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a b s t r a c t

This paper addresses the problem of decentralized state estimation in fixed topology formations of
vehicles with applications to Autonomous Underwater Vehicles (AUVs). In the envisioned scenario, each
vehicle in the formation estimates its own state relying only on locally available measurements and data
communicated by neighboring agents, requiring lower computational and communication loads than
centralized solutions. A method for designing local state observers featuring global error dynamics that
converge globally asymptotically to zero is detailed, and an algorithm for improving its performanceunder
stochastic disturbances and Gaussian uncertainties is presented. The proposed algorithm minimizes the
H2 normof the global estimation error dynamics, expressed as an optimization problem subject to Bilinear
Matrix Inequality (BMI) constraints. To assess the performance of the solution, realistic simulation results
are presented and discussed for several formation topologies.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The increasing use of formations in robotics, as well as the
evolution of parallel computing, have led to extensive research
in the field of distributed systems and agent formations, see
e.g. [1–4]. In short, a distributed system consists of multiple
autonomous computers or agents that communicate information
between them and work toward a common goal. The wealth of
possible scenarios, as well as the increased complexity that results
from the interactions between multiple agents, has led to many
compelling approaches and contributions in the past few years,
both in the field of control [5,6] and of estimation [7,8] in multi-
agent formations.

There are many applications where the use of multiple agents
in a cooperative setting is beneficial or even crucial. Unmanned
Aerial Vehicles (UAVs) can be used in a formation setting advan-
tageously, as close formation flight reduces drag, thus allowing
for more efficient fuel usage [9,10]. In underwater applications,
the concerted operation of formations of Autonomous Underwater
Vehicles (AUVs) has many potential applications, such as mine-
sweeping and oceanographic sampling [11,12]. Automated high-
way systems also pose several problems related to formations,
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such as collision avoidance and traffic flow control [13,14]. In gen-
eral, any task where a single agent is too slow or does not of-
fer enough coverage, and any setting where multiple autonomous
agents are present, may benefit from the study of the problem un-
der a distributed point of view. One might wonder why the prob-
lems related with formations should be treated in a distributed
setting when their treatment in a global, centralized way might
probably be much simpler conceptually. However, the computa-
tions involved with large formations are often very heavy and
would require much higher processing power of the agents, which
is a problem when dealing with size and energy concerns, and
would need the extensive use of telecommunications to and from
a central processing node. Alternatively, a central computer could
perform all the computations and spread them through the forma-
tion by communication, but it could cause unacceptable delays and
communication loads.

This paper addresses the problem of state estimation of linear
motion quantities in a formation of vehicles in a distributed setting.
Each agent in the formation aims to estimate its ownposition based
on some awareness of its ownmovement and local measurements
and communications. In the specific case treated in this paper, each
agent has access to either measurements of its absolute position,
or measurements of its position relative to one or more agents,
as well as the state estimates of those agents, received through
communication. Additionally, awareness of its own movement
is given by a measure of its linear acceleration, provided by an
accelerometer mounted on-board, and an Attitude and Heading
Reference System (AHRS), which gives the attitude and angular
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Fig. 1. Formation of AUVs working underwater.

velocity of the vehicle. This problem is especially relevant in the
scenario of a formation of AUVs working underwater such as
the one depicted in Fig. 1, as sophisticated navigation solutions
such as the Global Positioning System (GPS) are impractical due
to the attenuation of electromagnetic waves in water. For a
recent, detailed survey on the subject of underwater navigation,
see [15]. In this setting, one or more agents could have access
to measurements of their absolute position using, e.g., range
readings to a fixed source or to a series of beacons [16,17]. The
other agents would then rely on locally available measurements
and data communication to estimate their own position. A
method for local state observer design, rooted in classical state
observer theory, is presented here, and the estimation error of
the distributed state observer composed by the local estimators
that are implemented in each agent of the formation is shown
to converge globally asymptotically to zero for a certain class of
formation structures. Namely, in the structures first considered
there is no communication feedback between the agents, that is,
the information flows in a single direction, and this allows for the
design of the local observers based only on local dynamics. Building
on this, an iterative algorithm, inspired by the P − K iterations
used in some controller synthesis problems [18,19], is presented
for improving the performance of such a decentralized observer
in noisy environments, as well as constructively incorporating
additional measurements and communication that may create
information loops in the formation, based on the minimization
of the H2 norm of the estimation error dynamics. This problem
is formulated as an optimization problem with bilinear matrix
inequality (BMI) constraints. To the best of the authors’ knowledge,
this is the first work on decentralized navigation with globally
asymptotic stability and performance guarantees for arbitrary
fixed formation topologies, especially with cycles in the formation
graph. Preliminary work by the authors can be found in [20].

The paper is organized as follows: Section 2 details the problem
at hand and introduces the dynamics of the agents and of the local
state observers, while Section 3 analyzes the convergence prop-
erties of the distributed state observer formed by the simultane-
ous implementation of local state observers by each agent in a for-
mation. Section 4 formulates the problem of optimal decentralized
state estimation as an optimization problemwith BMI constraints,
and presents an iterative algorithm to improve the performance of
the decentralized state observer. Section 5 details an extension of
the results presented in the previous sections to alternative sce-
narios and Section 6 shows the results of several simulations car-
ried out to assess the performance of the proposed solution. Finally,
Section 7 summarizes the main conclusions of the paper.

1.1. Notation

Throughout the paper the symbol 0 denotes amatrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
Fig. 2. Schematic representation of a simple formation of 4 agents. Dotted arrows
represent communication of state estimates, while full arrows represent absolute
and relative position measurements.

