
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19, NO. 1, JANUARY 2011 181

Discrete-Time Complementary Filters for Attitude
and Position Estimation: Design, Analysis and

Experimental Validation
José F. Vasconcelos, Student Member, IEEE, Bruno Cardeira, Carlos Silvestre, Member, IEEE,

Paulo Oliveira, Member, IEEE, and Pedro Batista, Student Member, IEEE

Abstract—This paper develops a navigation system based on
complementary filtering for position and attitude estimation,
with application to autonomous surface crafts. Using strapdown
inertial measurements, vector observations, and global positioning
system (GPS) aiding, the proposed complementary filters provide
attitude estimates in Euler angles representation and position
estimates in Earth frame coordinates, while compensating for rate
gyro bias. Stability and performance properties of the proposed
filters under operating conditions usually found in oceanic ap-
plications are derived, and the tuning of the filter parameters in
the frequency domain is emphasized. The small computational
requirements of the proposed navigation system make it suitable
for implementation on low-power hardware and using low-cost
sensors, providing a simple yet effective multirate architecture
suitable to be used in applications with autonomous vehicles.
Experimental results obtained in real time with an implementa-
tion of the proposed algorithm running on-board the DELFIMx
catamaran, an autonomous surface craft developed at ISR/IST for
automatic marine data acquisition, are presented and discussed.

Index Terms—Complementary filters, navigation systems, strap-
down systems, time-varying systems.

NOMENCLATURE

The notation adopted is fairly standard. The Gaussian distri-
bution with mean and variance is denoted as . The
set of matrices with real entries is denoted as .
Column vectors and matrices are denoted respectively by low-
ercase and uppercase boldface type, e.g., and . The trans-
pose of a vector or matrix will be indicated by a prime, and
trailing subscripts denote the vector components,

. Leading subscripts and superscripts identify the co-
ordinate system of a quantity, e.g., is represented in coor-
dinate frame , and is a rotation matrix that transforms
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the vector representation into by means of the linear op-
eration . Position, velocity, and acceleration are
denoted respectively by , , and , and the angular velocity
of the vehicle expressed in body coordinates is represented by

. The nominal, the measured, and the estimated quantity
are denoted by , , and , respectively, and denotes the
Frobenius norm. Discrete-time quantities are characterized by
the time index subscript. The identity and zero matrices are,
respectively, denoted as and . The dimensions of the vector
and matrices are clear from the context. In general, the vectors
are elements (or a concatenation of elements) of .

I. INTRODUCTION

M ARINE biologists, oceanographers, and other ocean re-
searchers depend increasingly on technology to conduct

their studies on time and space scales that suit the phenomena
under study. A particular field of interest is structural health
monitoring, which plays nowadays a major role in maintaining
large critical semi-submerged infrastructures, like bridges and
breakwaters. Most of these structures are exposed to harsh
environments and heavy loads, and hence are designed under
the proviso that maintenance works will be required during the
structure’s life. However, surveillance operations are complex
and expensive, and great emphasis is being placed on the use of
autonomous vehicles as a quality and cost-effective alternative.

Autonomous surface crafts exhibit a high degree of opera-
tional reliability in the presence of dynamic, uncertain environ-
ments, and challenging scenarios. The autonomous catamaran
DELFIMx, built at IST-ISR and displayed in Fig. 1, was de-
signed for automatic marine data acquisition for risk assessment
in semi-submerged structures [1], allowing for the access to re-
mote and confined locations in a systematic way, as required
for precise sonar data acquisition. To successfully execute its
mission, the catamaran is required to have a reliable on-board
navigation system based on low-power consumption, inexpen-
sive hardware, capable of efficiently integrating the information
from inertial and aiding sensor suites.

This paper presents the development of a global positioning
system (GPS) aided inertial measurement unit (IMU) using
complementary filters. The problem of accurate position and
attitude estimation is addressed by exploiting information
provided by the vehicle sensor suite over distinct, yet com-
plementary frequency regions. Namely, inertial measurements
from rate gyros and accelerometers are merged with the linear

1063-6536/$26.00 © 2010 IEEE
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Fig. 1. DELFIMx autonomous surface craft (length: 4.5 m; width: 2.45 m;
mass: 300 Kg).

position available from a low-cost GPS receiver, and with
Earth’s magnetic field observations. The proposed filters are
required to yield accurate position and attitude estimates, that
will be central to stabilize the platform and support the imple-
mentation of reliable trajectory tracking and path following
control strategies [2].

While a unified error analysis for inertial navigation system
(INS) can be found in the literature [3], the choice of filtering ar-
chitectures ranges from classical methodologies to recently pro-
posed approaches [4]. The extended Kalman filter (EKF) is one
of the most well known and widely adopted filtering algorithms,
see [4]–[8], and the unscented Kalman filter (UKF) has been put
forth as an alternative to the EKF [4], [9], [10], which numeri-
cally approximates the mean and covariance of the state estimate
parametrized in Euclidean spaces. More recently, there has been
an increasing interest in the design of nonlinear observers that
are theoretically stable and yield explicit regions of attraction
[11]–[16].

The navigation system proposed in this work is based on
the complementary filtering theory, deeply rooted in the work
of Wiener [17]: an unknown signal can be estimated using
corrupted measurements from one or more sensors, whose
information naturally stands in distinct and complementary
frequency bands [18]–[21]. The minimum mean-square es-
timation (MMSE criteria) error was first solved by Wiener
[17], assuming that the unknown signal had noise-like char-
acteristics, which usually does not fit the signal description.
Complementary filtering explores the sensor redundancy to
successfully reject measurement disturbances in complemen-
tary frequency regions, without distorting the signal. The slight
loss of performance in complementary filters, due to ignoring
noise stochastic description, is beneficial in the presence of
irregular measures that occur out of the expected variance, as
convincingly argued in [18].

Complementary filters have been widely used in the past
in sensor fusion problems. The frequency domain formula-
tion, and the simple filter structure, allow for straightforward
implementation without requiring high performance signal
processing hardware, see [22], [23], and references therein.
These algorithms are highly appealing in face of limited com-
putational resources, and are adopted in navigation systems
for autonomous vehicles such as oceanic crafts [24]–[26],

model-scale helicopters [27], and autonomous aircrafts [28],
[29] due to the algorithm simplicity and reliability in practical
implementations.

