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a b s t r a c t

This paper presents a novel approach to the design of globally asymptotically stable (GAS) position and
velocity filters for Autonomous Underwater Vehicles (AUVs) based directly on the sensor readings of
an Ultra-short Baseline (USBL) acoustic array system and a Doppler Velocity Log (DVL). The proposed
methodology is based on an equivalent linear time-varying (LTV) system that fully captures the dynamics
of the nonlinear system, allowing for the use of powerful linear system analysis and filtering design tools
that yield GAS filter error dynamics. Numerical results using Monte Carlo simulations and comparison
to the Bayesian Cramér Rao Bound (BCRB) reveal that the performance of the proposed filter is tight to
this theoretical estimation error lower bound. In comparison with other approaches, the present solution
achieves the same level of performance of the Extended Kalman Filter (EKF), which does not offer GAS
guarantees, and outperforms other classical filtering approaches designed in inertial coordinates instead
of the body-fixed coordinate frame.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The design and implementation of navigation systems stand out
as one of the most critical steps towards the successful operation
of autonomous vehicles. The quality of the overall estimates of
the navigation system dramatically influences the capability of
the vehicles to perform precision-demanding tasks, see Pascoal,
Oliveira, and Silvestre (2000) andWhitcomb (2000) for interesting
and detailed surveys on underwater vehicle navigation and its
relevance. This paper presents a novel approach to the design of
globally asymptotically stable (GAS) position filters directly based
on the acoustic array sensor readings.
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Consider an underwater vehicle equipped with an Ultra-
Short Baseline (USBL) underwater positioning device, a triad of
orthogonally mounted rate gyros, and a Doppler Velocity Log
(DVL), that moves in the presence of unknown ocean currents in
a scenario that has a fixed transponder, as depicted in Fig. 1.

The USBL is composed of a small calibrated array of acoustic
receivers and measures the distance between the transponder
and the receivers installed on-board. Given the proximity of
the sensors in the receiving array, hence the name Ultra-Short
Baseline (USBL), it is capable of measuring more accurately
the Range-Difference-of-Arrival (RDOA) of the acoustic waves
at the receivers compared to the actual distances between
the transponder and all the receivers. The DVL measures the
velocity of the vehicle with respect to the fluid, and the rate
gyros provide the angular velocities of the vehicle. Due to noisy
measurements, unknown ocean currents, and the nonlinear nature
of the range measurements, a filtering solution is required in
order to correctly estimate the position of the transponder in the
vehicle coordinate frame and the inertial velocity of the vehicle.
Recent advances in the area of underwater navigation, based on
merging the information from acoustic arrays and other inertial
sensors like DVLs, can be found in Batista, Silvestre, and Oliveira
(2010b), Eustice, Whitcomb, Singh, and Grund (2007), Kinsey and
Whitcomb (2004), Kinsey and Whitcomb (2007), Rigby, Pizarro,
and Williams (2006), and Willemenot, Morvan, Pelletier, and
Hoof (2009). Related work using nonlinear observers applied to
automotive vehicle velocity estimation can be seen in Imsland et al.
(2006), and the references therein.
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Fig. 1. Mission scenario.

Control systems for autonomous vehicles often rely on the
information provided by state observers (Do, Jiang, Pan, &
Nijmeijer, 2004; Pisano & Usai, 2004) to perform the desired
tasks. The choice of where these quantities (e.g. position, velocity,
attitude, etc.) are expressed, either on body or inertial coordinate
frames, depends on the purpose, application and mainly on
the design methodology used to synthesize the controller. The
navigation system can be designed to provide estimates expressed
on any specific coordinate frame, either by posterior conversion of
the outputs from one frame to another (e.g. estimator designed to
provide outputs on inertial coordinates with posterior conversion
to body-fixed coordinates or vice-versa) or by directly designing
the systems on the desired coordinate frame. Intuitively one
might expect each coordinate frame tailored filter to perform
better than the other on its own design frame due, for instance,
to unaccounted posterior frame conversion during the filtering
process. Moreover, most inertial quantities are directly sensed on
the body-fixed coordinate frame, whereas for use on an inertial
frame designed filter these have to be correctly converted from
body to inertial coordinates, using for instance an Attitude and
Heading Reference System (AHRS). Positioning devices aboard
the vehicle like inverted USBL configurations obtain directly the
position of transponders in body-fixed coordinates, motivating the
use of body referenced estimators in the design of controllers, such
as homing and docking controllers, that actuate directly on the
vehicles own coordinate frame.

Traditional solutions resort either to the well known Extended
Kalman Filter (EKF) (Morgado, Oliveira, Silvestre, & Vasconcelos,
2006), Particle Filters (PF) (Rigby et al., 2006), which lack global
asymptotic stability guarantees, or to more classical filtering
solutions that use a precomputed position fix from the USBL device
in inertial coordinates and obtain the filtered vehicle position in
a simple Linear Time-Invariant (LTI) setting. The computation of
this position fix is commonly obtained using the range and bearing
and elevation angles of the transponder, which resorts to a planar
wave approximation of the acoustic wave arriving at the receiving
array, previously used by the authors (Morgado et al., 2006). In
that case, the error cannot be guaranteed to converge to zero due
to the planar wave approximation. In fact, the error converges to
a neighbourhood of the origin, not arbitrarily small, that depends
on the planar wave approximation, and that only vanishes as the
distance between the transponder and the vehicle approaches
infinity. This behaviour is obviously undesirable if the vehicle is
to, for instance, dock on a station or manoeuvre (García, Fresneda,
Sanz, & Marín, 2010) in the vicinity of a transponder.

The main contributions of this paper are twofold: (i) the
design of a globally asymptotically stable sensor-based filter to
estimate the position of the transponder and the ocean current
that biases the DVL readings; and (ii) the performance assessment
of the proposed filtering structure in comparison with theoretical
performance lower bounds using Monte Carlo simulations. The
solution presented in the paper departs from previous approaches
as the range measurements are directly embedded in the filter
structure, thus avoiding the planar wave approximation, and
follows related work found in Batista, Silvestre, and Oliveira
(2009b) and Batista, Silvestre, and Oliveira (2010a), where single
range measurements were considered and persistent excitation
conditions were imposed on the vehicle motion to bear the system
observable. In this paper the framework is extended to the case
of having an array of receivers installed on-board the vehicle,
which allows for the analysis of the overall system without any
constraint on the vehicle motion. At the core of the proposed
filtering framework lies a Linear Time-Varying (LTV) system that
is shown to mimic the dynamics of the nonlinear system, without
resorting to any degree of linearization. The LTVmodel is achieved
through appropriate state augmentation, allowing for the use of
powerful linear system analysis and filtering design tools that
yield a novel estimation solution with GAS error dynamics. The
work presented herein represents the first time, to the best of
the authors’ knowledge, that a GAS filter is designed for this
problem in a sensor-based approach, in which the nonlinear
ranging observations from a single source to multiple receivers
installed on-board a robotic platform, are directly used in the
filtering process and not explicitly inverted to obtain a relative
position fix. A short preliminary version of thisworkwas presented
in Morgado, Batista, Oliveira, and Silvestre (2010).

