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This work tackles the problem of estimating the position of a
marine mammal moving at the ocean surface by using an unmanned
aerial vehicle equipped with a camera, a GPS receiver, and an
attitude and heading reference system. Two Kalman filters—inserted
on a multiple-model adaptive estimation framework—which use an
unstable model for the target depending on an unknown parameter
that must be identified (its angular speed) are proposed and
compared with an extended Kalman filter.
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I. INTRODUCTION

In the last decades there has seen a significant increase
in the use of systems such as acoustic telemetry [1], or
pop-up satellite archival tags [2], to study, for instance, the
daily motion patterns and behavior of marine animals
[1, 3] and migration patterns in marine protected areas [1].
More recently, the developments made in the capabilities
of unmanned aerial vehicles (UAVs) [4] have transformed
them into useful tools for ocean-surface data acquisition.
However, most of these vehicles have been designed to
conduct simple survey missions that in general do not
require close interaction between the operator and the
environment. Thus it is by now felt that the effective use of
UAVs in demanding marine-science applications must be
clearly demonstrated, namely by evaluating UAV-based
systems in terms of their performance and adaptability to
different missions scenarios.

One of the marine-science areas that can profit from
the use of UAVs is positioning and tracking of marine
mammals [5]. Other applications are also foreseen that use
autonomous vehicles as useful tools to help marine
scientists, namely in measuring the sea surface
temperature and in directing research vessels to new areas
of interest, leading to a more efficient use of the ship time.

In this work, the problem of estimating the position of
a marine mammal moving at the ocean surface is
addressed. With this purpose, a UAV instrumented with a
GPS receiver, an attitude and heading reference system
(AHRS), and an image-acquisition module—which
consists of a digital video camera mounted on a pan-tilt
unit—is considered. The intrinsically nonlinear problem
that results is cast into a linear form by using the
measurements provided by the camera in a nonstandard
manner. Under this scope, two linear Kalman filters (KFs)
are proposed that estimate the state of the target
(composed of its 3-D position and velocity) by merging
the camera measurements with the UAV position and
attitude measurements provided by the GPS receiver and
AHRS, respectively: one, time invariant, that estimates
only the state of the target, and the other, time varying,
that combines estimates of the state of the target with
estimates of the state of the UAV to improve the overall
performance. These filters are included in a
multiple-model adaptive estimation (MMAE) framework;
see [6, 7] for details about this type of approach, which
copes with the unknown nature of one of the parameters of
the model considered for the target (its angular speed). A
set of simulations carried out under realistic noise
conditions is provided, and occlusions, which occur when
the marine mammal dives, are also simulated. For
comparison purposes, results are also presented that are
obtained with an extended Kalman filter (EKF), designed
for the nonlinear system that results from augmenting the
state of the target with its angular speed.

This work is an evolution of that proposed in [8]. The
main differences are 1) a new structure for the
time-invariant and time-varying filters, which were
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modified to accommodate observations that are obtained
according to different transformations of the sensor
measurements; 2) a new (extended) Kalman filter; and
3) new simulation results that compare the performance of
the new filters with that of the EKF and that show that the
true target model is identified correctly.

A. Related Work

The use of UAVs for target tracking and positioning, in
conjunction with vision-based systems, has received a lot
of attention from the scientific community; see the
examples in [9–18]. In addition to all the challenges
associated with the typical vision-based positioning and
tracking systems, in which the cameras are static, using
moving cameras—in this case installed on a UAV—poses
additional difficulties. Given the complexity of the
problem, a number of different approaches have been
pursued. Some of the existing methods try to solve the
problem by imposing constraints on the motion of the
target or of the UAV. The results presented in [17, 18], for
instance, are only possible if the target moves with
constant velocity, and the ones presented in [19] require
the design of a path-planning strategy for the UAV. Both
requirements are very restrictive and difficult to meet in
real scenarios. In [9], a UAV path-planning strategy is also
used, but in this case with the goal of minimizing the
influence of sunlight reflections in the identification of
objects moving at the water surface, not with the goal of
keeping the UAV with a given position and attitude with
respect to the target.

One of the difficulties that arise in visual tracking
using UAVs consists in estimating the altitude of the UAV
(and consequently the altitude of the cameras). Some of
the existing approaches—see for instance [15, 20]—
require the existence of highly accurate geo-referenced
terrain databases, such as the Geographical Information
System, and others (see [21]) use other types of sensors,
like laser scanners. However, accurate terrain databases
are not always available, and such sensors are heavy and a
power burden. In our setup, the need for this type of
approach is significantly reduced, as the target is known to
move at the ocean surface, which can be accurately
approximated by a plane.

Another typical challenge in target tracking is the
occlusion of the moving object. In [12], for instance, the
authors use the redundancy brought into play by the use of
multiple UAVs to improve the target position estimates
and to guarantee a continuous monitoring of the moving
object, even when individual vehicles experience failures.
Such an approach is particularly appropriate for
environments with many obstacles, which is not the case
when the target moves on the ocean. In this situation,
occlusions result mostly from dives of the marine
mammal, and we deal with them by feeding the proposed
estimator with an appropriate model for the target that
allows a good prediction of its position while it is
submerged.

The specific topic of using one camera installed on
a UAV to monitor marine animals has been addressed
before—see, for instance, [13]. However, such research is
mostly focused on the study of an image-processing
method to identify the target (in that case a whale moving
in an ocean environment), whereas the main goal of our
work is to provide new filtering strategies that lead to
improvements in the accuracy of the final estimates for the
target position.

Different frameworks, in which a single UAV is used
to track several targets simultaneously, have also been
studied in the literature. This is the case in [11], where
there are no requirements regarding any particular
path-planning strategy or the existence of a geo-referenced
terrain database. On the other hand, such work uses feature
points extracted from the ground surrounding the targets
to calculate the height of the vehicle, similar to what
happens in [14], where feature points are used to estimate
the pose of the UAV. The use of this type of method is
difficult, if not impossible, in ocean environments, which
are very dynamic and usually featureless.

