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This paper presents two navigation filters based on multiple
bearing measurements. In the first, the state is augmented and an
equivalent linear system is derived, while in the second the output of
the system is modified in such a way that the resulting system is
linear. In both cases, the design of a filtering solution relies on linear
systems theory, in spite of the nonlinear nature of the system, and the
resulting error dynamics can be made globally exponentially stable
by applying, for example, Kalman filters. The continuous/discrete
nature of the different measurement sources is taken into account,
with the updates occurring in discrete time, while open-loop
propagation is carried out between bearing measurements.
Simulation results are presented, including Monte Carlo runs and a
comparison with both the extended Kalman filter and the Bayesian
Cramér–Rao bound, to assess the performance of the proposed
solutions.
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I. INTRODUCTION

A common problem in the development of
autonomous vehicles, as well as sophisticated
human-operated vehicles, is that of designing the
navigation system. While many different solutions exist,
(pseudo)distance measurements, particularly to more than
one landmark, are one of the most popular choices and are
very effective in long-baseline (LBL) configurations. This
paper considers bearing measurements to multiple
landmarks as an alternative to distance measurements in
the design of navigation systems, and two different
solutions are proposed.

The celebrated GPS system is usually the workhorse
of the navigation systems designed for open-space
operation (e.g., [1] and references therein). In underwater
applications LBL acoustic positioning systems are often
employed, as electromagnetic waves suffer from
significant attenuation in this medium, preventing the use
of GPS. In [2], three acoustic transponders with known
inertial positions are considered and an extended Kalman
filter (EKF) coupled with a smoothing algorithm is
proposed to estimate the system state. In [3], a typical
LBL positioning system is combined with a Doppler
sonar, as well as a magnetometer and roll/pitch sensors,
and complementary filtering concepts are applied to show
that the LBL rate and Doppler precision can be improved.
In [4], two different strategies are presented. In the
so-called fix computation approach, dead reckoning is
performed between acoustic fixes, which reset the vehicle
position whenever available. In the second, so-called
filtering approach, dead reckoning is performed but,
whenever available, travel times are used to correct drift
resulting from the dead reckoning. Preliminary fields trials
are reported in [5], where a navigation system is used that
employs an LBL acoustic positioning system, a Doppler
sonar, a fiber-optic north-seeking gyro, pressure sensors,
and magnetic compasses. A different concept, where the
aim is to estimate a segment of the trajectory instead of the
current position, is proposed in [6], where diffusion-based
trajectory observers are considered.

The use of single range measurements as a cheaper
alternative to LBL navigation has been considered in
several recent contributions, leveraging results for target
localization based on range measurements. In [7] a
recursive least-squares fading-memory filtering solution is
proposed, and the dependence of the covariance of the
estimated target on the velocity profile of the vehicle is
discussed. An EKF is proposed in [8] as a solution to the
problem of navigation based on range measurements to a
single source, while an algebraic approach to the same
problem can be found in [9]. A complete integrated
navigation system, aided by range measurements, is
simulated in [10], where a multirate EKF provides the
filtering solution. The duality between navigation and
source localization based on single range measurements is
evidenced in [11], where a novel solution is also proposed
with globally exponentially stable error dynamics.
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An alternative to single range measurements is the use
of bearing measurements; see, for example, [12], where
the estimation error dynamics are shown to be globally
exponentially stable under an appropriate persistent
excitation condition and a circumnavigation control law is
also proposed. Earlier work on the observability issues of
target motion analysis based on angle readings in 2-D can
be found in [13], which was later extended to 3-D in [14].
The specific observability criteria thereby derived resort to
complicated nonlinear differential equations, and some
tedious mathematics are needed for the solution, giving
conditions that are necessary for system observability. The
problem of localization of a mobile robot using bearing
measurements is also addressed in [15], where a nonlinear
transformation of the measurement equation into a higher
dimensional space is performed. This has allowed for tight,
possibly complex-shaped bounding sets for the feasible
states in a closed-form representation. The problem of
bearings-only target motion analysis is considered in [16],
where its observability is discussed in a discrete-time
setup and some insights into the optimization of observer
maneuvers are provided. The posterior Cramér–Rao
bounds are discussed in [17] and a hierarchical particle
filter proposed in [18]. An alternative solution, based on
the cubature Kalman filter, is presented in [19].

In previous work [20], we have addressed the
problems of source localization and navigation based on
bearing measurements to a single source in a
continuous-time framework, where the duality between
both problems is again evidenced. In practice, the bearing
measurements are often acquired in discrete time, which
poses challenges in terms of both observability analysis
and filter design, leading to the extension presented in
[21], where discrete-time bearing measurements to a
single source are considered.

This paper addresses the problem of navigation based
on multiple bearing measurements. More specifically, the
vehicle is assumed to be equipped with a relative velocity
sensor, an attitude and heading reference system (AHRS),
and bearing sensors. This paper aims to estimate its
inertial position and velocity. To solve the problem, two
different solutions are proposed: In the first solution, state
augmentation is performed, including the range in the
system state, and an artificial output is derived such that
the system as a whole is linear in the state; and in the
second solution, the original nonlinear output is rewritten
in such a way that the system is linear in the state, even
though no state augmentation is performed. Common to
both solutions is a constructive observability analysis,
using linear systems theory, which enables the design of
Kalman filters with globally exponentially stable error
dynamics. The multirate characteristics of the sensors are
also accounted for in both filter designs.

The paper is organized as follows. In Section II, the
problem considered in the paper and the nominal system
dynamics are introduced. The first solution is derived and
analyzed in Section III, whereas the second solution is
presented in Section IV. Simulation results, including

Monte Carlo runs and comparison with both the EKF and
the Bayesian Cramér–Rao bound, are discussed in Section
V. Finally, Section VI summarizes the main results of the
paper.