The paper is organized as follows: Section 2 sets the problem
framework and definitions. The proposed filter design and main
contributions of the paper are presented in Section 3, where the
filter structure is brought to full detail and an extensive and
constructive observability analysis is carried out. An overview of
the Bayesian Cramér Rao Bound (BCRB) and performance bounds
is also carried out in Section 3. Monte Carlo simulation results and
performance comparison with traditional solutions and the BCRB
are discussed in Section 4, and finally Section 5 provides some
concluding remarks.

2. Problem framework

In order to set the design framework, let {I} denote an inertial
reference coordinate frame and {B} a coordinate frame attached to
the vehicle, usually denominated as body-fixed coordinate frame.
The position of the transponder r(t) ∈ R3 in the vehicle coordinate
frame {B} is given by

Br(t) = RT (t)(Is −
Ip(t)), (1)

where Is ∈ R3 is the position of the transponder in inertial co-
ordinates, Ip(t) ∈ R3 is the position of the vehicle in inertial co-
ordinates, and R(t) ∈ SO(3) is the rotation matrix from {B} to
{I}, SO(3) denotes the special orthogonal group of rotation matri-
ces, and the operator (·)T denotes the usual matrix transpose op-
eration. The time derivative of R(t) verifies Ṙ(t) = R(t)S (ω(t)),
where ω(t) ∈ R3 is the angular velocity of {B} with respect
to {I}, expressed in body-fixed coordinates, and S (ω(t)) is the
skew-symmetric matrix that represents the cross product such
that S (ω) a = ω × a.

Differentiating (1) in time yields

Bṙ(t) = −S (ω(t)) Br(t) −
Bv(t), (2)

where Bv(t) ∈ R3 is the vehicle velocity expressed in body-fixed
coordinates. The readings of the DVL are modelled by

Bvr(t) =
Bv(t) − RT (t)Ivc(t), (3)

where Bvr(t) ∈ R3 is the velocity reading provided by the DVL,
and Ivc(t) ∈ R3 is the ocean current velocity expressed in inertial
coordinates and considered to be constant, that is, I v̇c(t) = 0.
Using the current velocity expressed in body-fixed coordinates
Bvc(t) = RT (t)Ivc(t) together with (3) in (2) yields

Bṙ(t) = −S (ω(t)) Br(t) −
Bvc(t) −

Bvr(t). (4)
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Table 1
Summary of measured quantities and variables to be estimated.

Estimate Measure

Transponder pos.—r(t) Relative vel. to fluid—vr(t)
Current vel. vc(t) Angular vel.—ω(t)
(In body-fixed coord.) Ranges—ρi(t), i = 1, . . . , nr

The distances between the transponder and the receivers installed
on-board the vehicle (as measured by the USBL) can be written
as

ρi(t) = ‖
Bbi −

Br(t)‖, i = 1, . . . , nr , (5)

where Bbi ∈ R3 denotes the position of the receiver in {B} and
nr is the number of receivers on the USBL. For the sake of
clarity of presentation, the superscript B(·)denoting the body-fixed
coordinate frame will be omitted as follows

r(t) :=
Br(t), vr(t) :=

Bvr(t),
vc(t) :=

Bvc(t), bi :=
Bbi.

Thus, combining the time-derivative of vc(t)with (4) and (5) yields
the nonlinear systemṙ(t) = −S (ω(t)) r(t) − vc(t) − vr(t),
v̇c(t) = −S (ω(t)) vc(t),
ρi(t) = ‖bi − r(t)‖, i = 1, . . . , nr .

(6)

The problemaddressed in this paper, the quantities to be estimated
and filtered, and the consideredmeasurements can be summarized
in the following statement.

Problem statement 1. Consider a robotic vehicle that is equipped
with a fluid relative velocity sensor, a triad of orthogonally
mounted rate gyros, and an array of acoustic receivers that
provide multiple range measurements to a fixed transponder in
the mission operation scenario. Design a filter or state observer
for the transponder position r(t) and the ocean current velocity
vc(t) described in (6), considering noisy measurements for the
vehicle angular velocity ω(t), the fluid relative velocity vr(t), and
the ranges ρi(t), with i = 1, . . . , nr , as summarized in Table 1.

3. Filter design

This section presents the main results and contributions of the
paper. In order to reduce the complexity of the system dynamics a
Lyapunov state transformation is firstly introduced in Section 3.1.
The LTV system that will mimic the nonlinear behaviour of the
original system (6) is proposed in Section 3.2, by means of an
appropriate state augmentation. The observability analysis of the
LTV system and its relation with the original nonlinear system
is conducted in Section 3.3, and finally in Section 3.4, the design
of a Kalman filter is proposed in a stochastic setting for the
resulting system. In the course of the filter design, the augmented
LTV system is shown to be uniformly completely observable, a
sufficient condition for a LTV Kalman filter to yield GAS estimation
error dynamics. An overview of theoretical performance lower
bounds with application to the problem at hand is carried out in
Section 3.5.

3.1. State transformation

Consider the following state transformation[
x1(t)
x2(t)

]
:= T(t)

[
r(t)
vc(t)

]
, (7)
where T(t) := diag (R(t), R(t)) is a Lyapunov state transforma-
tionwhichpreserves all observability properties of the original sys-
tem (Brockett, 1970). The new system dynamics are given byẋ1(t) = −x2(t) − u(t),

ẋ2(t) = 0,
ρi(t) = ‖bi − RT (t)x1(t)‖, i = 1, . . . , nr ,

(8)

where u(t) = R(t)vr(t). The advantage of considering this state
transformation is that the new system dynamics becomes highly
simplified as time-invariant, although the system output becomes
time-varying and is still nonlinear.

3.2. State augmentation

In order to derive a linear system that is equivalent to the
original nonlinear system, a state augmentation procedure follows,
directly from the kinematics of the nonlinear range outputs of (8).
Thus, taking the time-derivative of ρi(t) in (8) yields

ρ̇i(t) =
1

ρi(t)


(bT

i S (ω(t)) RT (t) − uT (t))x1(t)

+ bT
i R

T (t)x2(t) − xT1(t)x2(t) + bT
i R

T (t)u(t)


. (9)

Identifying the nonlinear term xT1(t)x2(t) in (9) leads to the
creation of the augmented states thatwillmimic this non-linearity:
xnr+3(t) := xT1(t)x2(t) and xnr+4(t) := ‖x2(t)‖2, with the
corresponding kinematics ẋnr+3(t) = −uT (t)x2(t) − xnr+4(t) and
ẋnr+4(t) = 0.