The problems addressed in [10, 16] are close to the
one addressed here. In the first case, the authors propose a
nonlinear adaptive observer that provides estimates for the
position of the target. This approach differs from our
formulation, which casts the estimation problem into a
linear form. The target position estimates provided by the
second method are biased, as the attitude of the aircraft is
not measured directly (it is inferred using a single-antenna
GPS-based attitude-determination method). This is not the
case for our approach, which makes use of the
measurements provided by the AHRS to circumvent this
disadvantage.

B. Outline of the Paper

This paper is organized as follows. The problem
addressed in this work is described in Section II, as are the
models considered for the target, UAV, and sensors. The
filters proposed for the positioning problem at hand are
addressed in Section III, and in Section IV simulation
results are presented and discussed. Finally, some
concluding remarks are given in Section V.

II. PROBLEM STATEMENT

Consider a UAV instrumented with an AHRS that
provides estimates of the orientation I Rp(t) ∈ SO(3) of a
body-fixed frame {P}, attached to the UAV, with respect to
an inertial reference frame {I}, over time t—IRp(t) is the
rotation matrix that rotates the coordinates of points from
frame {P} to frame {I}. A GPS receiver installed aboard
the UAV provides estimates of the position I Xp(t) ∈ R

3 of
the origin of {P} expressed in the inertial frame {I}.
Without loss of generality, the inertial reference frame is
considered to have its origin in the vicinity of the mission
scenario and at the sea surface, with the z-axis orthogonal
to it and pointing upward (see Fig. 1). The UAV is also
instrumented with an image-acquisition module, which
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Fig. 1. Example of mission scenario for tracking and positioning of
marine mammals.

consists of a digital video camera mounted on a pan-tilt
unit. The position pXc ∈ R

3 of the origin of a body-fixed
frame {C} attached to the camera, expressed in the aircraft
frame {P} and the orientation pRc ∈ SO(3) of {C} with
respect to {P}, is known—pRc is the rotation matrix that
rotates the coordinates of points from frame {C} to frame
{P}. The origin of {C} is at the camera optical center, and
its z-axis is aligned with the camera optical axis.

Moreover, consider a marine mammal moving at the
sea surface and denote the inertial coordinates of its
position by I Xb(t) ∈ R

3. According to the described setup,

the position of the target in the inertial reference frame is
given by the vector I Xb(t) = [ I xb(t) I yb(t) 0 ]T.

The problem addressed in this article is that of tracking
the marine mammal and obtaining estimates
[ I x̂b(t) I ŷb(t) ]T for its position, using measurements
provided by the GPS receiver, the AHRS, and the
image-acquisition module. These measurements are
considered to be corrupted by white Gaussian noise.

A. Marine-Mammal Model

State-space models have been used in the
characterization of the movement of several animals, as
reported in [22]. In the following, the dynamical model
chosen for the marine mammal is described. Given the
trajectories expected for this type of target—which, as
stated before, is assumed to lie in a plane coincident with
the sea surface—the 2D Horizontal Constant-Turn Model
With Known Turn Rate, as presented in [23], is selected.
This model assumes that the target moves with constant
speed and constant angular (turn) rate ω, here also referred

to as angular speed (norm of the angular velocity vector).
Assuming that ω is known, a four-dimensional state vector
xb(t) = [ I xb(t) I ẋb(t) I yb(t) I ẏb(t) ]T results, where
[ I xb(t) I yb(t) ]T and [ I ẋb(t) I ẏb(t) ]T are, respectively,
the position and velocity of the target expressed in inertial
coordinates. Let xb(tk) denote the value taken by the state
xb(t) of the target at time instant tk = kT, k ∈ N, where
T > 0 is the sampling interval. In this case, the target state
dynamics assumes the following linear parametrically
varying form:

xb (tk) = Fb (ω) xb (tk−1) + wb (tk−1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin (ωT )

ω
0 −1 − cos (ωT )

ω

0 cos (ωT ) 0 − sin (ωT )

0
1 − cos (ωT )

ω
1

sin (ωT )

ω

0 sin (ωT ) 0 cos (ωT )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

× xb (tk−1) + wb (tk−1) . (1)

The process noise wb(tk) ∈ R
4 is assumed to be Gaussian

and to have zero mean, with the covariance matrix

Qb (ω) = Swb

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 (ωT − sin (ωT ))

ω3

1 − cos (ωT )

ω2
0

ωT − sin (ωT )

ω2

1 − cos (ωT )

ω2
T −ωT − sin (ωT )

ω2
0

0 −ωT − sin (ωT )

ω2

2 (ωT − sin (ωT ))

ω3

1 − cos (ωT )

ω2

ωT − sin (ωT )

ω2
0

1 − cos (ωT )

ω2
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where Swb
corresponds to the power spectral density of the

continuous-time process noises that affect the two
components of the velocity of the target. Note that neither
Fb(ω) nor Qb(ω) is defined for ω = 0. When this is the
case, the limit of these two matrices as ω approaches 0 is
used. More details about this model can be found in [23].

Note that the state dynamics and the process-noise
covariance matrix depend explicitly on the target angular
speed, whose actual value is not known. A solution that
copes with this problem is proposed in Section III.

B. UAV Model

In order to keep the positioning system proposed in this
article as general as possible, the dynamics of the UAV are
modeled as a double integrator. A more complex model
could have been used, but this approach leads to a general
solution that suits systems with different types of aircrafts.