A. Notation

Throughout the paper, the symbols 0 and I denote
a matrix of 0s and the identity matrix, respectively,
while diag(A1, . . . , An) is a block diagonal matrix. The
special orthogonal group is denoted by SO(3) :=
{X ∈ R

3×3 : XTX = I, det(X) = 1}, and the set of unit
vectors is defined as S(2) := {x ∈ R

3 : ‖x‖ = 1}.
II. PROBLEM STATEMENT

Consider a vehicle moving in a mission scenario where
a set of landmarks are fixed, and suppose that the vehicle
measures the bearing to each of the landmarks. The vehicle
is assumed to be moving relatively to a fluid, which has
constant velocity. Further consider that the vehicle is
equipped with a relative velocity sensor and an AHRS that
provides its attitude. The problem considered in this paper
is that of designing an estimator for the position and
velocity of the vehicle based on the available data.

Denote by {I} an inertial coordinate reference frame
and by {B} a coordinate frame attached to the vehicle,
usually called the body-fixed frame. Let p(t) ∈ R

3 be the
inertial position of the vehicle, and denote by v(t) ∈ R

3 its
inertial velocity, expressed in {I}, such that ṗ(t) = v(t).
Let the inertial velocity of the fluid be vf(t) ∈ R

3,
expressed in inertial coordinates, and denote by vr(t) ∈ R

3

the velocity of the vehicle relative to the fluid, expressed
in {B}, as measured by the relative velocity sensor.
Therefore,

v (t) = R (t) vr (t) + vf (t) ,

where R(t) ∈ SO(3) is the rotation matrix from {B} to {I},
which is provided by the AHRS. Finally, let si ∈ R

3, i = 1,
. . . , L, denote the inertial positions of the landmarks. Then
the bearing measurements are given by

di (k) = RT (tk)
si − p (tk)

‖si − p (tk)‖ ∈ S (2) , (1)

i = 1, . . . , L, with tk = t0 + kT, k ∈ N, where T > 0 is the
sampling period and t0 is the initial time.

Assuming that the velocity of the fluid vf(t) is constant,
the nominal system dynamics can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ṗ (t) = vf (t) + R (t) vr (t)

v̇f (t) = 0

d1 (k) = RT (tk) s1−p(tk)
‖s1−p(tk)‖

...

dL (k) = RT (tk) sL−p(tk)
‖sL−p(tk)‖

. (2)

The problem considered here is that of designing an
estimator for the nonlinear continuous/discrete system (2),
given vr(t), R(t), and di(tk), i = 1, . . . , L, with globally
exponentially stable error dynamics.
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A. Discrete-Time System Dynamics

As the bearing measurements, which are used to drive
the estimation error to zero, are only available at
discrete-time instants, it is of interest to compute the
equivalent discrete-time system dynamics, which are
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p (tk+1) = p (tk) + T vf (tk) + u (k)

vf (tk+1) = vf (tk)

d1 (k) = RT (tk) s1−p(tk)
‖s1−p(tk)‖

...

dL (k) = RT (tk) sL−p(tk)
‖sL−p(tk)‖

, (3)

with

u (k) :=
∫ tk+1

tk

R (τ ) vr (τ ) dτ.

In practice, one aims at determining an estimator
for the discrete-time nonlinear system (3), as the
measurements that are used to drive the estimation error
to zero are available in discrete time. As the other
measurements are available in continuous time (or at high
rates), open-loop propagation of the state estimates can be
carried out between bearing updates to yield estimates in
continuous time (or at high rates). This will be detailed
later.

III. FILTER DESIGN WITH STATE AUGMENTATION

A. State Augmentation

This section details a state augmentation procedure
that allows us to obtain a linear system useful for the
design of an estimator for the nonlinear system (3). In
short, the distances to each landmark are added to the
system state, their dynamics are derived as a function of
the whole state, and the output is redefined considering the
added states so that the system can be regarded as linear.

Define as system states

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 (k) := p (tk)

x2 (k) := vf (tk)

x3 (k) := ‖s1 (k) − p (tk)‖
...

x2+L (k) := ‖sL (k) − p (tk)‖

,

where the distances between each landmark and the
vehicle are included as additional states. In order to derive
the dynamics of the additional states, notice that from (1)
it is possible to write

x2+i (k + 1) di (k + 1) = RT (tk+1) [si − x1 (k + 1)] ,

(4)
i = 1, . . . , L. Now, left-multiplying both sides of (4) by
dT

i (k + 1) and using the dynamics for x1(k) given by (3)

yields

x2+i (k + 1) = dT
i (k + 1) RT (tk+1) si

− dT
i (k + 1) RT (tk+1) x1 (k)

− T dT
i (k + 1) RT (tk+1) x2 (k)

− dT
i (k + 1) RT (tk+1) u (k) , (5)

i = 1, . . . , L. The evolution of x2 + i(k) described by (5) is
undesirable, as x2 + i(k + 1) does not depend on x2 + i(k). In
order to avoid that, take (4) at time tk, which gives

x2+i (k) di (k) = RT (tk) [si − x1 (k)] , (6)

i = 1, . . . L. Left-multiplying both sides of (6) by R(tk)
gives

si − x1 (k) = x2+i (k) R (tk) di (k) ,

which allows us to rewrite (5) as

x2+i (k + 1) = −T dT
i (k + 1) RT (tk+1) x2 (k)

+ dT
i (k + 1) RT (tk+1) R (tk) di (k) x2+i (k)

− dT
i (k + 1) RT (tk+1) u (k) , (7)

i = 1, . . . , L. Finally, left-multiply both sides of (4) by
R(tk + 1), which allows us to write

x1 (k + 1) + x2+i (k + 1) R (tk+1) di (k + 1) = si , (8)

i = 1, . . . , L.
Define the augmented state vector

x (k) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 (k)

x2 (k)

x3 (k)
...

x2+L (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
3+3+L.