Thus a new dynamic system is created by augmenting the
original nonlinear system with the states
x3(t) := ρ1(t), . . . , xnr+2(t) := ρnr (t),
xnr+3(t) := xT1(t)x2(t), xnr+4(t) := ‖x2(t)‖2,

and denoting the new augmented state vector x(t) ∈ R8+nr by
x(t) =


xT1(t)x

T
2(t)x3(t) . . . xnr+2(t)xnr+3(t)xnr+4(t)

T . Combining
the new augmented states dynamics with (8) it is easy to verify
that the augmented dynamics can be written as
ẋ(t) = A(t)x(t) + B(t)u(t),
where

B(t) =

[
−I3 0

R(t)b1

ρ1(t)
· · ·

R(t)bnr

ρnr (t)
0 0

]T
(10)

and

A(t)

=



0 −I 0 0 0
0 0 0 0 0

(bT
1S (ω(t)) RT (t) − uT (t))

ρ1(t)
bT
1R

T (t)
ρ1(t)

0 −
1

ρ1(t)
0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(bT
nr S (ω(t)) RT (t) − uT (t))

ρnr (t)

bT
nr R

T (t)

ρnr (t)
0 −

1
ρnr (t)

0

0 −uT (t) 0 0 −1
0 0 0 0 0


. (11)

The following assumption is required so that (10) and (11) are
well defined.

Assumption 2. The motion of the vehicle is such that

∃ Rmin>0
Rmax>0

∀ t≥t0
i=1,...,nr

: Rmin ≤ ρi(t) ≤ Rmax.

From a practical point of view, Assumption 2 is not restrictive as
the vehicle will never be on top of a transponder, nor arbitrarily far
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away from it. Note that the RDOA at the receivers are considered to
be measured more accurately compared to the absolute distance
between the transponder and any given reference receiver of
the USBL. Selecting a reference sensor on the array, for instance
receiver 1 for now, all the other ranges are easily reconstructed
from the range measured at receiver 1 and the RDOA between
receiver 1 and the other receivers, that is ρj(t) = ρ1(t) − δρ1j(t),
where δρ1j(t) = ρ1(t) − ρj(t).

Taking into account that the augmented states x3(t), . . . , xnr+2
(t) that correspond to the ranges, are actually measured, it is
straightforward to show from the outputs of (6) that

ρ2
i (t) − ρ2

j (t) = ‖bi‖
2
− ‖bj‖

2
− 2(bi − bj)

TRT (t)x1(t),

which leads to

2(bi − bj)
TRT (t)x1(t)

ρi(t) + ρj(t)
+ ρi(t) − ρj(t) =

‖bi‖
2
− ‖bj‖

2

ρi(t) + ρj(t)
,

or, equivalently,

2(bi − bj)
TRT (t)x1(t)

ρi(t) + ρj(t)
+ x2+i(t) − x2+j(t) =

‖bi‖
2
− ‖bj‖

2

ρi(t) + ρj(t)
, (12)

where the right hand-side of (12) is measured and the left hand-
side is linearly dependent on the system state.

In order to complete the augmented system dynamics, discard-
ing the original nonlinear outputs in (8), and considering (12), de-
fine the new augmented system outputs y(t) ∈ Rnr+nc as

y(t)

=




x3(t) x3(t) − x4(t) · · · x3(t) − x2+nr (t)

T
2(b1 − b2)

TRT (t)x1(t)
ρ1(t) + ρ2(t)

+ x2+1(t) − x2+2(t)

2(b1 − b3)
TRT (t)x1(t)

ρ1(t) + ρ3(t)
+ x2+1(t) − x2+3(t)

...

2(bnr−2 − bnr )
TRT (t)x1(t)

ρnr−2(t) + ρnr (t)
+ x2+nr−2(t) − x2+nr (t)

2(bnr−1 − bnr )
TRT (t)x1(t)

ρnr−1(t) + ρnr (t)
+ x2+nr−1(t) − x2+nr (t)


,

where nc = Cnr
2 =

nr !
2(nr−2)! =

nr (nr−1)
2 is the number

of all possible 2-combinations of nr elements. Even tough the
observability analysis presented in the sequel does not require
all possible combinations to bear constructive results (a subset of
these combinationsmight yield the overall systemobservable), the
derivation is presented using all nc combinations in order to exploit
all available information from the acoustic array in the filtering
framework.

Let

Ur :=

b1 · · · bnr

T
∈ Rnr×3,

ϒ(t) :=

ρ1(t) · · · ρnr (t)

T
∈ Rnr×1,

DΥ (t) := diag(Υ (t)) ∈ Rnr×nr ,

Dρ+(t) := diag




ρ1(t) + ρ2(t)
ρ1(t) + ρ3(t)

...
ρnr−2(t) + ρnr (t)
ρnr−1(t) + ρnr (t)


 ∈ Rnc×nc .

In compact form, the augmented system dynamics can be
written as
ẋ(t) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), (13)
where

C(t) =

[
0nr×3 0nr×3 C0 0nr×2
C1(t) 0nc×3 C2 0nc×2

]
,

C0 =


1 0 · · · 0
1 −1
... 0

. . . 0
1 −1

 ,

C2 =


1 −1 0 0 · · · 0
1 0 −1 0 · · · 0

...
0 · · · 0 1 0 −1
0 · · · 0 0 1 −1

 ,

and

C1(t) = 2D−1
ρ+

(t)C2UrR
T (t). (14)

3.3. Observability analysis

The Lyapunov state transformation and the state augmentation
that were carried out allowed to derive the LTV system described
in (13), which ensembles the behaviour of the original nonlinear
system (6). The dynamic system (13) can be regarded as a LTV, even
though it might seem strange that the systemmatrix A(t) depends
explicitly on the system input and output, as evidenced by (11).
Nevertheless, this is not a problem from the theoretical point of
view for the design of an observer, as both the input and output of
the systemare known continuous bounded signals,whereas for the
design of a state controller this considerationwould not be feasible.
The idea is not new either, see, e.g., Celikovsky and Chen (2005),
and it just suggests, in this case, that the observability of (13) may
be connected with the evolution of the system input or output (or
both), which is not common and does not happenwhen thismatrix
does not depend on the system input or output.