Let the state of the UAV be given by the vector
xp(t) = [ I xp

I ẋp
I ẍp

I yp
I ẏp

I ÿp
I zp

I żp
I z̈p ]T, where

[ I xp
I yp

I zp ]T, [ I ẋp
I ẏp

I żp ]T, and [ I ẍp
I ÿp

I z̈p ]T
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denote, respectively, the UAV 3-D position, velocity, and
acceleration, expressed in inertial coordinates. The
dependence of the scalar quantities on time t was omitted
for simplicity of presentation. The process noise that
affects the three components of the acceleration of the
UAV is assumed to be Gaussian and zero-mean, with the
power spectral density matrix diag[Swp

Swp
Swp

], where
Swp

∈ R is the power spectral density associated with each
individual process-noise component. Under these
assumptions, the motion of the UAV can be described by
the discrete-time state equation

xp (tk) = Fpxp (tk−1) + wp (tk−1) ,

where tk = kT, tk−1 = (k − 1)T, k ∈ N, and T > 0 is the
sampling interval (see [24]). In this equation,
Fp = diag[ F F F ], and the value of the discrete-time
process noise wp(tk) is associated with the covariance
matrix Qp = diag[ Swp

Q Swp
Q Swp

Q ], with

F =

⎡
⎢⎣

1 T T 2/2

0 1 T

0 0 1

⎤
⎥⎦

and

Q =

⎡
⎢⎣

T 5
/

20 T 4
/

8 T 3
/

6

T 4
/

8 T 3
/

3 T 2
/

2

T 3
/

6 T 2
/

2 T

⎤
⎥⎦ .

The notation diag[·] is used to denote a diagonal matrix
whose entries are the ones indicated between brackets.

C. Measurement Model

The UAV is instrumented with a GPS receiver and an
AHRS, which provide measurements of its position and
attitude with respect to {I }, and with an image-acquisition
module that acquires images of a marine mammal moving
at the sea surface. The measurements provided by these
sensors are described in this section.

The data obtained from the GPS and AHRS
correspond to direct measurements of the position I Xp

and orientation I Rp of the UAV with respect to the inertial
reference frame. Measurements provided by the
image-acquisition module are more intricate. Given the
high complexity of camera optical systems and the
consequent high number of parameters required to model
the whole image-acquisition process, it is common to use
simplified camera models. In this work, the pinhole model
is considered (see [25] for details).

Let us assume that the centroid of the image of the
marine mammal is the projection of the point used to
define the position I Xb of the target in the inertial
reference frame, and let the coordinates of this point in the
image frame be denoted by (u, v). Then, according to the
pinhole model, these coordinates can be written in the

form

u = p11
I xb + p12

I yb + p14

p31
I xb + p32

I yb + p34
,

v = p21
I xb + p22

I yb + p24

p31
I xb + p32

I yb + p34
, (3)

where pij is the element of the projection matrix in the ith
line and jth column. As can be seen, these measurements
are a nonlinear function of the position I Xb of the target.
The absence of a z-component in this expression is due to
the fact that, according to the setup described in the
beginning of this section, the 3-D position of the target is
given by I Xb = [ I xb

I yb 0 ]T.
The marine mammal can be segmented by resorting,

for instance, to active contours (see [26, 27]). Moreover,
the coordinates in the image of the point that defines the
target position, in this case the center of its boundary, can
be easily computed as the average of the coordinates of the
points that belong to the estimated contour.

III. FILTER DESIGNS

In this section, several estimation strategies that solve
the positioning problem at hand are presented: two KFs
with different structures and an EKF. The two KFs are
here called isolated and joint, depending on the use or not
of estimates of the state of the UAV to help in the
estimation of the state of the target. The linear KFs are
proposed under the MMAE framework to deal with the
unknown nature of the target angular speed. The Baram
proximity measure (BPM) [28] is used to provide some
insight into how to choose the nominal angular-speed
values for each underlying KF model.

A. Isolated KF

When the pinhole model is considered, the relation
between the coordinates I Xb of the point that represents
the target and the coordinates (u, v) of the projection of
that point onto the image frame is nonlinear; see (3). A
filter that combined these expressions in their present form
with the model in (1) to obtain estimates for the marine
mammal’s position would hardly have any stability and
performance guarantees. An example of such a strategy is
provided in Section III-D, where an EKF is presented for
comparison purposes. Here, a different approach is
proposed, which consists in rewriting (3) as a linear
function of the state of the system.

Let Ac denote the 3 × 3 matrix with the intrinsic
parameters of the camera, and [ cRI

cXI ] its 3 × 4
external parameters matrix, where cRI and cXI are,
respectively, the rotation matrix that rotates points from
{I} to {C} and the origin of {I} expressed in {C}. Using
this notation, the projection matrix of the camera at each
time instant (note that the dependence on time is omitted
here to keep the notation simple) has the form
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Ac[ cRI
cXI ]. Thus, u and v in (3) can be rewritten as

u = eT
1 Ac

(
cRI

I Xb + cXI

)
eT

3 Ac

(
cRI

I Xb + cXI

) , v = eT
2 Ac

(
cRI

I Xb + cXI

)
eT

3 Ac

(
cRI

I Xb + cXI

) ,

where ei, i = 1, 2, 3, is used to denote the ith vector of the
canonical basis of R

3. If m = [ u v 1 ]T is used to denote
the homogeneous coordinates associated with (u, v) [25],
then according to the pinhole model and using the
properties of rigid-body transformations (see details in
[29]), it is possible to rewrite these expressions, and
therefore (3), in the form

λm = Ac

(
cRI

I Xb + cXI

)
= Ac

pRT
c

[
I RT

p

(
I Xb − I Xp

) − pXc

]
, (4)

where λ = eT
3 Ac(cRI

I Xb + cXI ) is a scaling factor related
to the distance from the target to the camera. Apart from l
and I Xb, all the other quantities in this equation are either
known (Ac, pRc, and pXc are calibrated) or measured
(m, I Rp, and I Xp). Given the constraint I zb = 0 on the
third component of I Xb, (4) is a linear system with three
equations and three unknowns (l, I xb, and I yb). By
rearranging the terms in (4), we have

[−Ac
pRT

c
I RT

pM m
]

︸ ︷︷ ︸
QI

⎡
⎢⎣

I xb

I yb

λ

⎤
⎥⎦ = −Ac

pRT
c

(
I RT

p
I Xp − pXc

)
︸ ︷︷ ︸

bI

,

where QI ∈ R
3×3, bI ∈ R

3, and M = [ e1 e2 ]. According
to the geometry of the problem, it is possible to conclude
that QI is invertible (it would be singular if and only if the
camera mounted on the UAV were coincident with the sea
surface, which is not possible). Thus I xband I yb verify[

I xb
I yb

]
= MTQ−1

I bI .