Whenever relevant, the dimensions of an n × n identity matrix
are indicated as In. A block diagonal matrix is represented as
diag (A1, . . . ,An), and the Kronecker product of two matrices A
and B is denoted by A ⊗ B. For x, y ∈ R3, x × y represents the
cross product.

2. Problem statement

Consider a formation composed by N agents moving in a
scenario, where each agent is identified by a distinct positive
integer i ∈ {1, 2, . . . ,N}, and has sensors mounted on-board
which give access to either:

1. measurements of its own position in an inertial reference
coordinate frame {I}; or

2. measurements of its position relative to one or more agents
in the vicinity, denoted in the sequel as the source-agents of
agent i. Furthermore, each of those agents transmits an estimate
of its own inertial position to agent i.

It is assumed that the topology of the formation is fixed, in the
sense that the measurements and communication links available
to each agent do not change over the course of the mission.
Besides the transmission of position estimates that goes with
the relative position measurements, no further communication is
assumed. The relative measurements can be provided by vision-
based or range-based sensors for aerial or ground vehicles, and by
an Ultra-short Baseline (USBL) positioning system in an inverted
configuration in underwater applications. The USBL is composed
of a small calibrated array of acoustic receivers and measures the
distance between a transponder and the receivers, fromwhich the
relative position can be recovered [21]. The inertial measurements
can be provided, e.g., by a GPS, a Long Baseline (LBL), or by an USBL
positioning system.

The problem considered in this paper is the design of a
decentralized solution that allows each agent in the formation
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to estimate its own inertial position and velocity. The approach
described here, schematized in Fig. 2 for a simple formation,
consists in the implementation of a local state estimator on-board
each agent. While the design and calibration of those local state
estimators will be carried out before the mission in an external
processing node, during operation each agent will only require
locally availablemeasurements to estimate its state, alongwith the
aforementioned limited communication.

2.1. Agent dynamics

Let {Bi} denote a coordinate frame attached to agent i, denomi-
nated in the sequel as the body-fixed coordinate frame associated
with the i-th agent. The linear motion of agent i can be written as

ṗi(t) = Ri(t)vi(t), (1)

where pi(t) ∈ R3 is the inertial position of the agent, vi(t) ∈ R3

denotes its velocity relative to {I}, expressed in body-fixed coor-
dinates of the i-th agent, and Ri(t) ∈ SO(3) is the rotation matrix
from {Bi} to {I}, which satisfies

Ṙi(t) = Ri(t)S(ωi(t)),

whereωi(t) ∈ R3 is the angular velocity of {Bi}, expressed in body-
fixed coordinates of the i-th agent, and S(ω) is the skew-symmetric
matrix such that S(ω)x is the cross productω×x. It is assumed that
an Attitude and Heading Reference System (AHRS) installed on-
board each agent provides measurements of both Ri(t) and ωi(t).
Additionally, suppose that each agent has access to a linear accel-
eration measurement ai(t) ∈ R3, which follows

ai(t) = v̇i(t) + S(ωi(t))vi(t) − gi(t), (2)

where gi(t) ∈ R3 is the acceleration of gravity, expressed in body-
fixed coordinates of the i-th agent. Even though the acceleration of
gravity is usually well-known, it is treated as an unknown variable
with practical applications in mind, where small errors in the esti-
mation of the attitude of the agent may lead to significant errors in
the acceleration compensation, see [22] for further details. Its time
derivative is given by

ġi(t) = −S(ωi(t))gi(t). (3)

For the first case, i.e., with inertial position readings, grouping
Eqs. (1) through (3), and measuring the inertial position, yields the
system
ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = pi(t).

Using in each vehicle the Lyapunov state transformation intro-
duced in [23],x1i (t)

x2i (t)
x3i (t)

 :=

 I 0 0
0 Ri(t) 0
0 0 Ri(t)

pi(t)
vi(t)
gi(t)


, (4)

which preserves stability and observability properties [24], and
making ui(t) := Ri(t)ai(t), the system dynamics can be written
as the linear time-invariant (LTI) system
ẋi(t) = ALxi(t) + BLui(t)
yi(t) = CLxi(t),

(5)

where xTi (t) =

[x1i (t)]

T
[x2i (t)]

T
[x3i (t)]

T T
∈ Rn, n = 9, is the

state of the system,

AL =

0 I 0
0 0 I
0 0 0


∈ Rn×n, BL =

0
I
0


∈ Rn×3,

and CL =

I 0 0


∈ R3×n.
In the second case, i.e., when the agent has access to relative
position measurements and receives position estimates from its
source-agents, a similar procedure can be carried out. The relative
position measurements of agent i are denoted by

∆pi(t) :=


pi(t) − pai,1(t)
pi(t) − pai,2(t)

...
pi(t) − pai,Ni

(t)

 ∈ R3Ni , ai,j ∈ Ai, (6)

where

Ai :=

ai,1, ai,2, . . . , ai,Ni | ai,j ∈ {1, . . . ,N}, j = 1, . . . ,Ni


is the set of source-agents of agent i and Ni is the number of
source-agents of agent i. The position estimates received through
communication with its source-agents are denoted by p̂ai,j(t) ∈

R3. Grouping Eqs. (1) through (3) and taking the relative position
measurements (6) as the output yields the system
ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = ∆pi(t),

and applying (4) yields the compact form
ẋi(t) = ALxi(t) + BLui(t)
yi(t) = Ci∆xi(t),

(7)

where xi(t), ui(t), AL, and BL are defined as in (5), Ci = INi ⊗ CL ∈

R3Ni×nNi , and

∆xi(t) :=


xi(t) − xai,1(t)
xi(t) − xai,2(t)

...
xi(t) − xai,Ni (t)

 ∈ RnNi .