In order to fully understand and couple the behaviour of
both systems, the observability analysis of (13) is carried out in
this section using classical linear systems theory. This analysis is
conducted based on the observability Gramian associated with the
pair (A(t), C(t)), which is given by Antsaklis and Michel (2006)

W(t0, tf ) =

∫ tf

t0
8T (t, t0)CT (t)C(t)8(t, t0)dt,

where8(t, t0) is the state transitionmatrix of the LTV system (13).
Tedious, lengthy, but straightforward computations show that

the transition matrix associated with A(t) is given by

8(t, t0) =


8AA(t, t0) 06×nr 06×2
8BA(t, t0) Inr 8BC (t, t0)
8CA(t, t0) 02×nr 8CC (t, t0)


,

where

8AA(t, t0) =

[
I −(t − t0)I
0 I

]
,

8BA(t, t0) =

8BA1(t, t0) 8BA2(t, t0)


,

8BA1(t, t0)

=

∫ t

t0
D−1

Υ (σ )

UrS (ω(σ )) RT (σ ) − uT (σ ) ⊗ 1nr×1


dσ ,

8BA2(t, t0)

=

∫ t

t0
D−1

Υ (σ )

UrR

T (σ ) + uT [1](σ , t0) ⊗ 1nr×1

dσ
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−

∫ t

t0
(σ − t0)D−1

Υ (σ )

UrS (ω(σ )) RT (σ )

−uT (σ ) ⊗ 1nr×1

dσ ,

u[1](t, t0) =

∫ t

t0
u(σ )dσ ,

8BC (t, t0) =

8BC1(t, t0) 8BC2(t, t0)


,

8BC1(t, t0) = −

∫ t

t0
ϒ−1(σ )dσ ,

and

8BC2(t, t0) =

∫ t

t0
(σ − t0)ϒ−1(σ )dσ , (15)

where the operator ⊗ represents the Kronecker product, and
8CA(t, t0) and 8CC (t, t0) are omitted as they are not required in
the sequel.

Before proceedingwith the observability analysis, the following
assumption is introduced which ultimately asserts the minimal
number of receivers and configuration requirements of the USBL
array in order to render the system observable regardless of the
trajectory described by the vehicle.

Assumption 3. There are at least 4 non-coplanar receivers.

The following theorem establishes the observability of the LTV
system (13).

Theorem 4. The linear time-varying system (13) is observable on
[t0, tf ], t0 < tf .

Proof. The observability proof of the LTV system (13) is accom-
plished by contradiction. Thus suppose that (13) is not observable
on I := [t0, tf ]. Then, there exists a non null vector d ∈ R8+nr

d =

dT
1 dT

2 dT
3 d4 d5


, (16)

with d1 ∈ R3, d2 ∈ R3, d3 ∈ Rnr , d4, d5 ∈ R, such that
dTW(t0, tf )d = 0 for all t ∈ I, or equivalently,∫ t

t0
‖C(τ )8(τ , t0)d‖

2dτ = 0, ∀t∈I. (17)

Taking the time derivative of (17) gives

C(t)8(t, t0)d = 0, ∀t∈I. (18)

From (18), at t = t0 comes[
C0d3

C1(t0)d1 + C2d3

]
= 0, (19)

which immediately implies that C0d3 = 0. As C0 is not singular, it
follows that the only solution is the null vector d3 = 0. Replacing
d3 = 0 in (19) yields

2D−1
ρ+

(t0)C2UrR
T (t0)d1 = 0. (20)

Under Assumption 3 the only solution for (20) is d1 = 0. From (18)
it must be

C08BA2(t, t0)d2 + C08BC (t, t0)
[
d4
d5

]
= 0. (21)
Taking the time derivative of (21) allows to write

C0


D−1

Υ (t)

UrR

T (t) + uT [1](t, t0) ⊗ 1nr×1


+ (t − t0)D−1
Υ (σ )


UrS (ω(t)) RT (t) − uT (t) ⊗ 1nr×1


d2

− C0ϒ
−1(t)d4 + (t − t0)C0ϒ

−1(t)d5 = 0. (22)

Evaluating (22) at t = t0 yields

C0

D−1

Υ (t0)Ur | −ϒ−1(t0)
 [RT (t0)d2

d4

]
= 0. (23)

Under Assumption 3, it is easy to verify, in (23), that the matrix
C0

D−1

Υ (t0)Ur | −ϒ−1(t0)

has full rank and therefore the only

solution for (23) is d2 = 0 and d4 = 0. Finally, setting d1 = 0, d2 =

0, d3 = 0 and d4 = 0 in (22) yields

(t − t0)C0ϒ
−1(t0)d5 = 0. (24)

Again the only possible solution for (24) is d5 = 0. This concludes
the proof as the only solution d = 0 of (17) contradicts the
hypothesis of the existence of a non null vector d such that (17) is
true. Thus, by contradiction, the LTV system (13) is observable. �

The reasoning behind the need to have at least 4 non-coplanar
receivers is that this is the minimum number of receivers so that
it is not possible to define a plane that contains all receivers. If
a plane that contains all receivers could be defined there would
always be at least two possible solutions for the position of the
vehicle that satisfy the range measurements. With 4 non-coplanar
receivers, the solution for r(t) is unique. Although the observability
of the LTV system (13) has been established, that does not mean
that the original nonlinear system (6) is also observable. In fact, in
the proposed augmented LTV structure there is nothing imposing
(5) neither the nonlinear algebraic relations between the original
and additional states, and neither means that an observer for the
augmented LTV system (13) is also an observer for the original
nonlinear system (6). This however turns out to be true, as it is
shown in the following theorem.

Theorem 5. The nonlinear system (8) is observable in the sense that,
given {y(t), t ∈ [t0, tf ]} and {u(t), t ∈ [t0, tf ]}, the initial state
x(t0) =


xT1(t0) xT2(t0)

T is uniquely defined. Moreover, a state
observer for the LTV system (13) with globally asymptotically stable
error dynamics is also a state observer for the nonlinear system (8),
with globally asymptotically stable error dynamics.

Proof. The observability of the LTV system (13) has already been
established in Theorem 4, thus given {y(t), t ∈ [t0, tf ]} and
{u(t), t ∈ [t0, tf ]}, the initial state of (13) is uniquely defined.
Let z(t0) =


zT1(t0)z

T
2(t0)z

T
3(t0)z4(t0)z5(t0)

T with z1(t0), z2(t0) ∈

R3, z3(t0) ∈ Rnr , and z4(t0), z5(t0) ∈ R be the initial state of the
LTV system (13) and x(t0) =


xT1(t0)x

T
2(t0)

T be the initial state of
the nonlinear system (8). Evaluating the outputs of the augmented
system (13) at t = t0, comes from (12) that

2(bi − bj)
TRT (t0)z1(t0)

ρi(t0) + ρj(t0)
+ z2+i(t0) − z2+j(t0)

=
‖bi‖

2
− ‖bj‖

2

ρi(t0) + ρj(t0)
. (25)

Now, noticing that the initial augmented states z2+i(t0) with
i = 1, . . . , nr of the LTV system (13), are actually measured, it
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immediately follows that z2+i(t0) = ρi(t0), i = 1, . . . , nr , which
used in (25) yields

2(bi − bj)
TRT (t0)z1(t0) + ρ2

i (t0) − ρ2
j (t0) = ‖bi‖

2
− ‖bj‖

2. (26)

Setting the actual measured output from (8) at t = t0, ρi(t0) =

‖bi − RT (t0)x1(t0)‖, in (26), it must be

2(bi − bj)
TRT (t0) [z1(t0) − x1(t0)] = 0

for all i, j = 1, . . . , nr , or in compact form

C2UrR
T (t0) [x1(t0) − z1(t0)] = 0. (27)