The derivation of the proposed attitude and position com-
plementary filters is focused on the stability, performance, and
practical implementation of the filtering algorithm. The comple-
mentary filter structure, shown in Fig. 2, consists of an attitude
filter and a position filter. Formulated in discrete-time, the atti-
tude filter entries are the rate gyro readings, corrupted by bias,
and a snapshot attitude reconstruction based on vector observa-
tions, such as magnetic-field and pendular readings. The posi-
tion filter resorts to accelerometers readings and to GPS, and
estimates velocity in body frame and position in Earth frame.

Stability and performance properties of the proposed filters
are derived, and the region of attraction is explicitly charac-
terized. The intrinsic multirate characteristics of the available
sensor suite is also addressed, and a synthesis methodology
based on optimality results for periodic systems is presented.
An algorithm to provide for attitude observations is proposed,
that computes pitch and roll from the pendular measurements,
and yaw using the magnetic field observations, thus referred as
magneto-pendular sensor (MPS).

The navigation system structure is designed to be easily im-
plemented in a low-cost, low-power consumption hardware ar-
chitecture. The Euler angles are chosen as the state space repre-
sentation for the rigid body attitude filter, due to its simplicity.
Steady-state feedback gains are adopted in the filter design, and
the structure of the resulting complementary filters can be de-
scribed in block diagram form, allowing for straightforward im-
plementation of the proposed architecture. Note that classical
navigation systems, such as those based on the EKF algorithm,
require online computation of the covariances and of the gains,
which may allocate most of the few computational resources
found in low-power low-performance hardware. The comple-
mentary filters proposed in this work are time-varying, however
the adopted gains are constant and computed offline using an
auxiliary time invariant design system. Consequently, a compu-
tationally inexpensive, steady-state like architecture is obtained,
that is easy to implement and test in low-cost hardware, with sta-
bility and performance properties for the trimming trajectories
of ASCs. The performance results of the navigation system are
validated using experimental data obtained in tests at sea with
the DELFIMx catamaran.

This paper is organized as follows. Section II presents the
complementary filters for attitude and position estimation. Sta-
bility properties are derived and the conditions that guarantee
performance are discussed. Section III focuses on the imple-
mentation of the attitude and position filters, that are combined
to produce a navigation system with the multirate architecture,
and details the MPS algorithm. The navigation system perfor-
mance is shown in the experimental results of Section IV, for the
DELFIMx catamaran sea trials. Concluding remarks and future
work are pointed out in Section V.

II. ATTITUDE AND POSITION COMPLEMENTARY FILTERS

In this section, complementary filters for attitude and posi-
tion estimation are proposed, and their stability and performance
properties are derived. The design of the filters in the frequency
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Fig. 2. Complementary filter block diagram.

Fig. 3. Attitude complementary filter.

domain is motivated by discussing the complementary char-
acteristics of the inertial and aiding sensors in the frequency
domain.

A. Attitude Filter

Let denote the vector containing the yaw,
pitch, and roll angles, respectively, of the - - Euler angles
convention [30], also known in the literature as Cardan, Bryant
or Tait–Bryant angles [31]. Without loss of generality, the con-
sidered Euler angles sequence rotates from Earth frame to
body frame coordinates. The Euler angle kinematics are
described by

(1)

The discrete-time equivalent of the system (1) considered in this
work is obtained by the Euler method [32], with the right-hand
side subject to sample-and-hold, yielding

(2)

where is the sampling interval and the index abbreviates the
time instant . In this work, the attitude is estimated by
exploiting the angular velocity and attitude measurements pro-
vided by strap-down sensors. The angular velocity is measured
by a rate gyro affected by noise and random-walk bias [19]

(3)

where is zero-mean, Gaussian white noise
and is the sensor bias driven by the Gaussian white noise

.

The proposed attitude filter estimates the attitude of the ve-
hicle expressed in Euler angles and compensates for the rate
gyro bias. Rewriting the Euler angle kinematics (2)–(3) in state
space form gives

(4)

Consider the following nonlinear feedback system as the pro-
posed attitude filter:

(5a)

(5b)

where is the vector of observed Euler angles transformed to
the space of angular rate and corrupted by the Gaussian white
observation noise , and
are feedback gain matrices. The block diagram of the proposed
attitude filter is depicted in Fig. 3.

The attitude observation can be obtained from two vec-
tors measured in body frame, such as the Earth’s gravitational
and magnetic fields, or from observations provided by other de-
vices like cameras or star trackers. As an example, pitch and roll
angles can be determined from Earth’s gravitational field, avail-
able from two on-board inclinometers (pendula), and the yaw
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angle can be computed from the Earth’s magnetic field mea-
surements provided by a magnetometer triad. The choice of at-
titude observation depends on the available sensors and compu-
tational resources, and hence the attitude observation adopted in
this work is detailed later in the navigation system implemen-
tation section. Consider the following auxiliary linear time in-
variant system:

(6a)

(6b)

which will be used in the sequel as the frequency domain design
setup for the time varying attitude filter (5). In the proposed
design technique, the feedback gains and in (5) are
identified with the steady-state Kalman gains for the system (6),
where the covariance matrices , , and act as “tuning
knobs” to shape the desired frequency response of the attitude
filter.

The time-invariant system (6) adopted for the determination
of the feedback gains and associated frequency response is sim-
ilar to the attitude kinematics (4) for . Although
this suggests at first glance that the properties of the proposed
filter could be limited to the specific case of , the filter is
in fact asymptotically stable for any attitude trajectory parame-
trized by nonsingular Euler angle configurations. The stability
properties are derived in the following theorem for the specific
case of - - Euler angles, however the extension of the re-
sults to other Euler angle set conventions [30] is immediate.

Theorem 1: Consider the discrete-time attitude kinematics
(4). Let and be the steady-state Kalman gains for the
system (6) and assume that the pitch described by the platform is
bounded, . Then the attitude complementary
filter (5) is uniformly asymptotically stable (UAS) .