The above system resembles the usual representation of LTI
systems, the key difference being that the output of the system
depends on some of the states of other agents.

2.2. Local observers dynamics

For the first case, simple calculations show that the pair (AL, CL)
is observable, thus it is straightforward to design a local state
observer for agent i with globally asymptotically stable error
dynamics [25].

For the second case, the dynamics of the local state observers
are defined as

˙̂xi(t) := ALx̂i(t) + BLui(t) + Li(yi(t) − ŷi(t))
ŷi(t) := Ci∆x̂i(t),

(8)

where x̂i(t) ∈ Rn is the state estimate of agent i, Li ∈ Rn×3Ni is an
arbitrary matrix of output feedback gains, to be determined, and

∆x̂i(t) :=


x̂i(t) − x̂ai,1(t)
x̂i(t) − x̂ai,2(t)

...
x̂i(t) − x̂ai,Ni (t)

 ∈ RnNi .

Note that, due to the specific structure of Ci, agent i only needs
the position estimates p̂ai,j(t) received from its source-agents to
compute ŷi(t). Defining the state estimation error of agent i, x̃i(t) ∈

Rn, as

x̃i(t) := xi(t) − x̂i(t),



446 D. Viegas et al. / Systems & Control Letters 61 (2012) 443–453
the state estimation error of its j-th source-agent x̃ai,j(t) ∈ Rn as

x̃ai,j(t) := xai,j(t) − x̂ai,j(t),

and splitting Li into the blocks referring to each of the Ni distinct
measurements,

Li =


Lai,1i Lai,2i · · · L

ai,Ni
i


, Lai,ji ∈ Rn×3,

the error dynamics can be written as

˙̃xi(t) =


AL −

Ni
k=1

Lai,ki CL


x̃i(t) +

Ni
k=1

Lai,ki CLx̃ai,k(t).

Remark 1. It is possible to consider a third class of agents that
would receive both absolute and relative position measurements.
This is straightforward and therefore, for the sake of clarity of
presentation, it is not considered in this work.

Remark 2. Note that the proposed decentralized architecture
results in a much lower communication load in the formation
when compared to centralized solutions. Denote the number of
inertial and relative position measurements in the formation,
respectively, by M1 and M2. In the centralized case, a central
processing node will receive all M1 + M2 measurements from
the agents, and in turn spread N position estimates through the
formation. In the decentralized case, only M2 position estimates
need to be communicated, and they are all communicated through
direct links between agents. Furthermore, the centralized solution
will be much heavier computationally, as the central node will
have to estimate N times as many state variables as a local state
estimator.

3. Stable observer gains

This section presents a design method for the decentralized
state observer presented in the previous section that guarantees
globally asymptotically stable error dynamics. Agent formations
such as the one considered in this paper can be handily described
by a directed graph, and as such it is convenient to introduce some
concepts on graph theory [26,27].

A directed graph, or digraph, G := (V, E) is composed by a
set V of vertices together with a set of directed edges E , which
are ordered pairs of vertices. Such an edge can be expressed
as e = (a, b), meaning that edge e is incident on vertices a
and b, directed toward b. A directed path in G is a sequence
(v0, e1, v1, e2, v2, . . . , en, vn) of distinct vertices (with the possible
exception of the first and the last) and edges of G such that ei =

(vi−1, vi). A directed cycle is a directed path in which the first and
the last vertices are the same. A directed graph is called acyclic if it
contains no directed cycles.

If a directed graph G is acyclic, it can be represented graphically
by a tiered drawing such as the one depicted in Fig. 3, that is, the
drawing is divided in K hierarchical tiers following a few simple
rules: tier 0 is composed of the vertices with no edges directed
toward them while, for a vertex in tier k > 0, all directed paths
ending in that vertex start in a node of a lower tier. In this paper,
each vertex is denoted by its tier k and an identifier i in the
respective tier (e.g., some quantity x associated with vertex 4 in
tier 2 is denoted as x2/4, and the vertex itself is identified as {2/4}).
Furthermore, the number of vertices in a given tier k is denoted
by Tk.

Now, consider the agent formation described in the previous
section. This kind of formation can be associated with a directed
graph G = (V, E), where each vertex represents a distinct agent,
and an edge (a, b) means that agent a is a source-agent of agent
b. Note that the vertices with no edges directed toward them
Fig. 3. Drawing of an acyclic directed graph divided in tiers.

refer to agents with access to measurements of their own absolute
position.

The following result establishes a sufficient condition for global
asymptotic stability of the estimation error for the distributed state
observer.

Theorem 1. Consider a formation composed of N agents, whose
dynamics are described either by (5) or (7), depending on the type
of measurements available to them, and assume that the digraph
associated with the formation is acyclic. Suppose that each agent
{a/b} described by (5) implements a local state observer with globally
asymptotically stable error dynamics, with gain La/b ∈ Rn×3, and
that each agent {k/i} described by (7) implements the local state
observer (8), with the gain

Lk/i =


L
ak/i,1
k/i L

ak/i,2
k/i · · · L

ak/i,Nk/i
k/i


chosen so that the matrix


AL −

Nk/i
j=1 L

ak/i,j
k/i CL


is stable. Let x̃k/i :=

xk/i − x̂k/i ∈ Rn denote the estimation error of each local observer
in a tier, where k is its tier and i ∈ {1, 2, . . . , Tk} corresponds to its
identifier in the tier. Then, the estimation error of the distributed state
observer,

e(t) :=


x̃0/1(t)
x̃0/2(t)

...
x̃K−1/TK−1(t)

 ∈ RnN ,

composed by the concatenation of the estimation error of each local
observer, converges globally asymptotically to zero, and its dynamics
satisfy

ė(t) = Λe(t), (9)

for someΛ ∈ RnN×nN , whose eigenvalues are those of each local state
observer.