Discarding the original nonlinear output (1) and
considering (8) instead allows us to write the discrete-time
linear system{

x (k + 1) = A (k) x (k) + B (k) u (k)

y (k + 1) = C (k + 1) x (k + 1)
, (9)

where

A (k) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I T I 0

0 I 0

0 −T dT
1 (k + 1) RT (tk+1)

...
... A33 (k)

0 −T dT
L (k + 1) RT (tk+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(3+3+L)×(3+3+L),

A33 (k) := diag
(
dT

1 (k + 1) RT (tk+1) R (tk) d1 (k) , . . . ,

dT
L (k + 1) RT (tk+1) R (tk) dL (k)

)
,
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B (k) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I

0

−dT
1 (k + 1) RT (tk+1)

...

−dT
L (k + 1) RT (tk+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(3+3+L)×3,

and

C (k) :=

⎡
⎢⎢⎣

I 0 R (tk) d1 (k) 0 0
...

...
. . .

I 0 0 0 R (tk) dL (k)

⎤
⎥⎥⎦

∈ R
3L×(3+3+L).

B. Observability Analysis of the Augmented System

The observability of the linear discrete-time system (9)
is detailed in the following theorem.

THEOREM 1 Suppose that, for some time ka ≥ k0, there
exist i, j, l, m ∈ {1, . . . , L} such that

di (ka) �= α1dj (ka) (10)

and

dl (ka + 1) �= α2dm (ka + 1) (11)

for all α1, α2 ∈ R. Then the discrete-time linear system (9)
is observable on [ka, ka + 2]—i.e., the initial state x(ka) is
uniquely determined by the input {u(k):k = ka, ka + 1}
and the output {y(k):k = ka, ka + 1}.

PROOF The proof reduces to showing that the
observability matrix O(ka, ka + 2) associated with the
pair (A(k), C(k)) on [ka, ka + 2], ka ≥ k0, has rank equal to
the number of states of the system. Fix ka ≥ k0 and
suppose that the rank of the observability matrix is less
than the number of states of the system. Then there exists
a unit vector

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cT
1

cT
2

c3

...

c2+L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
3+3+L,

with c1, c2 ∈ R
3, c3, . . . , c2+L ∈ R, such that

O(ka, ka + 2)c = 0 or, equivalently,{C (ka) c = 0

C (ka + 1) A (ka) c = 0
. (12)

Expanding the first equation of (12) gives⎧⎪⎪⎨
⎪⎪⎩

c1 + c3R
(
tka

)
d1 (ka) = 0

...

c1 + c2+LR
(
tka

)
dL (ka) = 0

. (13)

Under the conditions of the theorem, there exist i, j ∈
{1, . . . , L} such that (10) holds for all α1. Taking the
difference between the ith and jth equations of (13) gives

c2+iR
(
tka

)
di (ka) − c2+j R

(
tka

)
dj (ka) = 0

or, equivalently,

c2+idi

(
kia

) − c2+j dj

(
kia

) = 0. (14)

If (10) holds for all α1, then the only solution of (14) is

c2+i = c2+j = 0. (15)

In turn, substituting (15) in the ith or jth equation of
(13) allows us to conclude that

c1 = 0. (16)

Substituting (16) in the remaining equations of (13)
gives

c2+1 = c2+2 = · · · = c2+L = 0. (17)

Now, substituting (16) and (17) in the second equation
of (12) allows us to write⎧⎪⎪⎨
⎪⎪⎩

T
[
I − R

(
tka+1

)
d1 (ka + 1) dT

1 (ka + 1) RT
(
tka+1

)]
c2 = 0

...

T
[
I − R

(
tka+1

)
dL (ka + 1) dT

L (ka + 1) RT
(
tka+1

)]
c2 = 0

or, equivalently,⎧⎪⎪⎨
⎪⎪⎩

[
I − d1 (ka + 1) dT

1 (ka + 1)
]

RT
(
tka+1

)
c2 = 0

...[
I − dL (ka + 1) dT

L (ka + 1)
]

RT
(
tka+1

)
c2 = 0

. (18)

Under the conditions of the theorem, (11) holds for all
α2, which in turn implies that the only solution of (18) is
c2 = 0. But this contradicts the hypothesis of the existence
of a unit vector c such that O(ka, ka + 2)c = 0, which
means that the observability matrix O(ka, ka + 2) must
have rank equal to the number of states of the system—and
thus the system is observable, which concludes the proof.

C. Observability of the Nonlinear System

In Section III-A a state augmentation procedure was
presented that leads to a linear time-varying system related
to the original nonlinear system. Its observability was
characterized in Section III-B, and in this section its
usefulness for the design of an estimation solution for the
original nonlinear system is demonstrated. Sufficient
conditions for the observability of the nonlinear system (3)
are derived in the following theorem, which also relates
the augmented system (9) with the nonlinear system (3).

THEOREM 2 Suppose that the conditions of Theorem 1
hold for some ka ≥ k0. Then:

1) The nonlinear system (3) is observable on the
interval [ka, ka + 2] in the sense that the initial state
{p(tka

), vf(tka
)} is uniquely determined by the input {u(k):k

= ka, ka + 1} and the output {d1(k), . . . , dL(k):k = ka,
ka + 1}; and
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2) the initial condition of the augmented system (9)
matches that of (3), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1 (ka) = p
(
tka

)
x2 (ka) = vf

(
tka

)
x3 (ka) = ∥∥s1 − p

(
tka

)∥∥
...

x2+L (ka) = ∥∥sL − p
(
tka

)∥∥

.

