As, in addition to that,

dTW 3(t0, t0)d =

∫ t0

t0
‖f(τ )‖2dτ = 0,

it follows, using Proposition 4.2, that

∃ : dTW 3(t0, t0 + δ1)d ≥ β1.
0 < δ1 ≤ tf − t0

β1 > 0
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Suppose now that d1 = 0 and d2 ≠ 0. Then, d
dτ

f(τ )


τ=t0


2

= ‖d2‖
2

= α2
2 > 0

and, using Proposition 4.2 again, it is immediate to show that

∃ : dTW 3(t0, t0 + δ2)d ≥ β2.
0 < δ2 ≤ tf − t0

β2 > 0

Consider now the last case where d1 = d2 = 0 and therefore
‖d3‖ = 1. It is easy to see that d2

dτ 2
f(τ )

 = ‖S[ω(τ )]d3‖.

Now, using (17), it is possible to write

∃ :

 d2

dτ
f(τ )


τ=t1

 = α3

t1 ∈ [t0, tf ]
α3 > 0

for all d3 such that ‖d3‖ = 1. But then, using Proposition 4.2 again,
it follows, again, that

∃ : dTW 3(t0, t0 + δ3)d ≥ β3.
0 < δ3 ≤ tf − t0

β3 > 0

Therefore, if (17) is true, the LTVS is observable on [t0, tf ] and, as (8)
and (13) are related through a Lyapunov transformation, it follows
that (8) is also observable on [t0, tf ]. Suppose now that (17) is not
true. Then,

∃ ∀ : S(ω(t))d0 = 0.
d0 ∈ R3 t ∈ [t0, tf ]
‖d0‖ = 1

Let

d =

 0
0
d0


.

Then, it is straightforward to show that

∀ : f(t) = 0
t ∈ [t0, tf ]

and therefore

∃ : dTW 3(t0, tf )d = 0,
d ∈ Rn

‖d‖ ∈ R9

which means that (13) is not observable on [t0, tf ]. Thus, if (13) is
observable on [t0, tf ], it follows that (17) is true. As (8) and (13)
are related through a Lyapunov transformation, one is observable
if and only if so is the other. Therefore, if (8) is observable on [t0, tf ],
it follows that (17) is true, which concludes the proof. �

The following theorem, that provides a necessary and sufficient
condition for a stronger form of observability, is the main result of
this section.

Theorem 4.5. The LTV system (8) is uniformly completely observable
if and only if

∃ ∀ ∀ ∃ : ‖S(ω(t1))d‖ ≥ ϵ.

δ > 0 t ≥ t0 d ∈ R3 t1 ∈ [t, t + δ]
ϵ > 0 ‖d‖ = 1

(18)

Proof. The proof of sufficiency follows steps similar to those
presented in the proof of Theorem 4.3 and therefore it is omitted.
Suppose now that (18) is not true. Then,

∀ ∃ ∃ ∀ : ‖S(ω(t))d‖ < ϵ.

δ > 0 t1 ≥ t0 d0 ∈ R3 t ∈ [t1, t1 + δ]
ϵ > 0 ‖d0‖ = 1

(19)

Let

d =

 0
0
d0


.

Then,

dTW 3(t1, t1 + δ)d

=

∫ t1+δ

t1
‖(τ − t1)R(t1)d0 − R[1](τ , t1)d0‖

2dτ ,

which may be rewritten as

dTW 3(t1, t1 + δ)d =

∫ t1+δ

t1

∫ τ

t1
[R(t1) − R(σ1)]d0dσ1

2 dτ
=

∫ t1+δ

t1

∫ τ

t1


R(t1) −

[
R(t1)

+

∫ σ1

t0
Ṙ(σ2)dσ2

]
d0dσ1

2 dt
=

∫ t1+δ

t1

∫ τ

t1

∫ σ1

t1
Ṙ(dσ2)d0dσ2dσ1

2 dτ .

Substituting the dynamics of the rotation matrix gives

dTW 3(t1, t1 + δ)d

=

∫ t1+δ

t1

∫ t

t1

∫ σ1

t1
R(σ2)S[ω(σ2)]d0dσ2dσ1

2 dτ . (20)

Using simple norm inequalities in (20) gives

dTW 3(t1, t1 + δ)d

≤

∫ t1+δ

t1

∫ t

t1

∫ σ1

t1
‖R(σ2)S[ω(σ2)]d0‖

2dσ2dσ1dτ

and, as the rotation has unit norm,

dTW 3(t1, t1 + δ)d

≤

∫ t1+δ

t1

∫ t

t1

∫ σ1

t1
‖S[ω(σ2)]d0‖

2dσ2dσ1dτ . (21)