Proof. Since the graph G = (V, E) associated with the formation
is acyclic, consider its drawing with K tiers each with Tk agents.
Note that the dynamics of the local state observer of an agent in
a given tier only depends on measurements from agents in lower
tiers, allowing to study its properties regardless of the composition
of higher tiers.

Since the agents in tier 0 have access to measurements of their
absolute position, the global estimation error for that tier, e0(t) :=
[x̃0/1(t)]T [x̃0/2(t)]T · · · [x̃0/T0(t)]

T  satisfies
ė0(t) = Λ0e0(t),

where

Λ0 = diag((AL − L0/1CL), . . . , (AL − L0/T0CL))
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is a stable matrix, by construction, whose eigenvalues are those of
each local observer in tier 0.

Taking any tier k > 0, its error dynamics can be grouped with
those of the lower tiers, yielding
ė0,...,k−1(t)

ėk(t)


=


K 0
Ψ k Λk

 
e0,...,k−1(t)

ek(t)


, (10)

where K is the matrix representing the estimation error dynamics
of tiers 0 through k − 1,

Λk = diag

AL −

Nk/1
j=1

L
ak/1,j
k/1 CL


, . . . ,

AL −

Nk/Tk
j=1

L
ak/Tk,j
k/Tk

CL


is a stable matrix, by construction, whose eigenvalues are those of
each local observer in tier k, and

Ψ k =

[Ψ k/1]

T
[Ψ k/2]

T
· · · [Ψ k/Tk ]

T T ,

where

Ψ k/i

=

ψk/i({0/1}) ψk/i({0/2}) · · · ψk/i({k − 1/Tk−1})

T
,

with

ψk/i({a/b}) =


La/bk/i CL, {a/b} ∈ Ak/i
0, otherwise.

From (10), it is straightforward to show that the eigenvalues of the
global error dynamics of tiers 0 through k are those of K and Λk.
Therefore, if the matrix representing the dynamics of the global
estimation error of tiers 0 to k − 1, K, is stable, then the dynamics
of the global estimation error of tiers 0 to kwill also be stable, and
the error will converge globally asymptotically to zero. Since:

(1) the distributed state estimator formed by all agents in tier
0 is stable, and the eigenvalues of the dynamics of its estimation
error are those of each local observer in tier 0, and

(2) the addition of tier k to the dynamics of the estimation
error of the previous tiers yields new error dynamics whose
eigenvalues are those of the previous tiers, plus the eigenvalues
of the error dynamics of each state observer in tier k, it follows, by
induction, that the dynamics of the global estimation error of the
full formation satisfy (9), where the eigenvalues of Λ are those of
each local observer. Moreover, since the matrix Lk/i of each state

observer is chosen such that

AL −

Nk/i
j=1 L

ak/i,j
k/i CL


is stable, the

estimation error converges globally asymptotically to zero. �

This result allows the design of a distributed estimator in the
terms described in Section 2. Note that the state observer of each
agent can be designed locally and results from the solution of
simple stable pole placement problems.

Remark 3. It is also possible to use this method to design a stable
state observer when there are cycles in the graph G associated
with the formation by removing edges from the graph until it
is no longer cyclic, while making sure to never remove the last
edge directed toward a vertex. It seems naturally advantageous to
remove as few edges as possible, therefore this procedure could be
restated as that of finding themaximumacyclic subgraph ofG [28],
with the added restriction that the last edge directed toward a
vertex may not be removed. This straightforward approach is then
applied to the observers by zeroing the gains referring to edges
which were removed during this process but that are actually
available for observer design purposes.
4. Performance in noisy environments

The previous section presented a method for designing decen-
tralized state observers for agent formations such as the one de-
scribed in Section 2.While stability is assured, there are no guaran-
tees regarding performance in noisy environments, which is crit-
ical in most practical settings. As such, this section introduces a
method for improving the performance of the state observer in the
presence of sensor noise which, in addition, naturally admits the
presence of cycles in the formation graph.

4.1. Global observer dynamics

To study and improve the performance of the decentralized
state observer, it is necessary to consider the global dynamics of
the formation, which can be represented in the LTI form
ẋ(t) = Agx(t) + Bgu(t) + w(t)
y(t) = Cgx(t) + v(t), (11)

where x(t) :=

xT1(t) · · · xTN(t)

T
∈ RnN is the state of the

whole formation, y(t) :=

yT1(t) · · · yTN(t)

T
∈ R3M the out-

put of the system, M being the total number of absolute and rel-
ative position measurements in the whole formation, and u(t) :=
uT
1(t) · · · uT

N(t)
T

∈ R3N is the input of the system. The vari-
ables w(t) ∈ RnN and v(t) ∈ R3M represent, respectively, process
and observation noise, which are assumed to be zero-mean uncor-
related white Gaussian processes, with associated covariance ma-
trices Ξ ∈ RnN×nN and Θ ∈ R3M×3M . The matrices Ag ∈ RnN×nN

and Bg ∈ RnN×3N are built from the dynamics of the individual
agents, following
Ag = IN ⊗ AL
Bg = IN ⊗ BL.

To describe Cg ∈ R3M×nN , it is useful to build a matrix S ∈ RN×M

similar to the incidence matrix of graph G. First, define virtual
edges of the form (0, i) to represent the absolute position mea-
surements that are available to some of the agents, then build S
the same way the incidence matrix would be built, that is, its indi-
vidual entries follow

Sij =

1, edge j incident on i, directed toward it,
−1, edge j incident on i, directed away from it,
0, otherwise.