Proof: Let , denote the
estimation errors. The associated estimation error dynamics are
given by

(7)

By definition, the filter is said to be UAS if the origin of the
system (7) is UAS in the absence of state and measurement
noises [33]. However, the state and measurement noises are de-
noted in the proof for the sake of convenience. The system (6)
can be written in the compact state-space formulation

(8)

where , , ,

, , , and

. It is straightforward to show that is detectable

and is completely stabilizable, hence the closed-loop
system

(9)

where , is UAS [34]. Define the Lyapunov
transformation of variables

(10)

that is well defined [35] because is bounded by assumption.
Applying the transformation of variables to (9) yields

(11)

The origin of (9) is UAS and, by the properties of Lyapunov
transformations, the origin of (11) is UAS. Hence, the origin of
(7) is uniform asymptotic stability, as desired.

The stability properties derived in Theorem 1 are valid for
nonsingular configurations, where the pitch satisfies .
This is a weak condition for most terrestrial and oceanic appli-
cations, namely those based on autonomous surface crafts, that
are studied in this paper to illustrate the proposed navigation
system. The stability results can be extended for time-varying
Kalman gains, however the proposed complementary filter is
designed in the frequency domain by means of the time-in-
variant formulation (6), to obtain a desired transfer function that
merges the low-frequency contents of the attitude observations
with the high-frequency information from the angular rate read-
ings. Steady-state Kalman filter gains are adopted to yield an
asymptotically stable filter that can be easily implemented and
tested in low-cost hardware.

Interestingly enough, under operating conditions found in
some terrestrial and oceanic applications, the gains adopted in
the proposed filter (5) are identified with the steady-state gains
of the Kalman filter for the system (4). This implies that, for
ASC trimming maneuvers found in surveillance operations, the
performance of the proposed attitude filter is identical to that of
a Kalman filter designed for the time-varying system (4).

Theorem 2: Let the state and observation disturbances in
the attitude kinematics (4) be characterized by the Gaussian
white noises , , and

, respectively, and assume that the pitch and roll an-
gles are constant. Then the complementary attitude filter (5) is
the “steady-state” Kalman filter for the system (4) in the sense
that the Kalman feedback gain converges asymptotically
as follows:

(12)



VASCONCELOS et al.: DISCRETE-TIME COMPLEMENTARY FILTERS FOR ATTITUDE AND POSITION ESTIMATION 185

Proof: The estimation error covariance matrix of the
Kalman filter for the system (6) satisfies

(13)

where

see [33] and [34] for a derivation of (13). Given the transforma-
tion of variables (10), the covariance matrix

is given by and, using (13),
satisfies

where .
With a slight abuse of notation, let and denote

the time-varying Kalman gains for the system (6) and formulate
the attitude filter (5) with time-varying gains

(14)

To identify the attitude filter (5) as the steady-state Kalman filter
for the system (4), it is shown that the attitude filter (14) is the
Kalman filter for the system (4). This condition is satisfied if:
1) is the error covariance of the attitude filter (14)
and that 2) is the error covariance of the optimal (i.e.,
Kalman) filter for the attitude kinematics (4), for a discussion on
the optimality of the Kalman filter and uniqueness of the optimal
gains, the reader is referred to [33], [34].

The condition of constant pitch and roll implies that
, hence the kinematics (7) and (11) are

identical, and is the
error covariance matrix of the attitude filter (14).

The matrix is the covariance error of the Kalman
filter for the system

(15a)

(15b)

where , , . Using
, the matrices of the system (15) are given

by

which are identical to the state matrices of the attitude
kinematics (4) with attitude observation given by (5b). Conse-
quently, the attitude filter (14) produces the optimal estimation
error covariance matrix for the system (4) and, by
uniqueness, the attitude filter (14) is a Kalman filter. Using

and as yields (12), that
completes the proof.

The performance results presented in Theorem 2 hold for ap-
plications where the pitch and roll angles are constant or can
be considered approximately constant. It should be emphasized
that it is of interest for terrestrial and oceanic platforms con-
sidered in this work, subject to repetitive monitoring trajecto-
ries. For the case of time-varying pitch and roll angles, and
for aggressive maneuvers, the performance of the complemen-
tary and of the Kalman filters can be compared offline by com-
puting the estimation error covariances of the filters, as detailed
in Appendix A.

In spite of the performance results presented in Theorem 2,
the design of the feedback gains is performed in the frequency
domain due to the characteristics of the attitude aiding sensor
at hand, and to unmodeled sensor disturbances often found in
experimental setups. This approach exploits the low-frequency
region where the attitude observations are typically more accu-
rate, and the high-frequency region where the integration of the
rate gyro yields better attitude measurements.

Also, the attitude and position filters are derived indepen-
dently, which allows for the separate tuning of the filters, and the
use of the attitude filter as standalone algorithm in applications
where only attitude estimation is required. Due to the indepen-
dent design of the filters, the cross-correlation between acceler-
ation and attitude is ignored, however its contribution to attitude
estimation is usually negligible in the considered oceanic appli-
cations. To see this, the cross-correlation can be analyzed using
a perturbational analysis [3], and can be modeled as

where is the Euler angle-axis parametrization of the rota-
tion error matrix given by , is the accelerom-
eter reading expressed in Earth coordinates, and is the ac-
celerometer measurement noise. In many applications, the mea-
surement is dominated by the gravitational acceleration, i.e.,

with and . Therefore,
will contribute mostly to the observability of the and compo-
nents of , which are not critical for ASCs. Later in this work,
the performance of the complementary filter is studied for the
experimental data obtained on-board the DELFIMx catamaran.
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Fig. 4. Position complementary filter.

B. Position Filter

The continuous-time position kinematics are given by

where and are the position and velocity in Earth frame co-
ordinates, is the shorthand notation for the rotation matrix
from body frame to Earth frame coordinates, and
is the acceleration in body frame coordinates. The discrete-time
equivalent is obtained by sample-and-hold of the inputs [32] and
is given by

(16)
The accelerometer measures the specific force, which is the dif-
ference between the inertial and the gravitational accelerations
of the rigid body [3], and , respectively, expressed in
body frame coordinates

where is zero-mean, Gaussian white noise.
The position kinematics (16) using the accelerometer measure-
ments are described by

(17)

where is the velocity expressed in body coor-
dinates, is the gravitational acceleration expressed in Earth
coordinates, and is zero-mean, Gaussian white
noise that accounts for small disturbances in the position. The
position observer kinematics, depicted in Fig. 4, are given by

(18a)

(18b)

where is the position computed using the readings of the
GPS receiver, and is zero-mean, Gaussian
observation noise. The propulsion force of a vehicle is, in
general, physically oriented along a body fixed axis, producing
a predominant body fixed direction of motion, e.g., when
thrusters are mounted and act along the -axis of the body,
the main velocity variations are naturally expressed along that
axis. Also, high angular rates due to aggressive maneuvering
introduce high-frequency shifts in Earth frame velocity, while
the velocity in the body frame remains aligned with the ve-
hicle’s predominant direction of motion, e.g., the body velocity
of a ship remains constant while describing uniform circular
motion but the components of the velocity vector in Earth
coordinates are sinusoidal. Consequently, the velocity estimate
of the position filter is expressed in body frame coordinates, as
opposed to being expressed in Earth frame, to reduce bandwidth
requirements under attitude changes and vehicle actuation.