Using (19) in (21) allows one to conclude that, for all δ > 0 and
ϵ > 0,

∃ ∃ ∀ : dTW 3(t1, t1 + δ)d ≤
δ3

6
ϵ2,

t1 ≥ t0 d ∈ R9 t ∈ [t1, t1 + δ]
‖d‖ = 1

which implies that the LTV system (13) is not uniformly completely
observable. Therefore, if (13) is uniformly completely observable,
then (18) is true. Finally, as (8) and (13) are related through a
Lyapunov state transformation, it follows that if (8) is uniformly
completely observable, then (18) is true, which completes the
proof. �

Remark 3. The meaning of the technical condition stated in
Theorem 4.5 is not evident at first glance. To make it clear notice
that, when (18) is not satisfied, the direction of the angular velocity
converges to a constant vector. While for observability it suffices
that the direction of the angular velocity changes, for uniform
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complete observability a minimum level of excitation is required.
This is reflected as the requirement of a minimum change of the
direction of the angular velocity vector.

4.4. Navigation with dynamic accelerometer bias determination in
the presence of unknown gravity

This section presents the last result of the paper, which
assesses the observability of a navigation system with dynamic
accelerometer bias estimation. This result is closely related to
the one presented in Section 4.3, since the nominal dynamics
for navigation with dynamic accelerometer bias determination
can be regarded as an extension of the dynamics for dynamic
accelerometer bias estimation.

The first result presented in this section provides a necessary
and sufficient condition for the observability of (9).

Theorem 4.6. The LTV system (9) is observable on [t0, tf ] if and only
if (17) holds.

Proof. The systemdynamics (9) can be rewritten, in compact form,
as
ẋ4(t) = A4(t)x4(t) + B4u4(t)
y4(t) = C4x4(t),

where u4(t) = a(t) is the input of the system,

x4(t) =

p(t)
v(t)
g(t)
b(t)

 ∈ R12

is the vector of states of the system,

A4(t) =

−S[ω(t)] −I 0 0
0 −S[ω(t)] I −I
0 0 −S[ω(t)] 0
0 0 0 0

 ,

B4 =

0
I
0
0

 ,

and C4 = [I 0 0 0]. Consider the Lyapunov transformation

x4(t) := T4(t)x4(t), (22)

with

T4(t) :=

R(t) 0 0 0
0 R(t) 0 0
0 0 R(t) −R(t)
0 0 0 I

 .

Then, the new system dynamics can be written as
ẋ4(t) = A4(t)x4(t) + B4(t)u4(t)
y4(t) = C4(t)x4(t),

(23)

where

A4(t) =

0 −I 0 0
0 0 I 0
0 0 0 −R(t)S[ω(t)]
0 0 0 0

 ,

B4(t) =

 0
R(t)
0
0

 ,
and C4(t) = [RT (t) 0 0 0]. The fact that (22) is a Lyapunov transfor-
mation suffices to establish the equivalence of observability prop-
erties between x4 and x4. The similarities between (16) and (23)
are obvious. There is, in fact, just an extra level of integrators. The
remainder of the proof follows the same steps as in Theorem 4.4
and is therefore omitted. �

The following theorem is the main result of this section and
provides a necessary and sufficient condition for the system (9) to
be uniformly completely observable.

Theorem 4.7. The dynamic system (9) is uniformly completely
observable if and only if (18) holds.

Proof. The proof follows the same steps as in Theorem 4.5 and is
therefore omitted. �

5. Conclusions

Navigation Systems are key elements of a large variety of
robotic systems. This paper provided observability results regard-
ing systems related to the estimation of linear motion quantities
of mobile platforms (position, linear velocity, linear acceleration,
and accelerometer bias), in 3-D, assuming exact angular measure-
ments. Four different cases were studied: (i) a simple calibrated
sensor suite consisting of an IMU and a positioning sensor. It was
shown that the system is not only observable but also uniformly
completely observable, even without the knowledge of the accel-
eration of gravity; (ii) a triad of accelerometers with unknown bi-
ases but considering that the acceleration of gravity is known. It
was shown that this system is also observable and uniformly com-
pletely observable; (iii) dynamic accelerometer bias estimation. In
this case it was proved that not all trajectories yield the system ob-
servable. In particular, it was shown that the trajectories should
be rich enough in what concerns the evolution of the direction of
the angular velocity and, for uniform complete observability to be
attained, the direction of the angular velocity cannot stay indefi-
nitely arbitrarily close to a constant vector; and (iv) the last case
addressed the most general setup where the triad of accelerome-
ters may have an unknown bias and the gravity is also supposed
to be unknown. It was shown that the system is observable if and
only if the attitude evolution is sufficiently rich, in the same sense
as the one presented for dynamic accelerometer bias estimation.
Moreover, it was also shown that the system is uniformly com-
pletely observable if and only if a persistent change in the direction
of the angular velocity occurs. The summary of the conclusions is
presented in Table 1.
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Appendix. Proof of Proposition 4.2

Proposition. Let f(t) : [t0, tf ] ⊂ R → Rn be a continuous and
i-times continuously differentiable function on I := [t0, tf ], T :=

tf − t0 > 0, and such that

f(t0) = ḟ(t0) = · · · = f(i−1)(t0) = 0.