Under Assumption 3 the only solution of (27) becomes x1(t0) =

z1(t0), which also trivially asserts that z2+i(t0) = ‖z1(t0) −

R(t0)bi‖, for all i = 1, . . . , nr . The evolution of x1(t) for the
nonlinear system (8) can be easily shown to be given by

x1(t) = x1(t0) − (t − t0)x2(t0) − u[1](t, t0), (28)

which is similar to the evolution of z1(t) for the LTV system
differing only in the initial condition. Using (28), the output of the
nonlinear system (8) can be shown to satisfy

ρ2
i (t) = ‖x1(t0) − R(t0)bi‖

2
− 2xT1(t0)R(t)bi

+ (t − t0)2‖x2(t0)‖2
+ 2xT1(t0)R(t0)bi

− 2(t − t0)xT2(t0)x1(t0) + 2(t − t0)xT2(t0)R(t)bi

+ 2(t − t0)xT2(t0)u
[1](t, t0) − 2uT [1](t, t0)x1(t0)

+ 2uT [1](t, t0)R(t)bi + ‖u[1](t, t0)‖2, (29)

and the squared range difference between receiver i and j

ρ2
i (t) − ρ2

j (t) = 2(bi − bj)
TRT (t0)x1(t0) − 2(bi − bj)

T

RT (t)(x1(t0) − (t − t0)x2(t0) − u[1](t, t0))
+ ‖x1(t0) − R(t0)bi‖

2
− ‖x1(t0) − R(t0)bj‖

2.

(30)

The squared range of the LTV system (13) can be shown to satisfy

ρ2
i (t) = z22+i(t0) − 2zT1(t0)R(t)bi

+ (t − t0)2znr+4(t0) + 2zT1(t0)R(t0)bi

− 2(t − t0)znr+3(t0) + 2(t − t0)zT2(t0)R(t)bi

+ 2(t − t0)zT2(t0)u
[1](t, t0) − 2uT [1](t, t0)z1(t0)

+ 2uT [1](t, t0)R(t)bi + ‖u[1](t, t0)‖2, (31)

and consequently it is true, for the LTV system (13), that

ρ2
i (t) − ρ2

j (t) = z22+i(t0) − z22+j(t0) − 2(bi − bj)
T

RT (t)

z1(t0) − (t − t0)z2(t0) − u[1](t, t0)


+ 2(bi − bj)

TRT (t0)z1(t0). (32)

Given the solutions for the initial conditions so far and comparing
the difference between square of ranges for both systems in (30)
and (32) yields

2(t − t0)(bi − bj)
TRT (t) [x2(t0) − z2(t0)] = 0. (33)

Taking the time derivative of (33) gives
−2(t − t0)(bi − bj)

TS (ω(t)) RT (t)

+ 2(bi − bj)
TRT (t)


(x2(t0) − z2(t0)) = 0. (34)

At t = t0 it follows that, for all the possible combinations, (34) can
be written as

C2UrR
T (t0) [x2(t0) − z2(t0)] = 0. (35)
Again under Assumption 3 the only solution of (35) is x2(t0) =

z2(t0). Finally, setting the previous solutions for the initial states in
(31) and comparing to (29) yields

− 2(t − t0)

xT2(t0)x1(t0) − znr+3(t0)


+ (t − t0)2


‖x2(t0)‖2

− znr+4(t0)


= 0. (36)

As (t − t0) and (t − t0)2 are linearly independent functions, the
only solution for (36) is znr+3(t0) = xT2(t0)x1(t0) and znr+4(t0) =

‖x2(t0)‖2. Thus, the initial state of the nonlinear system (8)
matches the initial state of the LTV system (13), which is uniquely
defined. Therefore the nonlinear system (8) is also observable. �

Note that the usual concept of observability for nonlinear systems
is not as strong as that presented in the statement of Theorem 5,
seeHermann andKrener (1977). Although the observability results
were derived with respect to the nonlinear system (8), they also
apply to the original nonlinear system (6) as they are related
through a Lyapunov transformation. To summarize:

(i) a Lyapunov transformation is applied to the original nonlinear
system (8), which preserves all observability properties;

(ii) a LTV system is derived by identifying the nonlinear parts in
the sensor measurements kinematics and appropriate state
augmentation, originating the system in (13);

(iii) the LTV system (13) is shown to be observable in Theorem 4,
in the sense that, given the input u(t) and output y(t) in a
time interval [t0, tf ], the initial state z(t0) of (13) is uniquely
defined;

(iv) the nonlinear system (6) is also shown to be observable in
Theorem 5, in the sense that, given the same input u(t) and
output y(t) as previously in (iii), the initial state x(t0) of (8) is
also uniquely defined and, most importantly, it matches the
initial state z(t0) of (13);

(v) Thus, even though there is nothing imposing the algebraic
restrictions between the original states and the augmented
states in (13), the systems (8) and (13) are equivalent in the
sense that, given the input u(t) and output y(t) in a time
interval [t0, tf ], the initial states of both systems match and
are uniquely defined.

Thus, the design of an observer for the original nonlinear system
follows simply by reversing the state transformation (7), as it will
be detailed in the following section.

3.4. Kalman filter

The augmented structure devised so far was based on a
deterministic setting providing strong constructive results, in the
sense that it was shown, in Theorem 5, that an observer with
globally asymptotically stable error dynamics for the LTV system
(13) provides globally asymptotically stable error dynamics for
the estimation of the state of the original nonlinear system.
However, in practice there exists measurement noise and system
disturbances, motivating the derivation of a filtering solution that
accounts for these stochastic quantities. Therefore, the design of
a LTV Kalman Filter (even tough other filtering solutions could be
used, e.g. a H∞ filter) is presented next. Before proceeding with
the derivation of the proposed filtering setup, it is important to
stress, however, that this filter is not optimal, as the existence
of multiplicative noise is evident by looking into the LTV system
matrices.

Nevertheless, the Kalman filter has GAS estimation error
dynamics, as it can be shown that the system is not only observable
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but also uniformly completely observable, a sufficient condition
for the stability of the LTV Kalman filter (Anderson, 1971). The
following technical result is required in the sequel.

Lemma 6 (Batista, Silvestre, & Oliveira, 2009a, Lemma 1). Let f(t) :
t0, tf


⊂ R → Rn be a continuous and two times continuously

differentiable function on I :=

t0, tf


, T := tf − t0 > 0, and such

that f(t0) = 0. Further assume that maxt∈I ‖f̈(t)‖ ≤ C. If there exists
a constant α∗ > 0 and a time t∗ ∈ I such that ‖ḟ(t∗)‖ ≥ α∗,
then there exists constants β∗ > 0 and 0 < δ∗

≤ T such that
‖f (t0 + δ∗) ‖ ≥ β∗.

The following assumption is introduced to guarantee the uniform
complete observability of the system.