PROOF Let

x (ka) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 (ka)

x2 (ka)

x3 (ka)
...

x2+L (ka)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
3+3+L

be the initial condition of (9) and let p(tka
) and vf(tka

) be
the initial condition of (3). From the output of (9) for
k = ka, it must be true that⎧⎪⎪⎨

⎪⎪⎩

x1 (ka) + x3 (ka) R
(
tka

)
d1 (ka) = s1

...

x1 (ka) + x2+L (ka) R
(
tka

)
dL (ka) = sL

, (19)

and from the output of (3) for k = ka, it must be true that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1 (ka) = RT
(
tka

) s1−p(tka )
‖s1−p(tka )‖

...

dL (ka) = RT
(
tka

) sL−p(tka )
‖sL−p(tka )‖

. (20)

Rearrange (20) as⎧⎪⎪⎨
⎪⎪⎩

p
(
tka

) + ∥∥s1 − p
(
tka

)∥∥ R
(
tka

)
d1 (ka) = s1

...

p
(
tka

) + ∥∥sL − p
(
tka

)∥∥ R
(
tka

)
dL (ka) = sL

. (21)

Under the conditions of the theorem, (10) holds
for all α1. Taking the differences between the ith and jth
equations of both (19) and (21) and comparing the results
yields[

x2+i (ka) − ∥∥si − p
(
tka

)∥∥]
R

(
tka

)
di (ka)

− [
x2+j (ka) − ∥∥sj − p

(
tka

)∥∥]
R

(
tka

)
dj (ka) = 0

or, equivalently,[
x2+i (ka) − ∥∥si − p

(
tka

)∥∥]
di (ka)

− [
x2+j (ka) − ∥∥sj − p

(
tka

)∥∥]
dj (ka) = 0. (22)

As (10) holds for all α1, it follows from (22) that{
x2+i (ka) = ∥∥si − p

(
tka

)∥∥
x2+j (ka) = ∥∥sj − p

(
tka

)∥∥ . (23)

Now, comparing the ith (or jth) equations of (19) and
(21), and using (23), it must be true that

x1 (ka) = p
(
tka

)
. (24)

Using (24) and comparing (19) with (21) allows us to
conclude that ⎧⎪⎪⎨

⎪⎪⎩

x3 (ka) = ∥∥s1 − p
(
tka

)∥∥
...

x2+L (ka) = ∥∥sL − p
(
tka

)∥∥
. (25)

Now compute the output of the linear system (9) for k
= ka + 1 as a function of its initial state, giving

x1 (ka) + T x2 (ka) + u (ka)

− T dT
i (ka + 1) RT

(
tka+1

)
x2 (ka) R

(
tka+1

)
di (ka + 1)

+ dT
i (ka + 1) RT

(
tka+1

)
R

(
tka

)
di (ka) x2+i (ka)

R
(
tka+1

)
di (ka + 1)

− dT
i (ka + 1) RT (

tka+1
)

u (ka) R
(
tka+1

)
di (ka + 1) = si

(26)

for all i ∈ {1, . . . , L}. To compute the output of the
nonlinear system (3) for k = ka + 1 as a function of its
initial state, first write

di (ka + 1) = RT
(
tka+1

) si − p
(
tka

) − T vf
(
tka

) − u (ka)∥∥si − p
(
tka+1

)∥∥
(27)

for all i ∈ {1, . . . , L}. Rearrange (27) as

p
(
tka

) + T vf
(
tka

) + u (ka)

+ ∥∥si − p
(
tka+1

)∥∥ R
(
tka+1

)
di (ka + 1) = si (28)

for all i ∈ {1, . . . , L}. Following the reasoning used to
derive (7), we can express ‖si − p(tka+1)‖ as

‖si − p(tka+1)‖ = −T dT
i (ka + 1)RT(tka+1)vf(tka

)

+ dT
i (ka + 1)RT(tka+1)R(tka

)di(ka)‖si − p(tka
)‖

− dT
i (ka + 1)RT(tka+1)u(ka)

for all i ∈ {1, . . . , L}. Substituting that in (28) yields

p
(
tka

) + T vf
(
tka

) + u (ka)

− T dT
i (ka + 1) RT (

tka+1
)

vf
(
tka

)
R

(
tka+1

)
di (ka + 1)

+ dT
i (ka + 1) RT (

tka+1
)

R
(
tka

)
di (ka)∥∥si − p

(
tka

)∥∥ R
(
tka+1

)
di (ka + 1)

− dT
i (ka + 1) RT

(
tka+1

)
u (ka) R

(
tka+1

)
di (ka + 1) = si

(29)

for all i ∈ {1, . . . , L}. Now, comparing (26) with (29) and
using (24) and (25) allows us to conclude that

T
[
I − R

(
tka+1

)
di (ka + 1) dT

i (ka + 1) RT (
tka+1

)]
[
vf

(
tka

) − x2 (ka)
] = 0

for all i ∈ {1, . . . , L} or, equivalently,[
I − di (ka + 1) dT

i (ka + 1)
]

RT
(
tka+1

)
[
vf

(
tka

) − x2 (ka)
] = 0 (30)

for all i ∈ {1, . . . , L}. Under the conditions of the
theorem, (11) holds for all α2, which in turn implies that
the only solution of (30) is x2(ka) = vf(tka

). This
concludes the second part of the theorem, as it has been
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shown that in the conditions of the theorem, the initial
condition of (3) corresponds to that of (9). Notice that,
using Theorem 1, the initial condition of (9) is uniquely
determined. Additionally, because the two initial
conditions match, it follows that the initial condition of (3)
is also uniquely determined, thus concluding the proof.