Through replacing the values of m, I Rp, and I Xp with the
values of their measurements, the previous expression
allows us to transform the measurements of (u, v), which
depend nonlinearly on the state of the target, into the
measurements (I xbm

, I ybm
) of (I xb,

I yb), which are a linear
function of the state of the marine mammal.

In order to obtain estimates [ I x̂b
I ŷb ]T of the marine

mammal’s position [ I xb
I yb ]T, consider a system with

state xI = xb = [ I xb
I ẋb

I yb
I ẏb ]T ∈ R

4, whose
evolution is governed by the linear stochastic difference
equation (1), and consider that at a given instant of time tk,
measurements zI (tk) = [ I xbm

(tk) I ybm
(tk) ]T ∈ R

2 are
available, given by

zI (tk) =
[

1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

CI

xI (tk) + vI (tk) . (5)

The process noise wI = wb and measurement noise vI are
assumed to be white, zero mean, Gaussian, and
independent—E[wI (tk)vT

I (tj )] = 0 for all tk, tj—and to
have covariance matrices QI(ω) = Qb(ω) and VI, given,

respectively, by (2) and VI (tk) = diag[ σ 2
xb

σ 2
yb

], where σxb

and σyb
denote the standard deviations of the

measurements I xbm
andI ybm

.
Let x̂−

I (tk) and x̂I (tk) denote a priori and a posteriori
estimates of the state of the target, and P−

I (tk) and PI (tk) a
priori and a posteriori state covariance matrices,
respectively. The evolution of these quantities over time
can be obtained according to a time-invariant KF defined
by the following equations:

Predict step:

x̂−
I (tk) = FI (ω) x̂I (tk−1)

P−
I (tk) = FI (ω) PI (tk−1) FT

I (ω) + QI (ω) .

Update step:

KI (tk) = P−
I (tk) CT

I

[
CI P−

I (tk) CT
I + VI

]−1

x̂I (tk) = x̂−
I (tk) + KI (tk)

(
zI (tk) − CI x̂−

I (tk)
)

PI (tk) = [I4 − KI (tk) CI ] P−
I (tk) (6)

(See [30, 31] for more details about Kalman filtering.) In
these expressions, FI(ω) is the matrix that defines the
dynamics of xI—i.e., FI(ω) = Fb(ω)—and tk = kT, with
k ∈ N. The state x̂I(tk−1) and covariance PI (tk−1)
correspond to the initial conditions of the filter.

B. Joint KF

The isolated KF proposed in the previous section uses
the measurements provided by the GPS receiver in the
transformation of the measurements of (u, v) into
measurements of (I xb,

I yb), which depend linearly on the
state of the target. In this section, a different approach is
pursued: The measurements provided by the GPS are
treated as regular sensor observations in the filtering
process. A filter with a different structure results, and new
estimates of the target state, as well as estimates of the
UAV state, are provided.

From (4), it is straightforward to conclude that the
value of l can be obtained from

λ = eT
3

pRT
c

[
I RT

p

(
I Xb − I Xp

) − pXc

]
.

If this expression is substituted into (4), and the terms in
the equation that results are reorganized, we have(

A−1
c meT

3 − I3
)p

RT
c

pXc

= (
A−1

c meT
3 − I3

)p
RT

c
I RT

p

(
I Xb − I Xp

)
.

Moreover, let In denote the identity matrix with dimension
n × n. If M is as defined as in the previous section, and Cb

and Cp are given by Cb = [ e1 03×1 e2 03×1 ] and
Cp = I3 ⊗ eT

1 (where 0n × m is a matrix of 0s with
dimension n × m), the previous system, which has three
equations, can be cast into the form

MT
(
A−1

c meT
3 − I3

)p
RT

c
pXc︸ ︷︷ ︸

y

= MT(
A−1

c meT
3 − I3

)p
RT

c
I RT

p

(
Cbxb − Cpxp

)
,
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which is a system with two equations. The third equation
was removed since the last row of A−1

c meT
3 − I3 is a vector

of 0s. If the value of m in the previous expression is
replaced by the value of its measurements, the
measurements of (u, v), which are a nonlinear function of
the state of the target, are transformed into measurements
ym, y ∈ R

2, which depend linearly on the state xb of the
target and on the state xp of the UAV.

If the state of the new system is considered to be
xJ = [ xT

b xT
p ]T ∈ R

13, then at time tk the relation between
the measurements zJ (tk) = [ yT

m(tk) I XT
pm

(tk) ]T ∈ R
5 and

the state of the system is given by

zJ (tk) = CJ (tk) xJ (tk) + vJ (tk) , (7)

where CJ (tk) has the form

CJ (tk) =
[

MT
(
A−1

c m (tk) eT
3 − I3

)p
RT

c
I RT

p (tk) 02×3

03×3 I3

]

×
[

Cb −Cp

03×4 Cp

]
.

The values of ym(tk), I Xpm
(tk), and vJ (tk) denote the

measurements of y, I Xp, and the measurement noise,
respectively, at instant tk. Since both m and I Rp depend
on time, in this case the measurements equation is time
varying.

The state xJ of the system results from the
concatenation of the state of the target and the state of the
UAV; therefore its evolution over time is modeled by the
linear stochastic difference equation

xJ (tk) =
[

Fb (ω) 04×9

09×4 Fp

]
︸ ︷︷ ︸

FJ (ω)

xJ (tk−1) +
[

wb (tk−1)
wp (tk−1)

]
︸ ︷︷ ︸

wJ (tk−1)

.