Then, Cg follows

Cg = ST ⊗ CL.

The local state observers can also be grouped in a similar way,
yielding

˙̂x(t) := Ag x̂(t) + Bgu(t) + L(y(t) − ŷ(t))
ŷ(t) := Cg x̂(t),

(12)

where x̂(t) :=

x̂T1(t) x̂T2(t) · · · x̂TN(t)

T
∈ RnN is the global

state estimate of the decentralized state observer, and L ∈ RnN×3M

is the matrix of observer gains. To account for the fact that each
local observer only has access to some measurements, L must
follow a special structure, or sparsity constraint. More specifically,
define an augmented incidence matrix, S′

∈ RnN×3M , as

S′
= S ⊗ 1n,3,

where 1n,m is a n×mmatrix whose entries are all equal to 1. Then,
the individual entries of L follow
S′

ij = 1 ⇒ Lij can be set to an arbitrary value
S′

ij ≠ 1 ⇒ Lij = 0.
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This can be expressed as linear constraint for optimization
purposes:

Lij = 0 if S′

ij ≠ 1,

∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M}. (13)

The sparsity constraint imposed on L prevents the use of classical
filter design techniques such as the Kalman filter, and as such a
different strategy must be pursued to find suitable observer gains.

4.2. H2 Nominal performance

Consider the system
ẋ(t) = Ax(t) + Bu(t)
z(t) = Cx(t) + Du(t), (14)

where x(t) ∈ Rm is the state of the system, u(t) ∈ Ro the input,
and z(t) ∈ Rp is the output. ThematricesA,B, C, andD are constant
realmatrices of appropriate dimensions. Denote the corresponding
transfer function by T(s) = C(Is − A)−1B + D.

The H2 norm of the system, ∥T∥H2 , which verifies

∥T∥2
H2

=
1
2π

trace


∞

−∞

T(jω)T(jω)∗dω,

can be used as a performance metric for state observers. In fact,
when the components of the input u(t) are independent zero-
mean, white Gaussian noise processes, the H2 norm of the system
is also the asymptotic output variance of the system [29]. The
global error of the decentralized state observer (12), x̃(t) ∈ RnN , is
defined as

x̃(t) = x(t) − x̂(t).

Taking its time derivative and using (11) and (12) yields

˙̃x(t) = (Ag − LCg)x̃(t) + w(t) − Lv(t). (15)

Define a zero-mean, uncorrelated,whiteGaussian noise process
q(t) ∈ RnN+3M whose covariance is the identity matrix. The error
dynamics (15) can then be rewritten as

˙̃x(t) = (Ag − LCg)x̃(t) +


Ξ

1
2 −LΘ

1
2


q(t).

By making the substitution

A = Ag − LCg

B =


Ξ

1
2 −LΘ

1
2


C = I
D = 0
x(t) = x̃(t)
u(t) = q(t),

(16)

the system (14) describes the error dynamics of the decentralized
state observer, and its H2 norm is also the asymptotic variance
of the estimation error. Thus, the problem of optimizing the
performance of the state observer in noisy environments can be
restated asminimizing theH2 normof (14),where the systemstate,
output, and matrices are given by (16).

Consider the following result, resorting to Linear Matrix
Inequality (LMI) concepts, as described in [29], presented here in a
simplified form:

Theorem 2. Suppose that the system (14) is asymptotically stable.
Then

1. ∥T∥2 < ∞ if and only if D = 0.
2. If D = 0 then the following statements are equivalent:

(a) ∥T∥2 < γ .
(b) there exists P = PT
≻ 0 and Z such that

ATP + PA PB
BTP −γ I


≺ 0,


P CT

C Z


≻ 0,

and trace(Z) < γ .

Define

X(P, L, γ )

:=

(Ag − LCg)
TP + P(Ag − LCg) P


Ξ

1
2 −LΘ

1
2



Ξ

1
2 −LΘ

1
2

T
P −γ I

 .

Using Theorem2 and the substitution (16), theminimization of the
H2 norm of (14) considering the constraints (13) imposed by the
graph topology can be done solving the optimization problem [29]

min
P∈RnN×nN
L∈RnN×3M
Z∈RnN×nN

γ∈R+

γ

subject to: P ≻ 0,
X(P, L, γ ) ≺ 0,

P I
I Z


≻ 0,

trace(Z) < γ ,
and Lij = 0 if S′

ij ≠ 1,
∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M}.

(17)

The resulting set of constraints contains a BMI, which is inherently
difficult to treat and is usually associated with nonconvex
problems. In fact, even finding a feasible solution is a NP-hard
problem [30]. While it is possible, for centralized systems, to
apply a variable substitution which renders the constraints linear,
the structural constraint imposed on L in the decentralized case
inviabilizes this approach. On the other hand, Theorem 1 allows
to find stable observer gains, and as such provides a way to find
a feasible set of variables for the constraints of (17). In fact, if the
value of L is fixed, the constraints take a Linear Matrix Inequality
(LMI) form, and there exist very fast and efficient methods to
solve optimization problems with LMI constraints. Following this,
Table 1 details an algorithm for improvement of the performance
of the decentralized state observer, similar to theP −K iterations
used in some cases for controller design via BMIs [18].

Note that there are no guarantees that the algorithm will find
the optimal observer gains, or even that it will improve on the
initial L. However, there is the guarantee that γ is non-increasing.
In step 2 of the k-th iteration of the algorithm, solving (18) yields
optimal γ and P(k) for the given L(k−1). Denote the values found for
Z and γ , respectively, by Z∗ and γ ∗. Then, in step 3, the constraints
of (19) will have at least one feasible set of variables for which
γ ≤ γ ∗: (L(k−1), Z∗, γ ∗). The same reasoning can be applied to
show that the value of γ computed in (18) is, at most, the value of
γ found in step 3 of the previous iteration and, as such, γ is non-
increasing over the run of the algorithm.