Theorem 2 presents only sufficient observability
conditions. In the following theorem these are shown to be
necessary if the same interval length is considered.

THEOREM 3 The nonlinear system (3) is observable on
[ka, ka + 2], in the sense that the initial state
{p(tka

), vf(tka
)} is uniquely determined by the input {u(k):k

= ka, ka + 1} and the output {d1(k), . . . , dL(k):k = ka,
ka + 1}, if and only if the conditions of Theorem 2 hold.

PROOF See Appendix A.

REMARK 1 In short, the observability conditions derived
in this paper amount to saying that if there are two
consecutive instants such that there are two noncollinear
bearing measurements on each instant, then the system is
observable. Three important situations should be
considered in what concerns the number and configuration
of landmarks: 1) If there are at least three noncollinear
landmarks, which is a realistic and typical scenario, the
system is always observable, as there are always at least
two noncollinear bearing measurements; 2) if two
landmarks are available, the system is observable if the
vehicle stays away from the line formed by the two
landmarks; and 3) if there is only one landmark,
observability may still be achieved over a longer
period—this case falls out of the scope of this paper, and
has been treated in [21].

D. Filter Design

The results presented in the previous section are
constructive in the sense that the design of an estimator for
(3) can be obtained by designing an estimator for the
linear discrete-time system (9). This yields estimates, in
discrete time, of the position of the vehicle and the
velocity of the fluid. As all the required quantities are
available to obtain estimates of these quantities in
continuous time by open-loop propagation, between
discrete-time updates one may use

{
p̂ (t) = p̂ (tk) + (t − tk) v̂f (tk) + ∫ t

tk
R (τ ) vr (τ ) dτ

v̂f (t) = v̂f (tk)
,

(31)
where tk < t < tk + 1.

IV. FILTER DESIGN WITHOUT STATE
AUGMENTATION

This section presents an alternative method to estimate
the position of the vehicle and the velocity of the fluid that
does not require state augmentation. In short, a different
artificial output, which is linear in the system state, is

obtained, and it is shown that its information suffices to
retrieve the state of the system.

In order to construct an artificial output, notice first
that as di, i = 1, . . . , L, are unit vectors. We have

di (k) − (
dT

i (k) di (k)
)

di (k)

= [
I − di (k) dT

i (k)
]

di (k) = 0. (32)

Substituting (1) in (32) allows us to write

[
I − di (k) dT

i (k)
]

RT (tk)
si − p (tk)

‖si − p (tk)‖ = 0,

which allows us to express an artificial linear output as[
I − di (k) dT

i (k)
]

RT (tk) p (tk)

= [
I − di (k) dT

i (k)
]

RT (tk) si

for all i ∈ {1, . . . L}.
The solution proposed in this section consists in

replacing the nonlinear outputs of (3) with (33), which
gives the linear system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
p (tk+1)

vf (tk+1)

]
= A (k)

[
p (tk)

vf (tk)

]
+ Bu (k)

y (k) = C (k)

[
p (tk)

vf (tk)

] , (33)

where

A (k) =
[

I T I

0 I

]
∈ R

6×6,

B =
[

I

0

]
∈ R

6×3,

and

C (k) =

⎡
⎢⎢⎣

[
I − d1 (k) dT

1 (k)
]

RT (tk) 0
...

...[
I − dL (k) dT

L (k)
]

RT (tk) 0

⎤
⎥⎥⎦ ∈ R

3L×6.

The following theorem addresses the observability
of (33).

THEOREM 4 The discrete-time linear system (33) is
observable on [ka, ka + 2]—i.e., the initial state
{p(tka

), vf(tka
)} is uniquely determined by the input {u(k):k

= ka, ka + 1} and the output {y(k):k = ka, ka + 1}—if and
only if the conditions of Theorem 1 hold.

PROOF See Appendix B.

The filter design follows as in Section III-D, only now
an estimator is designed, in discrete time, for the
discrete-time linear system (33), whereas the open-loop
propagation is given by (31).

V. SIMULATION RESULTS

Numerical simulations are presented and discussed in
this section to evaluate the achievable performance with
the proposed solutions for navigation based on multiple
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Fig. 1. Trajectory described by vehicle.

bearing measurements. First, the setup that is considered
in the simulations is described in Section V-A. In order to
evaluate the performance of the proposed solutions, the
Bayesian Cramér–Rao bound, briefly described in Section
V-B, is computed. The two different proposed solutions
are detailed in Sections V-C and V-D. Finally, Monte
Carlo results are discussed in Section V-E.

A. Setup

In the simulations, an autonomous underwater vehicle
is considered to be moving in the presence of ocean
currents. The initial position of the vehicle is set to p(0) =
[0 0 10]T m, while the ocean-current velocity is set to vc(t)
= [0.1 −0.2 0]T m/s. The trajectory that is described by
the vehicle is shown in Fig. 1. The vehicle is assumed to
measure the bearings to a set of three landmarks, whose
inertial positions are s1 = [0 0 0]T m, s2 = [500 0 100] m,
and s3 = [0 500 100] m. Hence, as three noncollinear
landmarks are available, the system is observable.