The process noise wJ and measurement noise vJ are
assumed to be white, zero mean, Gaussian, and
independent—E[wJ (tk)vT

J (tj )] = 0 for all tk, tj—and to
have covariance matrices QJ(ω) and VJ, respectively, of
the forms

QJ (ω) =
[

Qb (ω) 04×9

09×4 Qp

]

and

VJ =
[

Vym
02×3

03×2 Vp

]
,

where Vym
∈ R

2×2 and Vp ∈ R
3×3 are diagonal matrices

with the variances of the components of ym and I Xpm
in

their respective diagonals.
Using a reasoning and notation similar to the ones at

the end of Section III-A, a joint KF is obtained that
estimates the state of the target and the state of the UAV.
Since the measurements equation in (7) is time varying, in
contrast to the time-invariant equation in (5), when
replacing the value of CI in (6) with the value of CJ,
attention must be paid to the fact that CJ is time

varying—i.e., CI must be replaced by CJ (tk). All other
substitutions are straightforward.

According to the strategy already described, the
estimates [ I x̂b(tk) I ŷb(tk) ]T for the position [ I xb

I yb ]T

of the target at a given instant tk can be obtained from the
first and third entries of x̂J(tk). Moreover, estimates for the
position of the UAV with respect to the inertial reference
frame at the same instant can be obtained from the fifth,
eighth, and 11th entries of x̂J(tk).

C. Multiple-Model Adaptive Estimation

The model considered for the marine mammal—see
(1)—assumes that its angular speed is known, which is not
a realistic assumption. In order to overcome this issue, an
approach is used based on the use of multiple models,
which simultaneously identifies some parameters of the
system and estimates its state. In particular, the strategy
implemented in this work, known as MMAE [7], consists
in considering several models for a system that differ in a
set of parameters (in this case the target angular speed).
For each of these models, an isolated (see Section III-A)
or joint (see Section III-B) KF is designed, depending on
the strategy in use. The estimates provided by each
individual filter are then combined, using a posteriori
probabilities as weighting factors, to obtain final estimates
for the state of the system and for the associated error
covariance matrix. These probabilities are computed from
the residuals of each filter, and measure the proximity
between each model and the true one. The MMAE based
on the bank of isolated KFs is here referred to as isolated
MMAE, and the one based on the bank of joint KFs is
referred to as joint MMAE. Both methods provide
estimates for the position of a marine mammal moving at
the sea surface with an unknown angular speed.

If N models are considered, the a posteriori hypothesis
probability of the ith model, i = 1, . . ., N, evolves over
time from an initial estimate pi

0 according to

pi
k = βi

ke
− 1

2 ψi
k

N∑
j=1

β
j

k e− 1
2 ψ

j

k p
j

k−1

pi
k−1,

where

βi
k = 1

(2π )m/2
√

det
(
Si

k

) .

ψi
k = (

ri
k

)T(
Si

k

)−1
ri
k

ri
k = zk − (zk̄)i

Si
k = Ci

k(Pk̄)i
(
Ci

k

)T + Vi

(See [7] for details.) Moreover, ri is the residual vector of
the ith KF—the difference between the sensor
measurements z and the measurements (z−)i predicted by
model i; Si is the residual covariance matrix associated
with the ith KF; and m is the number of measurements.
For the sake of clarity, in this section the time instant tk is
represented by the subscript k. The values of Ci, Vi, and

3312 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 4 OCTOBER 2015



Fig. 2. Structure of multiple-model adaptive estimators.

(P−)i correspond, respectively, to the values of the
matrices C, V, and P− of the ith KF of the MMAE under
consideration, i.e., either the isolated or the joint MMAE.

From the individual state estimates provided by each
KF, their error covariance matrices, and the a posteriori
probability of each hypothesis, it is possible to compute
the weighted state estimate

x̂k =
N∑

j=1

p
j

k x̂j

k

and the global covariance matrix

Pk =
N∑

j=1

p
j

k

[
Pj

k +
(

x̂j

k − x̂k

) (
x̂j

k − x̂k

)T
]
.

In these expressions, x̂j and Pj denote, respectively, the a
posteriori state estimate and a posteriori state covariance
matrix of the jth KF. Let ωj, j = 1, 2, . . ., N, denote the
angular speed of such a filter, and u the unknown input
that drives the motion of the target. In this case, the
structure of the proposed estimators is the one in Fig. 2.

The use of multiple-model approaches requires the
definition of a criterion to divide the parameter set into
smaller parameter subsets. (In [6], for instance, where this
problem was addressed from the control point of view, this
division and the specification of the number of models that
should be used were based on the definition of
performance requirements for the controller.) Once the
number of models is determined, the subsets associated
with each model must be computed, as well as the nominal
angular-speed values for each individual filter. With this
purpose, the BPM is usually adopted, but techniques based
on the Kullback information metric can also be found in
the literature (see [28, 31], respectively, for details).

If a KF is designed using the actual angular-speed
value, its steady-state residual r* is stationary white noise,
with a given covariance matrix, here denoted S*. Let ω

denote the actual value of the unknown parameter and ωi

the nominal parameter value used to implement the ith KF.
If ωi = ω, the steady-state residual ri of the ith KF is also
stationary white noise with covariance matrix S*. On the
other hand, if ωi �= ω this residual is not white. The BPM
is a function that measures the stochastic distance between
the residuals r* and ri, and can be computed using the

expression

Li
∗ ≡ log

[
det

(
Si

)] + tr
[(

Si
)−1

�i
∗
]
, (8)

where Li
∗ denotes the BPM between the ith filter and the

filter based upon the true model, �i
∗ denotes the actual

steady-state prediction error covariance of the residual of
the ith filter computed using information about the true
model, and Si denotes the steady-state covariance of the
residual of the ith filter. A detailed derivation of (8) and a
description of the use of the BPM in multiple-model
architectures can be found in [6, 28].

In order to find the number of models to use and the
corresponding nominal parameter values, let the null
angular speed, which corresponds to straight or parabolic
trajectories, be the nominal parameter of one of the
models. Then search the remaining parameter set for the
angular-speed nominal values that lead to a situation in
which there is always a filter whose BPM with respect to
the filter based upon the true model does not exceed a
certain value. The boundaries of each subset are defined
by the points of intersection of the BPM curves. In this
case, a total of N = 4 models results, with the nominal
angular-speed values presented at the end of this section.