5. Further extensions

This section briefly details possible extensions of the results
presented in the previous sections, and is divided in two parts: in
the first, an alternative mission scenario is considered, while the
second part describes a method to obtain H∞ norm performance
guarantees for the global estimation error of the formation.
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Table 1
Algorithm for H2 norm minimization.

(1) Initialization: set k = 1; find L(0) such that (Ag − L(0)Cg ) is
stable (this can be done following, e.g., Theorem 1); choose a
stopping criterion for the algorithm (e.g. a fixed number of
steps, or a minimum improvement on the value of γ at each
iteration).

(2) Solve the optimization problem with LMI constraints
min

P(k)∈RnN×nN
Z∈RnN×nN

γ∈R+

γ

subject to: P(k)
≻ 0,

X(P(k), L(k−1), γ ) ≺ 0,
P(k) I
I Z


≻ 0,

and trace(Z) < γ .

(18)

(3) Solve the optimization problem with LMI constraints
min

L(k)∈RnN×3M
Z∈RnN×nN

γ∈R+

γ

subject to: X(P(k), L(k), γ ) ≺ 0,
P(k) I
I Z


≻ 0,

trace(Z) < γ ,

and L(k)
ij = 0 if S′

ij ≠ 1, ∀i, j.

(19)

(4) If the stopping criterion is met, stop and take L(k) as the gain
for the decentralized state observer. Otherwise, set k = k + 1
and go to step 2.

5.1. Extension to alternative scenarios

The aim of this subsection is to demonstrate the possibility
of applying the results of Sections 3 and 4 to alternative cases
that differ from the mission scenario described in Section 2. More
specifically, this subsection explores the alternative scenario in
which the agents in the formation are operating in the presence of a
constant unknown current, and havemounted on-board a Doppler
Velocity Log (DVL) instead of an accelerometer.

In this case, the DVL provides the velocity of the agent relative
to the fluid, therefore it is convenient to divide the velocity of each
agent, vi(t), in two components: the velocity of the agent relative
to the fluid, vri(t) ∈ R3, measured in body-fixed coordinates, and
the velocity of the fluid relative to {I}, vfi(t) ∈ R3, also expressed
in body-fixed coordinates. Thus, (1) can be rewritten as

ṗi(t) = Ri(t)(vri(t) + vfi(t)),

with

v̇fi(t) = −S(ωi(t))vfi(t).

Define a coordinate transformation

Ti2(t) =


I 0
0 Ri(t)


,

which is a Lyapunov state transformation, and define new state
variables

χi(t) =


χ1
i (t)
χ2
i (t)


= Ti2(t)


pi(t)
vfi(t)


∈ R6.

Taking as outputs the relative positionmeasurements (6) yields the
dynamic system
χ̇i(t) = AL2χi(t) + BL2µi(t)
yi(t) = Ci2∆χi(t),

(20)

where

AL2 =


0 I
0 0


∈ R6×6, BL2 =


I
0


∈ R6×3,
Ci2 =

I 0
...

...
I 0

 ∈ R3Ni×6,

∆χi(t) :=


χi(t) − χai,1(t)
χi(t) − χai,2(t)

...
χi(t) − χai,Ni

(t)

 ∈ R6Ni , ai,j ∈ Ai,

and µi(t) = Ri(t)vri(t). Following this, it is straightforward to
show that the results derived in Sections 3 and 4 can also be
applied when the local dynamics of the agents in the formation are
described by (20).

5.2. H∞ norm minimization

The H2 norm minimization process detailed in Section 4 is not
the only way of improving the performance of the decentralized
state estimator in the presence of measurement noise. A possible
alternative is to minimize the H∞ norm of the global estimation
error instead of its H2 norm. Consider the following result
from [29], presented here in a simplified form:

Theorem 3. Suppose that the system (14) is asymptotically stable,
and γ > 0. Then, the following statements are equivalent:

1. ∥T∥∞ < γ .
2. For all u there holds that

sup
0<∥u∥2<∞

∥z∥2

∥u∥2
< γ ,

where z is the output of (14) subject to input u and initial
condition x(0) = 0.

3. There exists a solution K = KT
≻ 0 to the LMI

ATK + KA + CTC KB + CTD
BTK + DTC DTD − γ 2I


≺ 0.

By making the substitution

A = Ag − LCg
B =


I −L


C = I
D = 0
x(t) = x̃(t)

u(t) =


w(t)
v(t)


,

it follows that the observer gains thatminimize theH∞ normof the
global estimation error are given by the solution of the following
optimization problem with BMI constraints:

min
K∈RnN×nN
L∈RnN×3M

γ∈R+

γ

subject to: K ≻ 0,
X∞(K, L, γ ) ≺ 0,

and Lij = 0 if S′

ij ≠ 1,
∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M},

where

X∞(K, L, γ )

:=


(Ag − LCg)

TK + K(Ag − LCg) + I K

I −L


I −L

T K −γ 2I


.

The design procedure follows as before, starting from an initial
feasible solution and solving the modified P − K iterations.
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Fig. 4. Digraphs associated with the agent formations considered in simulation.

6. Simulation results

This section presents the results of simulations that were
carried out in order to assess the performance of the proposed
decentralized state observers. Two similar formation structures
were considered, with associated graphs depicted in Fig. 4. The key
difference between both is that, while graph (a) is acyclic, graph
(b) has two additional edges that render it cyclic. The results are
divided in two parts. In the first one, the algorithm proposed in the
previous section is used for the two different formation structures,
using in each case several distinct initial values for L, which were
found using Theorem1. The second part takes the best gain L found
for each formation structure and compares their performance in
simulation.