The feedback terms and are identified with the
Kalman filter gains for the system

(19a)

(19b)

where is zero-mean, Gaussian white noise with
the covariance of the accelerometer noise .

In the design of the position filter, the covariance matrices ,
, and are used as tuning knobs to shape the frequency re-

sponse of the filter. Accelerometer bias is compensated offline,
since the limited dynamics of surface crafts are usually insuf-
ficient for online triaxial accelerometer bias estimation, more
details on the observability analysis and online calibration ma-
neuvers for GPS/INS systems can be found in [36], [37]. The
offline calibration of the accelerometer bias was found suitable
for the duration of the DELFIMx catamaran missions, as shown
in the experimental validation presented later in this work.

The stability and performance of the position complementary
filter (18), using the steady-state gains obtained for the system
(19), are addressed in the following theorems.

Theorem 3: Consider the discrete-time position kinematics
(17), and let and be the steady-state Kalman filter
gains for the system (19). Then the position complementary
filter (18) is UAS.
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Proof: The structure of the proof is similar to that of The-
orem 1. Define the estimation errors and

. The associated kinematics are described by

(20)

The compact state space formulation for the system (19) is given
by

(21)

where , , ,

and . The pairs and are detectable
and completely stabilizable, respectively and the closed-loop
system

(22)

where , is UAS [34]. Define the Lyapunov
transformation of variables, adopted in previous work by the
authors [38], given by

(23)

and consider . Applying the Lyapunov trans-
formation to (22) yields (20), and hence the origin of (20) is
uniformly asymptotically stable by the properties of Lyapunov
transformations [35].

In the following theorem it is shown that the proposed po-
sition filter is identified with the steady-state Kalman filter for
the position kinematics (18), under the mild assumption that the
Gaussian white noises of the accelerometer triad are stochasti-
cally independent and characterized by the same variance. The
stochastic independence is verified in realistic setups where the
acceleration measurements are provided by three sensors from
the same model, mounted orthogonally.

Theorem 4: Let the state and observation disturbances in
the position kinematics (17) be characterized by Gaussian
white noises , , and

. Then the position complementary filter (18) is
the “steady-state” Kalman filter for the system (17) in the sense
that the Kalman feedback gain converges asymptotically
as follows:

(24)

Proof: The estimation error covariance matrix of the
Kalman filter for the system (21) satisfies

(25)

where

With a slight abuse of notation, let and denote the
time-varying Kalman gains for the system (19) and formulate
the attitude filter (18) with time-varying gains

(26)

Applying the Lyapunov transformation (23), the covariance
matrix

is given by and satisfies

(27)

where . Assuming that the
accelerometer noise covariance matrix is diagonal, ,
the matrices in (27) are given by

which shows that is the optimal error covariance ma-
trix for the position kinematics (17). Using and

as produces (24) and completes the
proof.

Although some performance results are presented for the po-
sition filter, the closed-loop system is obtained by design in the
frequency domain, and the feedback gains and are
the steady-state Kalman gains for the design system (19). In
this framework, the high-frequency contents of the accelerom-
eter measurements are exploited, filtering out gravity and bias
compensation errors, and merged with the low-frequency infor-
mation available from the GPS position observations.

III. NAVIGATION SYSTEM IMPLEMENTATION

This section presents the overall navigation system architec-
ture that builds on the attitude and position complementary fil-
ters derived separately in Section II, and discusses the problem
of implementing the filter with different sampling rates.
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Fig. 5. Navigation system architecture.

A. Magneto-Pendular Sensor

The attitude observation in Euler angles coordinates
is determined using the body and Earth frame representations
of two vectors, namely the Earth’s magnetic and gravita-
tional fields. The problem of determining attitude using vector
measurements is known in the literature as the orthogonal Pro-
crustes problem [39] or as Wahba’s problem [40] and several
solutions have been proposed along time-spread articles [4].
The solution proposed in this work computes the Euler angles
observation using a deterministic approach, similar to that of
a TRIAD algorithm [41], [42]. Note that can be obtained
using other attitude reconstruction algorithms and sensors, for
more details see [4] and references therein.

The magnetic field vector is measured in the body frame by
the magnetometer

(28)

where the magnetic field in Earth frame coordinates, denoted
by , is known, is the magnetometer measurement noise
and , , and represent the roll, pitch, and
yaw elementary rotation matrices, respectively. Denoting the
projection of the magnetometer reading on the - plane by

, the yaw angle is obtained by alge-
braic manipulation of (28), producing

(29)
where the four quadrant , denoted as , was
adopted. The pitch and roll angles are obtained from the ac-
celerometer, which is regarded as a pendular sensor

(30)

where denotes the accelerometer reading assuming that ex-
ternal accelerations are negligible, is the
gravity vector in Earth frame coordinates, and is the local

gravitational acceleration. The pitch and roll angles are given
by algebraic manipulation of (30), producing

(31)

that are independent of the magnitude of and hence do not
require a model of the local gravitational acceleration .

The computation of pitch and roll angles using directly the
accelerometer reading in (31) is distorted in the presence of ex-
ternal linear and angular accelerations. The accelerometer mea-
surement model is given by [3]

(32)

where is the linear acceleration and is the cen-
tripetal acceleration. Typical maneuvers of autonomous vehi-
cles involve mostly short term linear accelerations, which hence
are high-frequency and the resulting distortion in pitch and roll
can be smoothed out by the complementary lowpass filter. On
the other hand, centripetal accelerations occur even in trimming
maneuvers, e.g., a helicoidal path, and must be compensated for.
As depicted in Fig. 5, the pendular reading estimate used in
(31) is obtained by compensating the centripetal acceleration

(33)

where is the angular rate drawn from the rate gyro
measurement with bias compensation and is the velocity
estimate provided by the complementary position filter or by
a Doppler sensor if available. The effect of linear acceleration
in is compensated in the frequency domain by appropriate
design of the complementary filter.