According to the fundamental convergence result,
proved in [28] for an arbitrary number of stable KFs, if the
BPM from the true model to one of the nominal models is
smaller than its BPM to any other model, then under some
additional stationarity conditions and ergodicity
assumptions the a posteriori probabilities will converge
almost surely to the correct model (see [6, 28] and
references therein for formal proofs and precise definitions
of these concepts).

In this case, as in most target-tracking applications, the
model of the target is unstable, and thus the strategy
previously described does not provide theoretical
guarantees of convergence for the correct model. Such a
strategy is used here only to gain some insight into how to
choose the angular-speed nominal values for each KF.
With this purpose, a set of simulations were carried out in
which the value of the BPM was obtained from �i

∗, which
was computed as being a correlation matrix rather than a
covariance matrix, since the mean of the residuals of the
filters is not negligible (recall that the model of the target
is unstable).

Fig. 3 depicts the BPM for each of the four models
obtained for the isolated MMAE. For the joint strategy, the
same models are considered. The four angular-speed
nominal values used to design the KFs are the ones
that minimize the BPMs presented in Fig. 3—
[0 0.02 0.040.06] rad/s—which lead to the division of
the original set (� = [0, 0.07] rad/s) into the following
subsets:

�1 = [0, 0.01] rad/s

�2 = [0.01, 0.03] rad/s

�3 = [0.03, 0.05] rad/s

�4 = [0.05, 0.07] rad/s.
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Fig. 3. BPM for four models. Dots in different colors correspond to
angular-speed values that minimize BPM in each subset.

As can be seen, the regions of validity of the four
subsets have similar dimensions, and thus in this particular
situation the use of the BPM and of a strategy based on the
Euclidean distance between the four nominal
angular-speed values would lead to approximately the
same results.

D. Extended KF

In order to compare the two filters proposed in the
previous sections with a standard approach, an EKF is
presented in this section that estimates the state of the
target, its angular speed, and the state of the UAV. For each
problem, several different EKF-based architectures can be
designed, leading to different performances and
computational demands. Since the EKF presented in this
work is provided only for comparison purposes, its
classical version is implemented (see [30]). Interested
readers are referred to [32, 33] for different architectures
and developments regarding this type of filter.

If the state of the system is the concatenation of the
state of the target with its angular speed and with the state

of the UAV, xe = [ xT
b ω xT

p ]T ∈ R
14, then its temporal

evolution is given by the nonlinear stochastic difference

equation

xe (tk) = fe (xe (tk−1)) + we (tk−1)

=

⎡
⎢⎣

Fb (ω (tk−1)) 04×1 04×9

01×4 1 01×9

09×4 09×1 Fp

⎤
⎥⎦

× xe (tk−1) + we (tk−1) ,

where we(tk−1) = [ wT
b (tk−1) wω(tk−1) wT

p(tk−1) ]T ∈ R
14

and fe is a nonlinear function of the state. The angular
speed is modeled as a Wiener sequence [23], as its
increments wω(tk−1) are assumed to be an independent
(white-noise) process.

Moreover, let the measurements ze(tk) ∈ R
5 available

at instant tk be given by

ze (tk) = he (xe (tk)) + ve (tk) ,

=
[

MTm (tk)
I Xp (tk)

]
+ ve (tk)

where he is a nonlinear function of the state of the system
and ve(tk) ∈ R

5 is the measurement noise. If
Ce = [ Cb 03×1 −Cp ], then according to (4) it is possible
to conclude that

he (xe (tk)) =

⎡
⎢⎣

MTAc
pRT

c

(
I RT

p (tk) Cexe (tk) − pXc

)
eT

3
pRT

c

(
I RT

p (tk) Cexe (tk) − pXc

)
I Xp (tk)

⎤
⎥⎦ .

The Jacobian matrix Fe of fe has the form

Fe (x̂e (tk)) =

⎡
⎢⎣

Fb (ω̂ (tk)) ae (x̂e (tk)) 04×9

01×4 1 01×9

09×4 09×1 Fp

⎤
⎥⎦ ,

where ae(x̂e(tk)) ∈ R
4 is given by

ae (x̂e (tk)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂e2 (tk) [T ω̂ (tk) cos (T ω̂ (tk)) − sin (T ω̂ (tk))] − x̂e4 (tk) [T ω̂ (tk) sin (T ω̂ (tk)) − 1 + cos (T ω̂ (tk))]

ω̂2 (tk)

−x̂e2 (tk) T sin (T ω̂ (tk)) − x̂e4 (tk) T cos (T ω̂ (tk))

x̂e2 (tk) [T ω̂ (tk) sin (T ω̂ (tk)) − 1 + cos (T ω̂ (tk))] + x̂e4 (tk) [T ω̂ (tk) cos (T ω̂ (tk)) − sin (T ω̂ (tk))]

ω̂2 (tk)

x̂e2 (tk) T cos (T ω̂ (tk)) − x̂e4 (tk) T sin (T ω̂ (tk))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Moreover, the vector x̂e(tk) = [ x̂T
b (tk) ω̂(tk) x̂T

p(tk) ]T is the estimate for the state xe(tk) of the system at instant tk; and
x̂T

b (tk), ω̂(tk), and x̂T
p(tk) are estimates for the state of the target, its angular speed, and the UAV, respectively, at the same

time instant. In the expressions, x̂ei
(tk), i = 1, 2, . . ., 14, denotes the ith entry of x̂e(tk). The Jacobian He of he is given by

He(x̂e(tk))=

⎡
⎢⎢⎣

MTAc
pRT

c

I RT
p (tk) Ce

[
eT

3
pRT

c

(
I RT

p (tk) Cex̂e (tk) −pXc

)]− (
I RT

p (tk) Cex̂e (tk) −pXc

) [
eT

3
pRT

c
I RT

p (tk) Ce

]
[
eT

3
pRT

c

(
I RT

p (tk) Cex̂e (tk) − pXc

)]2

03×5 Cp

⎤
⎥⎥⎦.