Assumption 7. The position of the transponder in the vehicle
coordinate frame r(t), and the angular and linear velocities, ω(t)
and v(t) respectively, are bounded signals. Moreover, the time
derivatives of these signals (ṙ(t), ω̇(t), and v̇(t) respectively), are
bounded and the derivatives of the ranges ρ̇i(t), with i = 1, . . . , nr
are also bounded.

From a practical point of view, Assumption 7 is not restrictive
as the systems presented herein are in fact finite energy systems
that ensemble physical vehicles and sensors. The LTV system (13)
is finally shown to be uniformly completely observable in the
following theorem.

Theorem 8. The linear time-varying system (13) is uniformly
completely observable, that is, there exists positive constants α1, α2,
and δ such that α1I ≼ W(t, t + δ) ≼ α2I for all t ≥ t0.

Proof. The bounds on the observability Gramian W(t, t + δ) can
be written as

α1 ≤ dTW(t, t + δ)d ≤ α2 (37)

for all t ≥ t0, and for all d ∈ R8+nr such that ‖d‖ = 1. The
proof follows by noticing that (37) can be written as α1 ≤

 t+δ

t
‖f(τ )‖2dτ ≤ α2, where

f(τ ) := C(τ )8(τ , t)d. (38)

The existence of the upper bound α2 is trivially checked, as
under Assumption 7 the matrices A(t) and C(t) are norm-
bounded and f(τ ) is integrated over limited intervals. Let d =
dT
1 dT

2 dT
3 d4 d5


, with d1 ∈ R3, d2 ∈ R3, d3 ∈ Rnr , d4,

d5 ∈ R. Evaluating (38) at τ = t , it is straightforward to verify
that if d3 ≠ 0, then ‖f(t)‖ is immediately bounded. Indeed, as
‖f(t)‖ ≥ ‖C0d3‖ = α∗

1 > 0 for all t ≥ t0, as C0 has full column
rank by construction. Suppose now that d3 = 0. Then, it can also
be seen that if d1 ≠ 0, it is true that ‖f(t)‖ = ‖C1(t)d1‖, or, using
(14),

‖f(t)‖ = ‖2D−1
ρ+

(t)C2UrR
T (t)d1‖, (39)

which is clearly bounded by

‖f(t)‖ ≥ σmin(D−1
ρ+

(t))‖2C2UrR
T (t)d1‖ (40)

for all t ≥ t0, where the operator σmin(A) represents the
smallest singular value of A. Under Assumption 2 it is clear that
σmin(D−1

ρ+(t)) ≥
1

Rmax
for all t ≥ t0, which implies

‖f(t)‖ ≥
1

Rmax
σmin(C2Ur)

RT (t)d1


for all t ≥ t0. Now under Assumption 3 it follows that C2Ur has
full column rank and therefore there exists a positive constant β∗

1

such that σmin(C2Ur) = β∗

1 > 0. Thus, taking into account thatRT (t)d1
 = ‖d1‖, it is possible to write

‖f(t)‖ ≥
β∗

1

Rmax
‖d1‖ = α∗

2 > 0 (41)

for all t ≥ t0. Using the same set of assumptions and procedures it
is possible to show that the derivative of f(τ ) evaluated at τ = t is
also uniformly bounded ∂f(τ )

∂τ


τ=t

 ≥
β∗

2β
∗

3

Rmax

[d2
d4

] = α∗

3 > 0, (42)

for all t ≥ t0, with β∗

2 and β∗

3 positive constants, and when d3 =

0, d1 = 0 and either d2 ≠ 0 or d4 ≠ 0. The upper boundedness on
the norm of the second derivative of f(τ ) becomes straightforward
under Assumption 7, thus allowing the use of Lemma 6 in (42).
Thus, in this case, it can be shown, using Lemma 6, that there exist
α∗

4 > 0 and δ∗

1 > 0 such that
f(t + δ∗

1)
 ≥ α∗

4 for all t ≥ t0. Using
Lemma 6 again, there exist positive constants α∗

5 > 0 and δ∗ > 0
such that

dTW(t, t + δ∗)d ≥ α∗

5 , (43)

for all t ≥ t0 and when d1 = 0, d3 = 0, and d2 ≠ 0 or d4 ≠ 0.
When all the components of d are null except d5 it follows that

f(τ ) =

[
C0ΦBC2(τ , t)d5
C2ΦBC2(τ , t)d5

]
, (44)

which norm is clearly bounded by

‖f(τ )‖ ≥ σmin(C0) ‖8BC2(τ , t)d5‖ (45)

for all t ≥ t0. Expanding (45) and using (15) yields

‖f(τ )‖ ≥ β∗

2

 nr−
i=1


d5

∫ τ

t

σ − t
ρ1(σ )

dσ
2

(46)

for all t ≥ t0. In particular at τ = t + δ∗

2 , with δ∗

2 > 0, comes

‖f(t + δ∗

2)‖ ≥ β∗

2 |d5|

 nr−
i=1

∫ t+δ∗
2

t

σ − t
ρi(σ )

dσ

2

(47)

for all t ≥ t0. By the Integral Mean Value theorem there exists
c ∈]t, t + δ∗

2 [ such that∫ t+δ∗
2

t

σ − t
ρ1(σ )

dσ = δ∗

2
c − t
ρi(c)

. (48)

for all t ≥ t0. Now defining δ∗

3 := c − t > 0, which is clearly
positive because c > t , allows to write∫ t+δ∗

2

t

σ − t
ρ1(σ )

dσ =
δ∗

2δ
∗

3

ρi(t + δ∗

3)
. (49)

for all t ≥ t0. Under Assumption 2 comes from (47) and (49) that

‖f(t + δ∗

2)‖ ≥ β∗

2 |d5|

 nr−
i=1


δ∗

2δ
∗

3

Rmax

2

=
δ∗

2δ
∗

3β
∗

2 |d5|
√
nr

Rmax
= α∗

6 > 0 (50)

for all t ≥ t0. Finally, Lemma6 is used once again to show that there
exist α > 0 and δ > 0, for all t ≥ t0 and {d ∈ R8+nr : ‖d‖ = 1},
such that dTW(t, t + δ)d ≥ α, which means that the system
is uniformly completely observable and therefore concludes the
proof. �
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To recover the augmented system dynamics in the original
coordinate space, the original Lyapunov state transformation (7) is
reverted considering the augmented state transformation 0(t) :=

TT
r (t)x(t), where Tr(t) := diag (R(t), R(t), 1, . . . , 1) is a also

Lyapunov state transformation that preserves all observability
properties of the LTV system (13). Thus, the reverted augmented
dynamics are given by

0̇(t) = A0(t)0(t) + B0(t)vr(t),
y(t) = C0(t)0(t), (51)

where

A0(t)

=



−S (ω(t)) −I 0 0 0
0 −S (ω(t)) 0 0 0

bT
1S (ω(t)) − vTr (t)

ρ1(t)
bT
1

ρ1(t)
0 −

1
ρ1(t)

0

...
...

...
...