The yaw, pitch, and roll observations (29), (31), (33) define a
virtual attitude sensor measurement that is referred to as mag-
neto-pendular sensor (MPS). The MPS observation noise
is a nonlinear function of the magnetometer and accelerometer
noises, the attitude of the vehicle and the (linear and angular)
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acceleration compensation errors, and is mostly high-frequency
due to the influence of linear accelerations. If modeled stochas-
tically, the noise covariance can be inflated to account for
the time-varying covariance of , however this technique leads
to undesirable performance degradation, for a discussion on the
subject see [34] and references therein. In the frequency domain
design approach, adopted in this work, the observation noise
weight matrix is tuned to yield good steady-state high-frequency
rejection of the MPS noise.

B. Complementary Filter Coupling

The proposed navigation system integrates the attitude and
position complementary filters to produce an estimate of the
vehicle attitude and position. The blocks of the diagram de-
picted in Fig. 5 have been introduced previously in this work:
the attitude and position complementary filters are detailed in
Section II and illustrated in Figs. 3 and 4, respectively, and the
MPS and the centripetal acceleration removal blocks are de-
tailed in Section III-A. The attitude terms in the position filter
kinematics and the use of pendular readings to obtain the MPS
measurement produce a coupling between the attitude and the
position filters, illustrated by the block connections of Fig. 5,
which are described as follows.

The attitude rotation matrix and the attitude update term
are adopted in the kinematics of the position filter

(18), as illustrated in the block diagram of Fig. 4. The atti-
tude term is computed using the attitude filter estimate ,
which is the best attitude estimate available in the practical im-
plementation of the navigation system, and the update term de-

scribed by is obtained using the
rate gyro measurement and the bias estimate, where is the
skew symmetric matrix defined by the vector such that

, . Likewise, the transformation matrix
is constructed using the estimate given by the atti-

tude filter, that is the best attitude estimate available. The grav-
itational measurements used in the computation of the attitude
measurement are distorted by linear and angular accelera-
tions. As a way to robustify the attitude measurement , the
angular accelerations are compensated for by using the angular
rate and linear velocity estimates as shown in (30), allowing for
valid MPS measurements in the presence of centripetal acceler-
ations, that occur even in trimming conditions such as helicoidal
trajectories.

The theoretical stability and performance properties of the
attitude and position filters derived in Section II cannot be di-
rectly inferred for the overall navigation system due to the filter
coupling and to the use of pendular measurements in the atti-
tude aiding observation. This limitation is a consequence of the
adopted attitude aiding sensors, and stability and performance
can be guaranteed in other experimental setups, e.g., by using
non-pendular, vision-based attitude aiding sensors and by de-
coupling the attitude and position filters using external attitude
reference units. For the proposed navigation system implemen-
tation, extensive Monte Carlo simulations showed that the archi-
tecture is stable in practice. The results of a set of Monte Carlo
simulations used to validate the proposed navigation system is
presented in Appendix B.

C. Multirate Filtering

In general, the GPS output rate is slower than the sampling
rate of the inertial sensors. In this case, the position feedback
gains are obtained by considering the multirate position filter
as a periodic estimator, and adopting the optimality results for
periodic systems derived in [43], which are briefly described in
the ensuing for the position filter for the sake of clarity. Let the
GPS and inertial sensors’ sampling periods be denoted by
and , respectively, and define the ratio ,

. The design system (6) is periodic with period and
is written in the compact form

(34)

where , , ,

and the observation matrix of the system is given by

if
otherwise.

(35)

The system (34) can be associated with an augmented time-in-
variant system that models the dynamics of the state at time

, , described by

(36)

where the underlines denote the elements of the augmented state
model, ,

are the augmented noise and measurement vectors, respectively,
and

...

...
...

. . .
. . .

...

which defines a time-invariant system, with correlated measure-
ment and the state noises [43]. The optimal feedback gain for the
time-invariant system (36) is given by

(37)
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where , , , and
is the steady-state optimal estimation error covariance matrix,
given by the solution of the Riccati equation

where ,
and

. Consid-
ering the partition of the feedback gain (37) given by

, , ,
for the system (34)–(35), it can be easily shown that

, , , and hence that the feedback gain
is simply given by selecting the gain

sub-matrix and propagating back to the time instant of the
GPS measurement, i.e., .

For further details on the synthesis of optimal estimators for
discrete-time linear periodic systems, the reader is referred to
[43] and references therein. A multirate filter channel to channel
frequency analysis methodology can be found in [26].

IV. EXPERIMENTAL RESULTS

The proposed navigation system is validated in this section
using a low-power hardware architecture enclosing low-cost
sensors and mounted on-board the DELFIMx catamaran. The
properties of the complementary filters in the frequency domain
are discussed and the resulting performance of the filters is
analyzed. The attitude and position estimation results using
the experimental data collected in the catamaran sea tests are
presented, and the usual cases of GPS signal outage and of
initial calibration error of the rate gyro bias are addressed.

A. Ocean Craft and Sensor Characteristics

The DELFIMx craft, depicted in Fig. 1, is a small Catamaran
4.5 m long and 2.45 m wide, with a mass of 300 Kg. Propulsion
is ensured by two propellers driven by electrical motors, and the
maximum rated speed of the vehicle with respect to the water is
6 knots. For integrated guidance and control, a path-following
control strategy was adopted due to its enhanced performance,
which translates into smoother convergence to the path and less
demand on the control effort [2]. The vehicle has a wing shaped,
central structure that is lowered during operations at sea. At the
bottom of this structure, a low drag body is installed that can
carry acoustic transducers. For bathymetric operations and sea
floor characterization, the wing is equipped with a mechanically
scanned pencil beam sonar and a sidescan sonar.