Let the a priori and a posteriori state estimates be
denoted by x̂−

e (tk) and x̂e(tk), and the a priori and a
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posteriori state covariance matrices by P−
e (tk) and Pe(tk),

respectively. According to this notation, an EKF that
estimates the state xe(tk) of the system is given by the
following set of equations:

Predict step:

x̂−
e (tk) = fe (x̂e (tk−1))

P−
e (tk) = Fe (x̂e (tk−1)) Pe (tk−1) FT

e (x̂e (tk−1)) + Qe

(
ω∗)

Update step:

Se (tk) = He

(
x̂−

e (tk)
)

P−
e (tk) HT

e

(
x̂−

e (tk)
) + Ve

Ke (tk) = P−
e (tk) HT

e

(
x̂−

e (tk)
)

S−1
e (tk)

x̂ (tk) = x̂−
e (tk) + Ke (tk)

[
ze (tk) − he

(
x̂−

e (tk)
)]

Pe (tk) = [
I14 − Ke (tk) He

(
x̂−

e (tk)
)]

P−
e (tk)

where Se(tk) is the residual covariance matrix and the
matrices Qe(ω∗) and Ve are, respectively, the covariances
of the process noise we and measurement noise ve, which
are assumed to be white, Gaussian, and zero mean. These
matrices have the forms

Qe

(
ω∗) =

⎡
⎢⎣

Qb (ω∗) 04×1 04×9

01×4 Qω 01×9

09×4 09×1 Qp

⎤
⎥⎦ ,

Ve =
[

Vye
02×3

03×2 Vp

]

where Vye
∈ R

2×2 is a diagonal matrix with the variances
of the first two entries of ze in its diagonal and Vp ∈ R

3×3

is a diagonal matrix with the variances of the three
components of I Xpm

in its diagonal. In these expressions,
Qb and Qp are defined as in Section II, Qω ∈ R is the
variance of the noise wω that affects the target angular
speed, and ω* is an arbitrary angular-speed value which is
assumed to be in the center of the interval to which the
target angular speed is considered to belong. The state
x̂e(tk−1) and covariance Pe(tk−1) correspond to the initial
conditions of the filter. See [30] for more details about
EKFs.

IV. SIMULATION RESULTS

In this section, simulation results are presented that
illustrate and compare the performance of the filters
proposed in the previous sections. Experiments depicting
their behavior when the marine mammal submerges are
also provided.

In order to keep the simulations as realistic as possible,
the trajectories described by the UAV are generated
according to the aircraft dynamic model SymAirDyn,
proposed in [4]. The image-acquisition module is modeled
by a pinhole camera with position pXc = ( 200 0 100 )
mm and orientation pRc = pRc0 R(αp)R(θp) with respect
to {P}, where R(αp), R(θp), and pRc0 are rotation
matrices that express rotations of αp, θp, and −π /2 rad
about the x-, y-, and z-axes, respectively. In these
expressions, R(αp) and R(θp) denote the rotation matrices
that express the camera pan and tilt movements (αp and θp

Fig. 4. Evolution over time of actual and estimated positions of marine
mammal and UAV when mammal moves with angular speed of third

model.

denote the camera pan and tilt angles, respectively), and
pRc0 corresponds to the orientation of the camera with
respect to {P} when αp = θp = 0 rad. The camera control
strategy proposed by the authors in [34] can be used to
keep the target visible in the images.

In the simulations reported in this section, the
sampling interval is T = 0.2 s and the marine mammal’s
angular speed is considered to belong to the interval
[0, 0.07] rad/s. The covariance matrices Qb and Qp,
obtained from the power spectral densities Swb

= 10−3

m2/s3 and Swp
= 10−1 m2/s5, are used, as well as Qω =

10−8 rad2/s2. Regarding the covariance of the
measurements, we have VI = Vym

= 102I2 m2, Vye
= 52I2

pixels squared, and Vp = 102I3 m2. The measurements of
the yaw, pitch, and roll angles of the UAV, provided by the
AHRS, are corrupted by zero-mean, white, and Gaussian
noises, with standard deviation 0.5◦, 0.2◦, and 0.2◦,
respectively. A significant error is included in the initial
conditions of the state of the three filters. In the case of the
two MMAEs, the initial probabilities associated with each
of the four models are assumed to be equal, i.e., 1/4.

In Fig. 4, the actual positions of the marine mammal
I Xb and UAV I Xp are depicted for an experiment where
the marine mammal describes a circular trajectory with the
angular speed associated with the third model, i.e., ω =
0.04 rad/s. The UAV moves along the trajectory depicted
in blue. The time evolution of the target position estimates
I X̂b, provided by both the isolated and joint filters, is also
depicted, as well as the evolution of the estimates of the
UAV position I X̂p provided by the joint filtering approach.

The performance of the isolated and joint filters is
illustrated in Fig. 5. For comparison purposes, the results
obtained with the EKF presented in Section III-D are also
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Fig. 5. Euclidean norm of marine mammal’s position estimation error
when mammal moves with angular speed of third model. Values in

brackets are steady-state RMSEs of position estimates provided by each
strategy.

depicted, as well as the measurements I xbm
and I ybm

of the
marine mammal’s position, which are computed using the
strategy described in Section III-A. The estimates
provided by the three filters converge to the vicinity of the
actual target position. Even though in this experiment the
steady-state performance of the filters is similar (their root
mean square errors [RMSEs] are close to each other), the
performance of the joint MMAE is better than those
achieved by the other two filters. In the case of the isolated
MMAE, this result is a consequence of its structure, since
the transformation applied to the observations depends on
the measurements of the position of the UAV, which are
not exact. In the case of the EKF, performance is
conditioned by the model of the target, which is highly
nonlinear on its angular speed—see (1). From Fig. 5 it is
also possible to conclude that the three presented filters
lead to significant improvements in terms of performance
in the estimation of the position of the marine mammal,
when compared to the direct use of the measurements I xbm

and I ybm
of the marine mammal’s position.