Inclination and azimuth angles to each of the
landmarks are assumed to be measured. Hence, the
directions are obtained from

di =

⎡
⎢⎣

sin (θi) cos (ϕi)

sin (θi) sin (ϕi)

cos (θi)

⎤
⎥⎦ ,

i = 1, 2, 3, where θ i and ϕi are, respectively, the inclination
and azimuth angles to the ith landmark. A sampling period
of T = 1 s is considered for these angle measurements,
and zero-mean Gaussian noise, with standard deviation of
1◦, is also added. The vehicle’s relative velocity, measured
by a Doppler velocity log, is assumed to available at 100
Hz and is corrupted by additive zero-mean Gaussian noise,
with standard deviation of 0.01 m/s. The attitude—
provided by an AHRS, available at 100 Hz, and
parameterized by roll, pitch, and yaw Euler angles—is
also assumed to be corrupted by zero-mean additive
Gaussian noise, with standard deviation of 0.03◦ for the
roll and pitch and 0.3◦ for the yaw.

The discrete-time input u(k), corresponding to a
definite integral, is approximated using the trapezoid rule,
while the open-loop solution of the position and

ocean-current velocity estimates, between bearing
measurements, is computed using the Euler method. In
fact, as it also corresponds to a definite integral, it is
equivalent to the application of the trapezoid rule.

B. Bayesian Cramér–Rao Bound

Although the optimal design of estimators for
nonlinear systems is still an open field of research, there
exist some theoretical bounds on achievable performance
in some cases. In particular, for a discrete-time system
with linear process and nonlinear output, considering
additive white Gaussian noise, it is possible to compute
the Bayesian Cramér–Rao bound (BCRB), which provides
a lower bound on the covariance matrix of any given
causal (realizable) unbiased estimator [22].

Consider the general discrete-time system{
x (k + 1) = F (k) x (k) + B (k) u (k) + nx (k)

y (k) = h (x (k)) + ny (k)
, (34)

where x(k) is the state vector; u(k) is a deterministic
system input; y(k) is the system output, which depends on
the state vector through the nonlinear function h(x(k));
nx(k) follows a zero-mean Gaussian distribution with
covariance Qx(k); and ny(k) follows a zero-mean Gaussian
distribution with covariance Qy(k). The recursion that
provides the BCRB is similar to that of the EKF, with the
difference that the Jacobian of h(x(k + 1)) is evaluated at
the true state (see [22, Section 2.3.3]). Using the
information matrix representation, the BCRB lower bound
PL(k) is given by

PL (k) = J−1 (k) ,

where J(k) satisfies the recursion

J (k + 1) = [
Qx (k) + F (k) J−1 (k) FT (k)

]−1 + Pm (k + 1) .

In this expression, Pm(k + 1) accounts for the
covariance reduction due to the observations, given by

Pm (k + 1)

= Ex(k+1)
{
H̃T (x (k + 1)) Q−1

y (k + 1) H̃ (x (k + 1))
}
,

(35)

where H̃(x(k + 1)) is the Jacobian of the nonlinear
observation function evaluated at x(k + 1). The subscript
m stands for measurement.

The expectation in (35) is computed with respect to the
state vector x(k + 1) and thus is usually evaluated by
resorting to Monte Carlo simulations. In nonlinear
estimation problems, as in this paper, it is often of interest
to evaluate the performance along specific or nominal
trajectories x̄(k). In this case, the term Pm(k + 1) can be
simplified to

Pm (k + 1) = H̃T (x̄ (k + 1)) Q−1
y (k + 1) H̃ (x̄ (k + 1)) ,

which allows assessment of the achievable performance
for any tracker or estimator given the specific underlying
problem structure. The resulting equations are analogous
to the information-filter version of the EKF, whereas the
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Fig. 2. Initial convergence of errors (filter with state augmentation).

Jacobians are computed at the nominal trajectories x̄(k)
instead of the estimated trajectories, as convincingly
argued in [22].

Using inclination and azimuth angles, and considering
additive noise in these angles as well as in the relative
velocity measurements, the discrete-time system (3) can
be written in the form of (34), and hence we can compute
the BCRB. This lower bound was computed and is
presented in the following.

C. Filter With State Augmentation

Following the results presented in Section III, a
Kalman filter is applied to the augmented system (9),
which yields globally exponentially stable error dynamics.
To tune the Kalman filter, the state disturbance covariance
matrix was chosen as diag(0.012I, 0.0012I, 10I) and the
output noise covariance matrix was set to 10I. These
values were chosen empirically to adjust the performance
of the proposed solution with state augmentation.

The initial condition for the position was set at
x̂1(0) = [ −1000 −1000 100 ]T m, while the ocean-current
velocity was set to zero. The states corresponding to the
ranges were also set to zero. In this way, the filter was
initialized with large position and range errors. The initial
covariance of the filter was set to diag(102I, I, I).

The initial convergence of the position and velocity
errors is depicted in Fig. 2. As can be seen, the error

Fig. 3. Steady-state evolution of errors (filter with state augmentation).

converges very quickly to the neighborhood of 0 (it does
not converge to 0 only due to the presence of sensor
noise). The detailed evolutions of the position and velocity
errors are depicted in Fig. 3. In this plot, the 1σ bounds
obtained from the covariance of the Kalman filter
(corresponding to the square root of the diagonal elements
of the Kalman filter covariance matrix) are depicted in
dashed lines. Finally, the 1σ BCRB (more specifically, the
square root of the diagonal elements of PL(k)) is plotted in
solid thicker lines. Most noticeable is that the position and
velocity errors remain, most of the time, below 2 m and
0.02 m/s, respectively. The achieved performance is
consistent with the lower BCRB, and it is also possible to
observe that the filter is sometimes slightly overconfident,
particularly along the x-coordinate of the position. For the
sake of completeness, the evolution of the range errors is
shown in Fig. 4.