Further assume that

max
t∈I

‖f(i+1)(t)‖ ≤ C . (24)
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Table 1
Summary of observability conclusions.

Scenario System dynamics Available quantities Estimated quantities Observable Uniformly completely
observable

Navigation with calibrated
accelerometer

(6) (p, a, b) (p, v, g) Yes Yes

Navigation with known gravity (7) (p, a, g) (p, v, b) Yes Yes
Dynamic accelerometer bias
estimation

(8) (v, a) (v, g, b) If and only if (17) is true If and only if (18) is true

Navigation with gravity and
accelerometer bias dynamic
estimation

(9) (p, a) (p, v, g, b) If and only if (17) is true If and only if (18) is true
If

∃ : ‖f(i)(t1)‖ ≥ α,
α > 0
t1 ∈ I

(25)

then

∃ : ‖f(t0 + δ)‖ ≥ β.
0 < δ ≤ T

β > 0
(26)

Proof. First, notice that the case C = 0 is trivial. Indeed, if C = 0,
then

∀ : f(i)(t) = f(i)(t1)
t ∈ I

and therefore

f(t0 + δ) = f(i)(t1)
∫ t0+δ

t0

∫ σ1

t0
. . .

∫ σi−1

t0
dσi . . . dσ1

=
δi

i!
f(i)(t1),

which implies (26). The remainder of the proof considers C > 0.
Suppose that (24) and (25) are true. Then, using simple norm
inequalities, it is possible to write

‖f(i)(t1)‖∞ ≥
1

√
n
α

and

max
t∈I

‖ḟ(i+1)(t)‖∞ ≤ C .

Let

k := arg max
j=1,...,n

|f (i)
j (t1)|,

where

f(i)(t) =

f (i)
1 (t)

...

f (i)
n (t)

 .

Evidently,

|f (i)
k (t1)| ≥

1
√
n
α

and

max
t∈I

|ḟ (i+1)
k (t)| ≤ C . (27)

Resorting to Lagrange’s Theorem, it is possible to write that

|f (i)
k (t) − f (i)

k (t1)| = |f (i+1)
k (ξ(t))(t − t1)| (28)
for all t ∈ I, where ξ(t) ∈]t0, tf [. Using simple norm inequalities
and (27) in (28) gives

|f (i)
k (t) − f (i)

k (t1)| ≤ C |t − t1|

and therefore

f (i)
k (t) ≥ f (i)

k (t1) − C |t − t1|

for all t ∈ I. Now assume, without loss of generality, that f (i)
k (t1) >

0. Then, there exists an interval I1 = [t2, t3] ⊂ I, t2 < t3, where
either t2 = t1 or t3 = t1, and with length

T1 :=
1
2
min


T ,

α
√
nC


,

such that

∀ : f (i)
k (t) ≥ f (i)

k (t1) − C |t − t1| > 0.
t ∈ I1

(29)

Integrating (29) on I1 gives∫
I1

f (i)
k (t)dt ≥ β > 0,

where

β := T1


α

√
n

−
CT1
2


> 0.

Now, notice that

f (i−1)
k (t3) =

∫ t3

t0
f (i)
k (t)dt =

∫ t2

t0
f (i)
k (t)dt +

∫
I1

f (i)
k (t)dt.

If

f (i−1)
k (t3) ≠ 0

then

∃ : |f (i−1)
k (t0 + δ1)| ≥ β1.

0 < δ1 ≤ T
β1 > 0

Otherwise, it must be

f (i−1)
k (t2) = −

∫
I1

f (i)
k (t)dt ≠ 0,

which implies that

∃ : |f (i−1)
k (t0 + δ2)| ≥ β2.

0 < δ2 < T
β2 > 0

Either way,

∃ : |f (i−1)
k (t0 + δ3)| ≥ β3.

0 < δ3 ≤ T
β3 > 0
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Repeating the same argument i − 1 times, it is immediate to show
that

∃ : |fk(t0 + δ)| ≥ β
0 < δ < T

β > 0

and, using simple norm inequalities

∃ : ‖f(t0 + δ)‖ ≥ β,
0 < δ < T

β > 0

which concludes the proof. �
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