The DELFIMx hardware architecture developed by the
ISR-IST is a self-contained system mounted on three cases
which can be fit into and removed from the autonomous surface
craft (ASC). The most sensitive parts are vibration isolated
from the hull using a soft suspension mechanism, which acts as
a low pass mechanical filter that provides further attenuation of
the ASC vibration on the electronics. The hardware architecture
is built around the low-cost low-power floating point Digital
Signal Processor (DSP) TI TMS320C33, displayed in Fig. 6,
which is connected to the data acquisition hardware through a
dual port RAM expansion board developed by IST-ISR. Special

Fig. 6. Hardware architecture.

care was taken during the electronics development in order to
implement measures that improve the electromagnetic com-
patibility (EMC). The data acquisition distributed architecture
was built around the controller area network (CAN) industrial
real time network, for control and navigation purposes and on
100 MB/s Ethernet for payload data interface. A series of very
low-power boards designed at ISR using the Phillips XAS3 16
bit microcontroller, and the ATMEL AT90CAN128 8-bit AVR
Flash microcontroller with extended CAN capabilities are used
to interface all sensors and exchange data through the CAN Bus.
In this architecture the TMS320C33 schedules all Guidance,
Control, and Navigation tasks to meet their deadlines. Finally,
a PC104 board connected to the CAN Bus and to Ethernet runs
the mission control system and implements a blackbox where
relevant data generated by the ASC are properly saved in a
solid state disk for post-mission analysis.

The IMU on-board the DELFIMx craft is a strap-down
system comprising a triaxial XBOW CXL02LF3 accelerom-
eter and three single axes Silicon Sensing CRS03 rate gyros
mounted along three orthogonal axes. These sensors are at-
tached orthogonally to a custom made stand that is presented in
the left side of Fig. 6 with the sensors assembled. The inertial
sensors are sampled at 56 Hz using six Texas ADS1210 directly
connected to a microcontroller board. The ADS1210 is a high
precision, wide dynamic range, delta-sigma analog-to-digital
converter with 24-bit resolution operating from a single 5 V
supply. The differential inputs are ideal for direct connection to
transducers guaranteeing 20 bits of effective resolution which
is a suitable accuracy for the set of inertial sensors used in the
present application.

The hardware architecture is also equipped with a Hon-
eywell HMR3300 magnetometer, interfaced by a serial port
connection with a sampling rate of 8 Hz. Due to the distinct
sampling rates of the magnetometer and inertial sensors, a
multirate formulation similar to that described in Section III-C
is adopted for the yaw estimation. The GPS receiver installed
on board the DELFIMx is a Thales Navigation DG14 receiver
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TABLE I
COMPLEMENTARY FILTER PARAMETERS

which presents an accuracy of 3.0 m Circular Error Probable
(CEP) in autonomous mode and 0.40 m in differential mode. In
the present work, the GPS works in autonomous mode and the
measurements are provided at a 4 Hz sampling rate.

B. Filter Parameter Design

The attitude and position filters derived in Section II are
designed to produce a closed-loop frequency response which
blends the complementary frequency contents of the inertial
and the aiding sensor measurements. In this frequency domain
framework, the state and measurement weight matrices are
used as tuning parameters and the filter gains are identified with
the steady-state Kalman filter gains. The adopted weights and
corresponding gains are detailed in Table I.

The complementary frequency response of the closed-loop
filters is depicted in Fig. 7 and was obtained by considering

and , i.e., the frequency response of the
time invariant systems (6) and (19) used in the filter design. As
shown in Fig. 7, the low-frequency region of the MPS and GPS
are blended with the high-frequency contents of the open-loop
integration of the inertial measurements, which is given by

The sum of the transfer functions of the filters, depicted in
Fig. 7, is unitary, which shows that the adopted steady-state
Kalman gains bear complementary filters, as expected. The
obtained complementary transfer functions are validated in
practice with the experimental data obtained on-board the
DELFIMx catamaran.

As discussed in Section II-A, the proposed attitude filter is
identified with the steady-state Kalman filter for constant pitch
and roll angles and, in case of time-varying pitch and roll angles,
the performance degradation can be analyzed using the covari-
ance propagation equations detailed in Appendix A. A numer-
ical comparison of the Kalman and the obtained estimation error
covariances is shown in Fig. 8, considering the design weights
presented in Table I. As shown in Fig. 8(b), the estimation error
covariance of the proposed attitude complementary filter is less
than above the optimal estimation error covariance for the
aggressive pitch and roll trajectory depicted in Fig. 8(a).

C. Experimental Results Analysis

This section presents the navigation system estimation re-
sults obtained with the experimental data collected on-board the
DELFIMx catamaran during tests at sea using the hardware ar-
chitecture detailed previously. The trajectory of the vehicle is
presented in Fig. 9, where a green line is used to depict the

Fig. 7. Complementary filter transfer functions. (a) Attitude filter. (b) Position
filter.

Fig. 8. Attitude filter performance (� �1/5 s). (a) Attitude. (b) Error covari-
ance ratio ���� ������ �.

filter estimates and a wide blue line represents the GPS mea-
surements. As depicted in Fig. 9(a), the trajectory described by
the DELFIMx vehicle is mainly characterized by straight line
and circular paths, to assess the performance of the navigation
system in realistic operational scenarios.

The attitude estimation results, presented in Fig. 10, are ac-
cording to the maneuvers described by the robotic platform,
whose forward velocity is mainly along the body frame -axis,
and hence describes mostly yaw turns. The yaw estimate de-
picted in Fig. 10(a) is consistent with the turning maneuvers
and the heading directions of the straight paths performed by
the platform, illustrated in Fig. 9(a), and with the yaw measure-
ment given by the GPS unit. Clearly, the filter estimate is more
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Fig. 9. DELFIMx trajectory estimation results. (a) ��-plane projection.
(b) �-axis estimate, with a subplot box showing the estimation results for
� � �������� s.

accurate than the GPS yaw measurement, that is used only for
the sake of validation of the estimation results and is not fed to
the filter. The yaw measurement of the GPS unit is degraded
for small velocities, as shown in Fig. 10(a) for the time interval

s where the platform maneuver is characterized by
small forward velocity, as presented in Fig. 11(b).