...

bT
nr S (ω(t)) − vTr (t)

ρnr (t)

bT
nr

ρnr (t)
0 −

1
ρnr (t)

0

0 −vTr (t) 0 0 −1
0 0 0 0 0


, (52)

B0(t) =

[
−I3 0

b1

ρ1(t)
· · ·

bnr

ρnr (t)
0 0

]T
, (53)

and

C0(t) =

[
0nr×3 0nr×3 C0 0nr×2

2D−1
ρ+

(t)C2Ur 0nc×3 C2 0nc×2

]
. (54)

Including system disturbances and sensor noise in (51) yields the
final reverted augmented dynamics

0̇(t) = A0(t)0(t) + B0(t)vr(t) + nx(t),
y(t) = C0(t)0(t) + ny(t),

(55)

where nx(t) and ny(t) are assumed to be uncorrelated, zero-mean,
white Gaussian noise, with E


nx(t)nT

x(τ )


= Qx(t)δ(t − τ) and
E

ny(t)nT

y (τ )


= Qy(t)δ(t − τ).
The disturbances and sensor noise, included in the reverted

system (55), are not affected by the Lyapunov state transformation
(7), which preserves, nonetheless, all observability properties of
the original system. The proposed transformation (7) is solely
used to obtain the strong observability results presented so
far, and the final filtering stage is set on the original state
coordinates with an augmented structure. Nevertheless, all the
results could have been obtained without the use of the Lyapunov
transformation, at the expense of more computations. Due to
natural reverberation, surface scattering, reflections on the seabed,
surface and other underwater structures, acoustic sensors like
the USBL are highly susceptible to multipath which produces
outliers on the positioning information. The inclusion of the ranges
kinematics in the proposed augmented structure ultimately allows
for a more comprehensive description of coloured noise on the
acoustic sensor readings. The design framework also enables the
filter tomore easily tackle individual rangemeasurements outages
by simply bypassing corrections from problematic receivers,
whereas in traditional inertial based solutions a position fix might
not even be available or be uniquely defined if one acoustic
receiver fails to detect the signal underwater. Although this paper
presents the design of a sensor-based Kalman filter with GAS error
dynamics, other filtering schemes could be devised, with the same
proposed augmented state structure, naturally inheriting the same
observability properties. In particular, in order to tackle acoustic
outliers, available solutions in the literature include the use of
on-line outlier detection and removal schemes prior to filtering,
as proposed in Menold, Pearson, and Allgower (1999), and the
design of robust Kalman filters that are able to ignore outliers in
the observations (Gandhi & Mili, 2010; Ting, Theodorou, & Schaal,
2007).

3.5. Analysis of performance bounds

Theoretical performance bounds have long been pursued as an
important design tool that helps gauge the attainable performance
by any estimator on pre-set conditions of process observations
and noise. This kind of bounds allows as well for an assessment of
whether imposed performance specifications are feasible or not. A
commonly used lower bound for time-invariant statistical models
is the Cramér-Rao Bound (CRB), which provides a lower bound
on the estimation error of any estimator of an unknown constant
parameter of that particular statistical model. An analogous bound
for random parameters on non-linear, non-stationary system
models, referred to as the Bayesian Cramér-Rao Bound (BCRB), was
first derived in Van Trees (1966) and carefully reviewed in Van
Trees (1968) and Van Trees and Bell (2007).

The BCRB arises as a valuable analysis tool to assess the
performance of dynamical estimators, and it is used in this work
to assess the achievable performance of the proposed navigation
system. Even tough the natural framework of the filters presented
in this paper falls in the scope of more general process models
with multiplicative noise due to the presence of the angular
rates measurement noise in the filter dynamics, the performance
bound analysis is restricted to the case of linear Gaussian process
models with additive white noise and nonlinear observation
models. Simulation results presented herein with realistic noise
in all measured quantities reveal, nonetheless, that the proposed
filters operate near the performance bound indicated by the BCRB,
whereas the inclusion of the multiplicative noise would only
increase and tighten the theoretical performance bound.

Consider the general linear process and nonlinear observation
models given by
ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)nx(t),
y(t) = h (x(t)) + ny(t),

(56)

where x(t) is the state vector, u(t) is a deterministic system input,
y(t) is the measurement vector which is related to the state vector
by the nonlinear observation model h (x(t)), and nx(t) and ny(t)
represent respectively the state and measurements stochastic
perturbations.

The Bayesian bound derived by Snyder in Snyder and Rhodes
(1972) shows that the covariance matrix of any given causal
(realizable) unbiased estimate of (56),

E


x̂(t) − x(t)
 

x̂(τ ) − x(τ )
T

= P(t)δ(t − τ), (57)

is lower bounded by

P(t) ≥ J−1
g (t), (58)

where Jg(t) is known as the Fisher InformationMatrix (FIM),which
satisfies the matrix differential equation

J̇g = −JgF(t) − FT (t)Jg − JgG(t)Q(t)GT (t)Jg + Pm(x(t), t), (59)

whereQ(t) is the state noisenx(t) covariancematrix. The subscript
g denotes that the underlying process model is a linear Gaussian
model, and the subscript m stands for measurement, since the
term Pm(t) accounts for the covariance reduction due to the
observations and is given by

Pm(x(t), t) = Ex

H̃T (x(t))R−1H̃(x(t))


, (60)
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Fig. 2. Vehicle trimming trajectory.

where H̃(x(t)) is the Jacobian of the nonlinear observation model
evaluated at x(t), and R(t) is the covariance matrix of the
measurement noise ny(t).

Note that the expectation in (60) is with respect to the state
vector x(t) and will usually have to be evaluated by a Monte Carlo
simulation. In nonlinear tracking problems, as in the framework
presented herein, we are often interested in how well we can
estimate a specific or nominal track x̄(t) in which case the term
Pm(x(t), t) can be simplified to

Pm(x̄(t), t) = H̃T (x̄(t))R−1H̃(x̄(t)), (61)

allowing for the assessment of the achievable performance for
any tracker or estimator given this specific underlying problem
structure. The resulting equations are analogous to the Information
filter version of the Extended Kalman Filter, whereas the Jacobians
are computed at the nominal x̄(t) trajectories instead of the
estimated trajectories, as convincingly argued inVan Trees and Bell
(2007). Depending on the noise intensities, such bound calculated
over the nominal trajectory often suffices to quantify performance
margins and perform gain adjustments. Note that in the particular
case of the present work, the BCRB is computed for the rigid body
kinematics model and the nonlinear USBL observation model with

F(t) =

[
−S (ω(t)) −I

0 −S (ω(t))

]
, (62)

G(t) = B(t) =

−I 0

T
, (63)

which model the variables of interest to estimate, instead of being
computed for the full augmented system.

4. Numerical results and performance evaluation

The performance of the proposed Linear Time-Varying Kalman
Filter (LTVKF) was assessed in simulation using a kinematic model
for an underwater vehicle. The vehicle describes a trimming
trajectory as depicted in Fig. 2.