6.1. H2 norm minimization

To optimize the state observer gains, the process and observa-
tion noisemust first be characterized. In the simulations, the linear
acceleration and relative position measurements were corrupted
by additive, uncorrelated, zero-mean white Gaussian noise, with
standard deviations of 0.01 (m/s2) and 1 (m), respectively. Assum-
ing that the two AUVs with access to absolute position measure-
ments do so by implementing a LBL or USBL positioning system
and share the same set of landmarks, some correlation in the noise
of those measurements is to be expected. Thus, the absolute posi-
tion measurements were corrupted by additive, zero-mean white
Gaussian noisewith standard deviation of 0.1 (m), and some corre-
lation between the two measurements was added, resulting in the
following covariance matrix:

Θ0 = 0.01 ×


1 0.1
0.1 1


⊗ I3.

Following this, Ξ andΘ were set to
Ξ = diag


0.0001, 0.0001, . . . , 0.0001


Θ = diag


Θ0, Θ1, Θ1, . . . , Θ1


,

whereΘ0 refers to the absolute position measurements of agents
1 and 2, whileΘ1 = I refers to the relative positionmeasurements
available to the other agents.

The evolution of the H2 cost during the optimization algorithm
for the acyclic and cyclic graph is depicted in Figs. 5 and 6,
respectively, with 4 distinct initial values of L. The lines in red
represent the H2 norm of the optimal centralized filter, whose
Fig. 5. Evolution of the algorithm for different initial conditions, acyclic graph. In
red, H2 norm of the centralized filter. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Evolution of the algorithm for different initial conditions, cyclic graph. In
red, H2 norm of the centralized filter. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

gains were computed using classical Kalman filtering theory,
see [31]. To complement the graphical data, Table 2 details the best
values found in each case, and also the H2 norm of the optimal
centralized filter, to provide a comparison term. The results show
that, in every case, the algorithm improved on the initial L and that,
in the cyclic case, it used the additional edges constructively and
it achieved better values than in the acyclic one. Note that, in the
decentralized case, the agents have access to only a small fraction
of the total number of measurements in the whole formation,
so it would be unreasonable to expect the decentralized state
observer to attain the performance of the optimal centralized
one. Nevertheless, the performances that are achieved with the
distributed solutions are very good considering the overwhelming
communication and computational costs of the centralized filter.

Remark 4. As it was discussed in the previous section, theoreti-
cally, the value of γ is non-increasing over the run of the algorithm.
However, Figs. 5 and 6 show a few outliers where the H2 norm in-
creases. This is due to numerical errors in the solvers used to find
solutions for (18) and (19).

6.2. Performance assessment and comparison

The simulations were carried out for four different state
estimators:
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Table 2
Lowest value achieved for γ .

Acy./decent. Acy./cent. Cyc./decent. Cyc./cent.

γmin 8.458 6.902 8.242 6.649

1. A decentralized state estimator based on the acyclic formation
graph (Fig. 4, graph a), with the best gains found through the
application of the proposed H2 norm minimization algorithm.

2. A decentralized state estimator based on the cyclic formation
graph (Fig. 4, graph b), with the best gains found through the
application of the proposed H2 norm minimization algorithm.

3. A centralized Kalman filter based on the cyclic formation graph,
to provide a lower bound for the attainable performance.

4. A decentralized estimator using gains obtained by straightfor-
ward application of Theorem 1. In this case, one of the gains
computed to provide initial values for the H2 minimization
algorithm was used.

The local state observers were implemented in the body-fixed
coordinate frame of their respective agents. To do so, define new
state estimates in the body-fixed coordinate frame, ẑi(t) ∈ Rn, by
applying the inverse of the transformation used in (4), that is,

ẑi(t) :=

p̂i(t)
v̂i(t)
ĝi(t)


= TT

i (t)x̂i(t),

where

Ti(t) =

 I 0 0
0 Ri(t) 0
0 0 Ri(t)


∈ Rn×n. (21)

By computing the time derivative of zi(t), it follows that the
corresponding state estimator in the body-fixed coordinate frame
takes the form

˙̂zi(t) = Ai(t)ẑi(t) + BLai(t) + TT
i (t)Li(yi(t) − ŷi(t))

ŷi(t) = Ci∆ẑi(t),

where BL, Ci, and ai(t) are defined as in Section 2, Li is the output
injection matrix of the local state observer designed in the inertial
coordinate frame,

∆ẑi(t) :=


ẑi(t) − ẑai,1(t)
ẑi(t) − ẑai,2(t)

...
ẑi(t) − ẑai,Ni (t)

 ∈ RnNi , ai,j ∈ Ai,

where Ai is defined as in (6), and

Ai(t) =

0 Ri(t) 0
0 −S(ωi(t)) I
0 0 −S(ωi(t))


∈ Rn×n.

Note that, as (21) is a Lyapunov state transformation, it follows
that these new local state estimators retain the convergence and
stability properties of their counterparts fully designed in the
inertial reference frame. Furthermore, the resulting global state
estimator is also related to the one in inertial coordinates through
a Lyapunov state transformation, thus retaining global stability
properties.

In addition to the noise in the position and acceleration mea-
surements, noisewas also simulated in the attitude and angular ve-
locity measurements required for the implementation of the local
state observers in the original coordinated space, as provided by an
AHRS. The angular velocitymeasurementswere corrupted by zero-
mean uncorrelated white Gaussian noise, with standard deviation
of 0.05°/s. The attitude is usually parametrized by roll, pitch, and
Fig. 7. Initial positions of the agents and trajectory described during the simulation.