The pitch and roll angles, presented in Fig. 10(b), oscillate
around the mean values of 3.08 and , respectively, that
correspond approximately to the installation angles of the hard-
ware architecture. Pitch and roll fluctuations occur due to plat-
form turning, interference of waves, and vibration of the hull
due to the propellers. Larger oscillations are verified when the
vehicle turns, for example the slalom trajectory at [760 880] s
bears larger peak to peak values of the pitch and roll angles,
due to the oscillation of the catamaran while performing the ma-
neuver, and to the vibration induced by the propellers. The pitch
and roll values satisfy the conditions under which the stability
propositions derived in Sections II hold. Interestingly enough,
the standard deviations of the pitch and roll estimates are 0.95
and 1.42 , respectively, which suggests that the performance

Fig. 10. Attitude estimation results. The GPS yaw measurements are external
to the filtering algorithm, and depicted solely for the sake of comparison.
(a) Yaw. (b) Pitch and roll.

degradation of the attitude filter due to time-varying pitch and
roll is small for the present application.

The velocity estimation results are shown in Fig. 11. The pro-
posed filter is based on the attitude kinematics and hence does
not estimate explicitly the angular velocity, in spite of compen-
sating for the rate gyro noise and bias to estimate attitude. The
angular velocity estimate, presented in Fig. 11(a), is given by the
rate gyro measurements, compensated with the bias estimate,
and is presented to verify the consistency of the attitude esti-
mates. The -axis angular velocity is synchronous with the yaw
changes in Fig. 10(a), namely in the initial turn, and in turning
maneuvers at the time intervals where variations in the angular
velocity are verified, such as [305 315] s, [370 380] s, [435
450] s, [465 470] s, [560 600] s, and [760 880] s. These turning
maneuvers can be identified in Fig. 9(a) by analyzing the time
tags. The - and -axes angular velocities are consistent with the
pitch and roll estimates, i.e., are approximately zero mean and
the most noticeable fluctuation occurs at the slalom maneuver
at [760 880] s.
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Fig. 11. Linear and angular velocity estimation results. (a) Angular velocity.
(b) Linear velocity, with subplot boxes showing the estimation results for � �

�������� s.

The estimate of the linear velocity, expressed in body coordi-
nates, is shown in Fig. 11(b). The -axis body velocity is pos-
itive and approximately stepwise constant at the straight paths
trajectories at the time intervals [320 365] s, [385 430] s, [480
550] s, [615 750] s and [880 980] s. The -axis body velocity
is approximately zero-mean during straight path trajectories,
and centrifugal during turning maneuvers due to sideslip of the
catamaran, as evidenced for the slalom maneuver results, see
Fig. 11(b) and detail in Fig. 12. Also, the mean of the -axis
body velocity is nonzero when the vehicle is subject to external,
Earth fixed forces such as waves induced by nearby vessels and
oceanic currents, such as in the time interval [760 980] s. The

-axis body velocity is approximately zero-mean, as expected
for an oceanic platform.

The duration of the mission is large with respect to the
oceanic disturbances acting on the catamaran’s hull, such as
waves, that produce short term oscillating motion, hardly dis-
tinguishable from sensor noise when the interval s
is considered. To analyze the filter estimates more closely,
estimation results for the time interval s, where

Fig. 12. Linear velocity during the slalom maneuver at [760 880] s.

Fig. 13. Attitude estimation results for � � �������� s.

the vehicle describes a straight line trajectory, are depicted
in Fig. 13 and in the subplot boxes presented in Figs. 9(b)
and 11(b). The mean values of the yaw, pitch, and roll angles
shown in Fig. 13 are coherent with the vehicle’s heading and
the hardware installation angles, and the angular fluctuations
are naturally induced by the swaying of the vehicle. The ve-
hicle estimation results presented in the subplots of Fig. 11(b)
show that the - and -components of the velocity estimates
are smooth and approximately constant, and that the -axis
velocity oscillates mostly due the impact of short period ocean
waves on the vehicle’s hull. The subplot presented in Fig. 9(b)
shows that the position estimates is a blend of the inertial and
the GPS unit readings, since it is smooth and diverse from the
GPS measurements.

The rate gyro bias estimation results are presented in
Fig. 14(a). The results show that the attitude complementary
filter compensates for slowly time-varying bias, by means of
the small design weight in the computation of the feedback
gain, see Table I for details. However, the Kalman gains are
stationary and the initial bias uncertainty should be close
to the steady-state bias covariance, i.e., the bias calibration
error should be small. As shown in Fig. 14(b), using a larger
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Fig. 14. Rate gyro bias estimation. The dashed lines show the���� bounds
around the true bias. (a) Compensation of slowly time-varying bias, � �

�� . (b) Calibration error compensation, � � �� .

design weight enables the filter to compensate for the bias
calibration error at the cost of larger steady state covariance.
Consequently, the tradeoff between the accuracy of the bias
estimate and the compensation of large bias estimation errors
should be considered in the design process. Usual mission
requirements include bias calibration during system warm-up,
where bias fluctuations are large, and compensation of long
term, slowly time-varying bias changes during the course of the
mission. A simple gain switching technique can be adopted,
using a large design weight during the initialization of the
system, and a smaller in the long term.

The position estimation results are coherent with the GPS
measurements, as evidenced in Fig. 9. To analyze the weight
of GPS aiding in the filter estimation results, the case of GPS
outage is considered by canceling the GPS measurement feed-
back at selected time intervals when the vehicle turns or enters
long straight paths. The GPS outage time instants are detailed
in Table II, and the corresponding trajectories are illustrated in
Fig. 15(a). The navigation system results presented in Table II

Fig. 15. DELFIMx trajectory estimation results (GPS signal jamming).
(a) ��-plane projection. (b) Difference between the estimated and the GPS
measured positions.

TABLE II
GPS OUTAGE RESULTS

show that the position drift rate is small during GPS signal
outage. Consequently, the position filter operates without re-
lying too much on the GPS position observations, by exploiting
the inertial measurements information. The navigation system
follows closely the straight path trajectories, and successfully
exploits the angular information during the turning maneuvers.
The position estimates are bounded for the GPS outage time in-
tervals, as shown in Fig. 15(b), however position error buildup
occurs due to the open-loop integration of the accelerometers,
combined with pitch and roll estimation errors that induce po-
sition estimate drift, as expected.