D. Filter Without State Augmentation

In this section, a Kalman filter is applied to the
alternative system proposed in Section IV. To tune the
Kalman filter, the state disturbance covariance matrix was
chosen as diag(0.012I, 0.0012I) and the output noise
covariance matrix was set to 10I. These values were
chosen empirically to adjust the performance of the
proposed solution without state augmentation. All initial
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Fig. 4. Evolution of range errors (filter with state augmentation).

conditions were set as before, only now there are no
additional states corresponding to the ranges.

The initial convergence of the position and velocity
errors is depicted in Fig. 5. As can be seen, the error
converges very quickly to the neighborhood of 0 (it does
not converge to 0 only due to the presence of sensor noise).
Comparing Figs. 2 and 5, one can conclude that the filter
with state augmentation converges slightly slower than the
one without state augmentation, which perhaps can be
explained by the additional burden of also estimating the
distances. The detailed evolutions of the position and
velocity errors are depicted in Fig. 6, along with the 1σ

bounds obtained from the Kalman-filter covariance matrix
and the BCRB, just as in Fig. 3. The most noticeable
feature is, again, that the position and velocity errors
remain most of the time below 2 m and 0.02 m/s,
respectively. The steady-state performance is very similar
to that obtained with the filter with state augmentation.

E. Performance Comparison

The proposed solutions were compared with the EKF
applied to the original nonlinear system (3). The initial
estimates were set as in the previous simulation. In order
to achieve good performance, the state disturbance matrix
was set to diag(0.012I, 0.0012I) and the output noise
covariance matrix was set to (2 × 10−5)I.

Fig. 5. Initial convergence of errors (filter without state augmentation).

The initial convergence of the position and velocity
errors is depicted in Fig. 7. In comparison with the
proposed solutions, the EKF exhibits a slightly slower
convergence and much larger initial transients. The
detailed evolutions of the position and velocity errors are
depicted in Fig. 8, along with the 1σ bounds obtained
from the EKF covariance matrix and the BCRB. The EKF
performs, in steady state, similarly to the proposed
solutions. It does not, however, offer global convergence
guarantees.

Finally, in order to better evaluate the performance of
the proposed solutions, the Monte Carlo method was
applied, and 1000 simulations were carried out with
different, randomly generated noise signals. The standard
deviation of the errors were computed in steady state (for
t ≥ 360 s) for each simulation and averaged over the set of
simulations. The results are depicted in Table I. The
results with the EKF are also included. Additionally, the
average steady-state 1σ BCRB was computed (for
t ≥ 360 s), as shown in Table I. Comparing the
performance of the proposed solutions, as well as that of
the EKF, it can be seen that they are all very similar.
Notice that the proposed solutions may achieve smaller
standard deviation than the theoretical BCRB. This is so
because the BCRB assumes an unbiased estimator,
whereas the proposed solutions may be slightly biased,
which is not uncommon in nonlinear estimation problems.
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Fig. 6. Steady-state evolution of errors (filter without state
augmentation).

TABLE I
Standard Deviation of the Steady-State Estimation Error, Averaged Over

1000 Runs of the Simulation

Variable With State Without State
(Unit) Augmentation Augmentation

p̃x (m) 89.4 × 10−2 89.4 × 10−2

p̃y (m) 41.5 × 10−2 41.4 × 10−2

p̃z (m) 70.0 × 10−2 70.7 × 10−2

ṽfx (m/s) 9.72 × 10−3 9.72 × 10−3

ṽfy (m/s) 4.96 × 10−3 5.00 × 10−3

ṽfz (m/s) 9.06 × 10−3 9.06 × 10−3

Variable (Unit) EKF Average BCRB
p̃x (m) 88.4 × 10−2 79.6 × 10−2

p̃y (m) 44.4 × 10−2 46.2 × 10−2

p̃z (m) 65.0 × 10−2 52.6 × 10−2

ṽfx (m/s) 12.2 × 10−3 10.2 × 10−3

ṽfy (m/s) 8.37 × 10−3 8.57 × 10−3

ṽfz (m/s) 11.9 × 10−3 8.92 × 10−3

VI. CONCLUSIONS

This paper addressed the problem of navigation based
on multiple bearing measurements, and two different
solutions were proposed. First, the observability of the
system was addressed and sufficient and necessary
conditions were derived. The observability analyses were
constructive, and in both cases, the discrete-time nature of
the bearing measurements was taken into account and

Fig. 7. Initial convergence of EKF errors.

globally exponentially stable error dynamics achieved
with the design of estimators for linear systems. This is a
result of appropriate state augmentation and output
transformations that allow consideration of linear systems
for a problem that is originally nonlinear, without
resorting to any kind of approximations. Simulation
results were discussed, including a comparison with the
extended Kalman filter and the Bayesian Cramér–Rao
bound, as well as Monte Carlo runs. In short, the proposed
filters achieve performances that are tight to the theoretical
lower bound and at the same time provide global
convergence guarantees. In terms of computational
complexity, the solution with state augmentation has more
states than both the solution without state augmentation
and the EKF, which have the same number of states.