In this experiment, the main source of errors is the
high altitude of the UAV with respect to the mammal’s
position. The UAV moves 150 m above the sea surface,
and thus small uncertainties in the measurements of its
attitude, and consequently in the measurements of the
attitude of the camera, have a significant impact on the
estimates of the position of the target.

Results regarding the identification of the actual model
of the marine mammal are depicted in Figs. 6 and 7. As
expected, the a posteriori probability of the third model,
which is the one that considers the real angular-speed
value, converges to 1 after the initial transient, when both
the isolated and joint MMAEs are used. This leads to the
correct identification of the angular speed of the target
(ω = 0.04 rad/s; Fig. 7). The angular-speed estimates are
obtained by combining the angular speeds associated with
each of the four models through a weighted sum, with the
a posteriori hypothesis probabilities of each model used as
weighting factors.

Fig. 6. Evolution over time of a posteriori probabilities of each model
when actual model is third.

Fig. 7. Evolution over time of estimates for angular speed of marine
mammal when actual angular-speed value is 0.04 rad/s.

A special type of trajectory appears when the marine
mammal moves along a straight line—i.e., when its
angular speed is null. An experiment that reports this
situation is presented in Figs. 8–10. If the trajectories of
the marine mammal and UAV are the ones presented in
Fig. 8, the performance of the isolated and joint filters, and
the performance of the EKF, are the ones presented in
Fig. 9. Note that the trajectory of the UAV is the same as
before (see Figs. 4 and 8), as the proposed approaches do
not impose any constraints on the motion of the UAV. As
can be seen from Fig. 9, the position estimates provided
by the three filters converge to the vicinity of the
mammal’s real position, and the joint filter is the one that
leads to the best steady-state accuracy, followed by the
isolated filter and EKF, respectively, similar to what
occurred in the previous experiment.

The angular-speed estimates provided by the three
filters are depicted in Fig. 10. As can be seen, the
estimates provided by the isolated and joint filters
converge to the real angular-speed value, ω = 0 rad/s,
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Fig. 8. Evolution over time of actual and estimated positions of marine
mammal and UAV when mammal moves along straight line (i.e., with

null angular speed).

Fig. 9. Euclidean norm of marine mammal’s position estimation error
when mammal moves along straight line. Values in brackets are

steady-state RMSEs of position estimates provided by each strategy.

although in this case the rate of convergence of the EKF is
slower than those of the two proposed estimators. This
degradation in the performance of the EKF was somewhat
expected, as straight trajectories are typically more
challenging for positioning and tracking systems. Such
degradation is not observed in the performance of the joint
and isolated filters, as both include a model for the
particular case of null angular speeds.

Fig. 11 assesses the performance of the three filters in
terms of the estimation of the position of a marine
mammal that moves according to the trajectory in Fig. 4
and submerges during the time interval [60, 90] s. During
this period, estimates of the position of the marine
mammal are obtained by resorting only to the prediction
step of the filters, as measurements of the center of the
target are not available from the images. As can be seen,
the performance of the isolated and joint MMAEs is

Fig. 10. Evolution over time of estimates for angular speed of marine
mammal when actual angular-speed value is 0 rad/s.

Fig. 11. Euclidean norm of estimation error of marine mammal’s
position when mammal moves with angular speed of third model and

there are occlusions. Values in brackets are steady-state RMSEs of
position estimates provided by each strategy.

Fig. 12. Evolution over time of estimates for angular speed of marine
mammal when actual angular-speed value is 0.04 rad/s and there are

occlusions.

similar to their performance when there are no occlusions.
This occurs because the model of the target has already
been correctly identified, in both situations, by the time
the marine mammal submerges (see Fig. 12). If this were
not the case, a larger degradation in the performance of the
filters would be observed. Such degradation is visible in
the performance of the EKF (see Fig. 11), since the error
in the estimates provided by this filter for the angular
speed of the marine mammal is still significant at the time
the mammal submerges (see Fig. 12). Using an inaccurate
estimate for the angular speed during the 30 s of occlusion
leads to the degradation of the quality of the position
estimates.
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Fig. 13. Evolution of covariance of target position estimation error
when there are occlusions and mammal moves with angular speed of

third model. Green and red ellipses correspond to moments when target
is visible by camera and submerged, respectively.

Even though the performance of the isolated and joint
MMAEs does not degrade significantly during the
occlusion of the marine mammal, the covariance of the
error in the position estimates increases. This behavior
was expected, since the update step is not performed
during the interval in which the target is submerged, and
can be confirmed by comparing the green and red ellipses
in Fig. 13. In this figure, the ellipses represent the
covariance of the target position estimation error. Their
two semiaxes have direction and length given,
respectively, by the eigenvectors and square root of the
eigenvalues of the covariance matrices associated with the
errors in the estimation of the position of the target.

V. CONCLUSIONS

This paper proposed new strategies to address the
positioning and tracking problem of a target that moves at
the sea surface and is recorded by a camera installed on a
UAV that is equipped with a GPS receiver and an AHRS.
Measurements of the centroid of the image of the target,
which can be computed using active contours, were
combined with the measurements provided by the GPS
receiver and AHRS to obtain estimates of the position of
the target with respect to an inertial reference frame. With
this purpose, two Kalman filters were proposed: one, time
invariant, that estimates only the position of the target, and
the other, time varying, that improves the accuracy of the
results by merging the estimates of the position of the
target with estimates of the position of the UAV. To assess
the performance of these approaches, a set of simulations,
carried out under realistic conditions, were presented.

Results obtained with a standard method based on the use
of an EKF were also provided and compared with those
obtained with the proposed strategies. Even though the
three approaches had similar performances, the
time-varying Kalman filter was the one that led to the best
results for the presented experiments.
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from the Instituto Superior Técnico, Lisbon, Portugal, where he is currently pursuing a
Ph.D. degree in the same field. His research interests include positioning and tracking
systems, sensor and signal fusion, nonlinear estimation, and video synchronization.

GASPAR ET AL.: MODEL-BASED FILTERS FOR 3-D POSITIONING OF MARINE MAMMALS 3319



Paulo Oliveira received a Ph.D. degree in electrical and computer engineering from the
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