The frequency domain validation of the complementary
transfer functions is performed using the MATLAB spectrogram
function to compute the short-time Fourier transform of the
position and attitude estimates, aiding sensor measurements,
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Fig. 16. Spectrograms of the pitch measurements and filter estimate. (a) Aiding
measurement (MPS). (b) Rate gyro integration. (c) Filter estimate.

and inertial sensor measurements integration. The short-time
Fourier transform computes a time-dependent Fourier trans-
form of the signal multiplied by a sliding window function,
and allows for a characterization of the time-varying frequency
contents of a signal at each time instant [44]. The choice of the
window function size is a trade-off between good resolution
in the time domain (short window), and good resolution in the
frequency domain (large window).

Using a Hamming window of length 512 and 500 overlapping
segments, the frequency contents of the attitude and position
signals can be analyzed, and the blending of the low frequency
contents of the aiding sensors with the high frequency contents
of the inertial sensor integration can be studied. Namely, Fig. 16
illustrates the fusion in the frequency domain of the pendular
measurements with the inertial readings. Although a rigorous

analysis in the frequency domain using the spectrogram is pre-
cluded by the multirate formulation of the navigation system,
it is possible to verify qualitatively that the sensor measure-
ments are blended using complementary transfer functions. The
low-frequency contents of the pitch observations presented in
Fig. 16(a) are blended with the high-frequency contents of the
open-loop integration of the inertial measurements, shown in
Fig. 16(b), producing the attitude estimate with the frequency
contents depicted in Fig. 16(c). Qualitatively, it is verified that
the filter estimates are similar to the aiding sensor measure-
ments, smoothed by the inertial measurement integration. This
blending in the frequency domain of the aiding and inertial sen-
sors data is according to the complementary transfer functions
depicted in Fig. 7 and derived in Section IV-B.

The experimental results obtained on-board the DELFIMx
catamaran validate the proposed navigation system architecture.
The adopted design parameters yield the desired sensor fusion
in the frequency domain, and produce good attitude and posi-
tion estimation and rate gyro bias compensation results in the
time domain. The attitude and position estimates were consis-
tent with the trajectory profile, and the navigation system en-
dured GPS outage, which shows that the proposed complemen-
tary filter based architecture is suitable for the oceanic applica-
tion under study.

V. CONCLUSION

Complementary filters for attitude and position estimation
were proposed, and their stability and performance properties
were derived theoretically. Using the Euler angles parametriza-
tion, the attitude filter compensates for rate gyro bias and is
stable for trajectories described by nonsingular configurations.
The position filter estimates velocity in body coordinates and
position in Earth frame, and is asymptotically stable. The
attitude and position complementary filters were integrated to
produce a complete navigation system, whose structure can
be represented in a simple block diagram and can be easily
implemented on a low-cost, low-power consumption hardware.
The filter gains are computed using frequency domain design
to shape a frequency response that exploits the low-frequency
contents of the aiding sensors and the high-frequency contents
of the inertial sensors. Implementation aspects were detailed,
namely an attitude aiding observation based on magnetic
and pendular measurements was derived, and the problem of
multiple sampling rates was tackled using optimal results for
periodic systems. The navigation system was validated using
experimental data, in tests at sea with the DELFIMx catamaran.
Rate gyro bias was compensated for, and good attitude and
position estimates were obtained by exploiting the complemen-
tary frequency contents of the aiding and the inertial sensors.
Also, the navigation system was shown to yield accurate results
and small drift in the case of GPS outage.

Stability and performance properties were derived separately
for the proposed attitude and position filters. Future work will
address the generalization of these properties to the overall nav-
igation system, and analyze the cross-correlations between the
attitude and velocity estimates. Also, advanced compensation of
sensor errors can be addressed to further enhance the estimation
results. Namely, the position aiding computed by the GPS unit
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was successfully integrated in the filter, however future work
should address the dynamic compensation of GPS pseudorange
measurement errors (tightly coupled configuration); and the of-
fline accelerometer bias calibration was found suitable for the
duration of the ASC mission, nonetheless online accelerometer
bias compensation is of interest for future applications.

APPENDIX A
PERFORMANCE OF THE ATTITUDE FILTER

The system (7) can be written in the compact form as

where

The estimation error covariance, denoted by

satisfies the propagation equation [34]

(38)

The estimation error covariance of the Kalman filter for the at-
titude kinematics (4), denoted by , satisfies

(39)

where . The performance of the pro-
posed attitude filter can be studied offline by comparing the es-
timation error covariance given by (38) with the optimal error
covariance described by (39), as illustrated in the analysis pre-
sented in Section IV.

APPENDIX B
MONTE CARLO SIMULATION RESULTS

This section summarizes the Monte Carlo simulation results
that validated the proposed navigation system, prior to the ex-
perimental tests presented in Section IV. The simulation param-
eters were defined according to characteristics of the hardware
architecture described in Section IV-A. The Gaussian white-
noise covariances of the measurements , , , and were,
respectively, s, 2.6 m s , , and , and

s. The complementary Kalman filters
were executed at 56 Hz, the inertial sensors were sampled at

Fig. 17. Monte Carlo simulation results. (a) Nominal and estimated position
(3-� bounds are shown using dashed lines). (b) Nominal and estimated attitude
(3-� bounds are shown using dashed lines).

TABLE III
COMPLEMENTARY FILTER ESTIMATION RESULTS

(MONTE CARLO SIMULATIONS)

the filter’s rate, and the GPS position measurements were ob-
tained at 4 Hz. The filter gains were designed using the synthesis
weights adopted in the experimental tests, presented in Table I.
The disturbances found in the experimental setup are usually
non-Gaussian and correlated in time, which motivates the de-
sign of gains in the frequency domain, that yields the comple-
mentary filter transfer functions presented in Section IV-B.

The proposed navigation system was studied in simulation
for an upwards trimming trajectory, subject to constant cen-
tripetal acceleration. A set of 500 Monte Carlo simulations was
run, using a Gaussian distribution model for the initial condi-
tions. The standard deviation matrices for the initial conditions
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, , , and were m, , m s, and
s, respectively.

The estimation results are presented in Table III and show that
the attitude and position estimates are more accurate than those
obtained by using solely the aiding sensors. Position and attitude
estimation results for a single Monte Carlo, and the standard
deviations of the Monte Carlo simulations set, are illustrated
in Fig. 17(a) and (b), respectively, which show that the estima-
tion errors remain bounded over time. The proposed navigation
system was stable for all the Monte Carlo runs, as expected.
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