Fig. 8. Evolution of the norm of the total estimation error in the formation.

yaw Euler angles, and as such noise in the attitude measurements
was simulated by adding zero-mean, uncorrelated white Gaussian
perturbations to the roll, pitch, and yaw, with standard deviation
of 0.03° for the roll and pitch, and 0.3° for the yaw. It was assumed
in the simulation that the relative position readings are provided
by an Ultra-Short Baseline (USBL) positioning system, and as such
each of those measurements is expressed in the body-fixed coor-
dinates of the corresponding AUV, which means that each agent
must apply its attitude matrix Ri(t) to the measurements to re-
cover them in the inertial coordinate space.

The initial positions of the agents and the trajectory followed
by the formation during the simulation are depicted in Fig. 7. As
for the local observers, and also the centralized Kalman filter, the
initial values for all state estimates were set to zero, except for the
ones corresponding to the acceleration of gravity. As gi is known
approximately, it was set to its initial real value in all estimators
to speed up the convergence of the estimation error. Nevertheless,
these could have also been initialized at zerowith nobearing on the
stability and steady-state performance of the decentralized state
estimator.

The results of the simulation are depicted in Figs. 8 through
11. Figs. 8 and 9 depict, respectively, the initial evolution and the
steady-state behavior of the norm of the total estimation error
of the formation. The results show that the performance of the
non-improved state estimator is significantly worse than that of
the other state estimators, and that the filter built on the cyclic
formation graph achieves better results than the one built on the
acyclic formation graph. This shows that the proposed algorithm
is able to use additional measurements constructively, even if they
render the formation graph cyclic.
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Fig. 9. Detailed view of the norm of the total estimation error in the formation,
once the initial transients have vanished.

Fig. 10. Evolution of the estimation error of agent 9.

Fig. 11. Steady-state estimation error of agent 9.
Table 3
Standard deviation of the steady-state estimation error, averaged over 1000 runs of
the simulation.

Initial L Acyclic Cyclic Centralized

σx7 (m) 1.66 × 10−1 1.14 × 10−1 1.08 × 10−1 0.78×10−1

σx8 (m) 1.63 × 10−1 1.14 × 10−1 1.08 × 10−1 0.78×10−1

σx9 (m) 1.47 × 10−1 1.01 × 10−1 1.04 × 10−1 0.78×10−1

σv7 (m/s) 3.04 × 10−2 2.59 × 10−2 2.21 × 10−2 1.79×10−2

σv8 (m/s) 3.03 × 10−2 2.64 × 10−2 2.25 × 10−2 1.80×10−2

σv9 (m/s) 2.82 × 10−2 2.18 × 10−2 2.29 × 10−2 1.78×10−2

σg7 (m/s2) 1.68 × 10−3 1.81 × 10−3 1.50 × 10−3 2.10×10−3

σg8 (m/s2) 1.66 × 10−3 1.78 × 10−3 1.49 × 10−3 2.10×10−3

σg9 (m/s2) 1.58 × 10−3 2.12 × 10−3 1.87 × 10−3 2.16×10−3

Table 4
Measured total steady-state estimation error variance, averaged over 1000 runs of
the simulation.

Initial L Acyclic Cyclic Centralized
σ 2 0.3425 0.2542 0.2319 0.1481

Fig. 10 shows the initial evolution of the estimation error of
agent 9, for the first coordinate of the position and velocity, and
the third coordinate of the acceleration of gravity. As it can be
seen, in all cases the estimation error converges to the vicinity
of zero after an initial transient caused by the mismatch of initial
conditions. Fig. 11 depicts the steady-state behavior of the same
estimation error variables, where the most discernible feature is
the bad performance of the estimator with the non-improved L in
comparison with the remaining filters.

To better assess the differences in performance between the
four different state estimators, the Monte Carlo method was
applied. The simulation was carried out 1000 times with different,
randomly generated noise signals, and significant statistical data
was extracted from the results and averaged over the 1000
simulations. The results are depicted in Tables 3 and 4. Table 3
details the measured standard deviation of the steady-state
estimation error for the first coordinate of the position and
the velocity, as well as the third coordinate of the acceleration
of gravity, for agents 7, 8, and 9, while Table 4 depicts the
sum of the variance of all the steady-state estimation error
variables in the formation. The data in both tables shows
that the two improved decentralized state estimators perform
clearly better than the filter with the non-optimized L. There is
also a smaller but still significant improvement in performance
from the decentralized state estimator based on the acyclic
graph to the one based on the cyclic graph, which once again
suggests that the additional measurements, which render the
formation graph cyclic, were incorporated constructively by the
H2 norm minimization algorithm. In this case, the two additional
measurements led to a reduction of nearly 10% in themeasured H2
norm. The performance of the decentralized filters is worse than
that of the optimal centralized filter, which is to be expected given
the vastly inferior amount of information available to estimate the
state of each individual agent. Nevertheless, the overall results are
quite satisfactory for the decentralized estimation structure, which
evidences the goodness of the proposed distributed solutions in
comparison with the heavy computational and communication
loads of the centralized estimator.

7. Conclusions

The problem of decentralized state estimation in formations
of vehicles with fixed topologies was addressed in this paper.
A method for designing computationally efficient local state
observers presenting global error dynamics that converge globally
asymptotically to zerowas derived, and an algorithm for improving
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itsH2 nominal performance in the presence of noisymeasurements
or cycles in the graph associated with the formation was detailed.
Finally, simulation results were presented that illustrate the
performance of the proposed solution in noisy environments and
the improvement resulting from the constructive use of additional
measurements which render the formation graph cyclic.
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