APPENDIX A PROOF OF THEOREM 3

The sufficiency part of Theorem 3 is shown in
Theorem 2, and thus only the necessity of the conditions
needs to be established. Suppose first that (10) does not
hold. That means that all directions are identical for
k = ka. Let du

i (k), k = ka, ka + 1, denote the output of the
nonlinear system (3) with initial condition

{
pu

(
tka

) = po

vu
f

(
tka

) = vo
s
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Fig. 8. Steady-state evolution of EKF errors.

and input u(k), k = ka, ka + 1—i.e.,
{

du
i (ka) = si−po

‖si−po‖ =: do

du
i (ka + 1) = si−po−T vo

s −u(ka )

‖si−po−T vo
s −u(ka )‖

for all i ∈ {1, . . . , L}. Consider a different initial condition{
pv

(
tka

) = po − αdo

vv
f

(
tka

) = vo
s + α

T
do

,

with α > 0, and denote by dv
i (k), k = ka, ka + 1, the

corresponding output for the same input. Then

dv
i (ka) = si − po + αdo

‖si − po + αdo‖ = (‖si − po‖ + α) do

‖(‖si − po‖ + α) do‖
= do = du

i (ka)

and

dv
i (ka + 1) = si − po + αdo − T vo

s − αdo − u (ka)∥∥si − po + αdo − T vo
s − αdo − u (ka)

∥∥
= si − po − T vo

s − u (ka)∥∥si − po − T vo
s − u (ka)

∥∥ = du
i (ka + 1)

for all i ∈ {1, . . . L}. It has been shown that if (10) does
not hold, then there exist at least two initial conditions
such that the system output is identical, which means that
the nonlinear system (3) is not observable.

Suppose now that (11) does not hold. That means that
all directions are identical for k = ka + 1. Let du

i (k), k =
ka, ka + 1, denote the output of the nonlinear system (3)
with initial condition {

pu
(
tka

) = po

vu
f

(
tka

) = vo
s

and input u(k), k = ka, ka + 1— i.e.,
{

du
i (ka) = si−po

‖si−po‖
du

i (ka + 1) = si−po−T vo
s −u(ka )

‖si−po−T vo
s −u(ka )‖ =: do

for all i ∈ {1, . . . , L}. Consider a different initial condition{
pv

(
tka

) = po

vv
f

(
tka

) = vo
s − α

T
do

,

with α > 0, and denote by dv
i (k), k = ka, ka + 1, the

corresponding output for the same input. Then

dv
i (ka) = si − po

‖si − po‖ = du
i (ka)

and

dv
i (ka + 1) = si − po − T vo

s + αdo − u (ka)∥∥si − po − T vo
s + αdo − u (ka)

∥∥
=

(∥∥si − po − T vo
s − u (ka)

∥∥ + α
)

do∥∥(∥∥si − po − T vo
s − u (ka)

∥∥ + α
)

do
∥∥

= do = du
i (ka + 1)

for all i ∈ {1, . . . , L}. It has been shown that if (11) does
not hold, then there exist at least two initial conditions
such that the system output is identical, which means that
the nonlinear system (3) is not observable. This concludes
the proof, as it has been shown that if either (10) or (11)
does not hold, then the system is not observable, and thus
both conditions are necessary for the nonlinear system (3)
to be observable.

APPENDIX B PROOF OF THEOREM 4

The proof amounts to showing that the observability
matrix O(ka, ka + 2) associated with the pair (A(k), C(k))
on [ka, ka + 2] has rank equal to the number of states of
the system if and only if both (10) and (11) hold for some
i, j, l, m ∈ {1, . . . , L}. Suppose that the system is not
observable and both (10) and (11) hold for some i, j, l, m ∈
{1, . . . , L}. Then there exists a unit vector

c =
[

c1

c2

]
∈ R

6,

c1, c2 ∈ R
3,

such that O(ka, ka + 2)c = 0 or, equivalently,
{

C (ka) c = 0

C (ka + 1) A (ka) c = 0
. (36)
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From the first equation of (36) we have⎧⎪⎪⎨
⎪⎪⎩

[
I − d1 (ka) dT

1 (ka)
]

RT
(
tka

)
c1 = 0

...[
I − dL (ka) dT

L (ka)
]

RT
(
tka

)
c1 = 0

. (37)

If (10) holds for some i, j ∈ {1, . . . , L}, then the only
solution of (37) is c1 = 0. Substituting that in the second
equation of (36) gives⎧⎪⎪⎨

⎪⎪⎩

T
[
I − d1 (ka + 1) dT

1 (ka + 1)
]

RT
(
tka+1

)
c2 = 0

...

T
[
I − dL (ka + 1) dT

L (ka + 1)
]

RT
(
tka+1

)
c2 = 0

.

(38)
As (11) is assumed to hold for some l, m ∈ {1, . . . , L},

the only solution of (38) is c2 = 0. But this contradicts the
hypothesis of the existence of a unit vector c such that (36)
holds. If both (10) and (11) hold for some i, j, l, m ∈
{1, . . . , L}, then the system is observable, thus concluding
the proof of sufficiency.

To show necessity, suppose first that (10) is not
verified. Then, for k = ka, all directions are identical. Let
di(ka) = do for all i = 1, . . . , L and let

c =
[

R
(
tka

)
do

0

]
.

Then O(ka, ka + 2)c = 0, which means that the system is
not observable. Suppose now that (11) is not verified.
Then, for k = ka + 1, all directions are identical. Let
di(ka + 1) = do for all i = 1, . . . , L and let

c =
[

0

R
(
tka+1

)
do

]
.

Then O(ka, ka + 2)c = 0, which means that the system
is not observable. Therefore, if either (10) or (11) is not
verified, the system (33) is not observable, which implies
that if (33) is observable, then both (10) and (11) must
hold, therefore concluding the proof of necessity.
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(IST), Lisbon, Portugal. From 2004 to 2006, he was a monitor with the department of
mathematics, IST, where he is currently an invited assistant professor in the department
of electrical and computer engineering. His research interests include sensor-based
navigation and control of autonomous vehicles. Dr. Batista has received the Diploma de
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