The USBL receiving array is composed of 4 receivers that
are installed on the vehicle, with an offset of 30 cm along the
x-axis of the body-fixed coordinate frame {B}, where the DVL
and the AHRS with the rate gyros are also installed. Thus the
positions of the receivers with respect to {B} are given in metres
by b1 =


0.2 −0.15 0

T
, b2 =


0.2 0.15 0

T
, b3 =

0.4 0 0.15
T , and b4 =


0.4 0 −0.15

T .
The DVL fluid-relative velocitymeasurements are considered to

be corrupted by additive uncorrelated zero-mean white Gaussian
Fig. 3. LTVKalman filter initial convergence—transponder position RMS estimation
error.

Fig. 4. LTV Kalman filter initial convergence—current velocity RMS estimation
error.

noise with an accuracy of 0.2% of the nominal velocity and an
additional standard deviation of 1 mm/s, which is inspired on the
LinkQuest NavQuest 600 MicroTM DVL sensor package. Two AHRS
sensor packages are considered for performance evaluation of the
proposed solution, also inspired in realistic commercially available
units: the first is a high cost, high grade iXSea OCTANSTM AHRS
equipped with very good performance Fibre Optic Gyros (FOG)
capable of measuring the angular motion of the vehicle with an
accuracy of 0.01°/s, and an overall orientation accuracy of 0.1° for
the yaw angle, and 0.01° for the pitch and roll angles; the latter
is a low grade, MEMS based (Micro-Electro-Mechanical Systems),
smaller and with a significantly lower price tag, MicroStrain 3DM-
GX3-25TM AHRS that outputs the angular motion rates of the
vehicle with an accuracy of 0.2°/s, and that has an overall dynamic
orientation accuracy of 2°.

The range measurements between the transponder and the
reference receiver (receiver 1) are considered to be disturbed by
additive, zero-mean white Gaussian noise, with 1 m standard
deviation whilst the RDOA between receiver 1 and the other
3 receivers is considered to be measured with an accuracy of
6 mm. The transponder is located in inertial coordinates at Ipt =
200 0 0

T
[m], and the unknown underwater current velocity

has an intensity of 0.2 m/s in all three axis.
The assessment of performance of the filter is carried out

resorting to Monte Carlo simulations and by comparing the
Root-Mean-Square (RMS) estimation error of the filters to the
BCRB (computed at the nominal trajectory described by the
vehicle). Starting at different initial conditions, the filter is
evaluated through 20 Monte Carlo runs and sets of independent
random noise. The augmented states that correspond to the
ranges x3, . . . , x2+nr are initialized with the first available set of
measurements, the initial filter position estimate is drawn from
a normal Gaussian distribution with mean equal to the nominal
initial position and a standard deviation of 20m, and the remaining
initial estimates are set to zero.

With the purpose of evaluating the convergence of the proposed
filtering structure in simulation, an initial convergence study is
conducted using the angular motion rate measurements from
the high grade AHRS. The initial evolution of the position RMS
estimation error is depicted in Fig. 3, where the fast convergence of
the position error is evidenced. The initial evolution of the current
velocity RMS estimation error is plotted in Fig. 4.
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Fig. 5. LTVKalman filter distances corresponding augmented state evolution—RMS
estimation error.

Fig. 6. LTV Kalman filter augmented state evolution—RMS estimation error.

The RMS estimation error on the evolution of the augmented
states that correspond to the distances between the receivers and
the transponder is represented in Fig. 5. The remaining augmented
states are also shown to converge correctly in Fig. 6.

Using the same batch of Monte Carlo runs, the performance of
the proposed filter is compared with two alternative filter designs,
the well known and established Extended Kalman Filter (EKF) and
the classical approach based on a Kalman filter designed in inertial
coordinates and that employs the planar wave approximation to
get position fixes. The first design linearizes the nonlinear range
and RDOA measurements about the filter estimates in order to
compute a suboptimal Kalman gain. In the latter, the feedback is
accomplished in inertial coordinates by means of a precomputed
transponder position fix from the USBL that resorts to a planar
wave approximation, previously used by the authors (Morgado
et al., 2006).

Comparing the steady-state response of the three filters using
the high grade AHRS in Fig. 7, it can be seen that the EKF and
the proposed augmented LTVKF attain the same performance
level, whereas the classical approach fails to achieve the same
performance of the proposed solution and the EKF, as expected
andmainly due to the need to convert themeasured and estimated
quantities back and forth between the body and the inertial frames
using the AHRS. The BCRB for the rigid body kinematics and the
nonlinear USBL measurements is also shown in Fig. 7, allowing
to see that the proposed filter and the EKF operate close to the
performance lower bound. The error peaks that appear in the
steady-state response are due to the high rotational velocity that
is achieved during the curves shown in Fig. 2.

Comparing the performance of both designs with the lower
bound it can be stated that they achieve the same performance
level and close to the bound. The solution presented in this work
has the advantage of being GAS, which is not guaranteed for the
other designs.

The same performance comparison is conducted using the low
grade AHRS, and reported in Fig. 8, which clearly emphasizes
Fig. 7. Comparison of steady state response with performance bound—RMS
estimation error with High Grade AHRS.

Fig. 8. Comparison of steady state response with performance bound—RMS
estimation error with Low Grade AHRS.

the performance enhancement of the proposed solution. The
performance of the EKF and the LTVKF can be seen to maintain an
equivalent performance levelwhile slightly steering away from the
BCRB. The performance degradation is nonethelessmore severe for
the classical strategy.

5. Conclusions

Themain contribution of the paper lies on the design of globally
asymptotically stable position filters based directly on the sensor
readings of an USBL acoustic array and a DVL. At the core of
the proposed filtering solution is the derivation of a LTV system
that fully captures the dynamics of the nonlinear system. This
LTV model is achieved through appropriate state augmentation,
allowing for the use of powerful linear systemanalysis and filtering
design tools that yield GAS filter error dynamics.

The performance analysis of the proposed filter was carried
out resorting to Monte Carlo simulations and compared against
the theoretical performance lower bound given by the BCRB
and against two traditional solutions, the EKF and a Kalman
filter designed on inertial coordinates that resorts to the planar
approximation of the acoustic wave arriving at the USBL array.
Comparison of the steady-state position error from the three
designs and the BCRB lead to the conclusion that the proposed
design demonstrated similar performance level to the EKF using
realistic sensor noise and disturbances, while operating tightly to
the performance lower bound, and outperforming the classical
inertial based design. The utmost advantage of the new filter
structure is nevertheless evident, due to its GAS properties which
is not guaranteed for either of the two more traditional solutions.
Moreover, the inclusion of the ranges kinematics in the proposed
augmented structure ultimately allows for a more comprehensive
description of coloured noise on the acoustic sensor readings. The
design framework also enables the filter to more easily tackle
individual range measurements outages by simply bypassing
corrections from problematic receivers, whereas in the classical
solution a position fix might not even be available or unique if one
acoustic receiver fails to detect the signal underwater.
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