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Kalman Filter Cascade for Attitude
Estimation on Rotating Earth
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Abstract—This article presents a discrete-time attitude
estimation solution based on a cascade of two linear time-
varying Kalman filters (KFs). Under mild assumptions, the
cascade’s first KF resorts to body-fixed measurements of
angular velocity and of a constant inertial vector to yield an
estimate of Earth’s angular velocity. The latter, in addition
to all previous measurements, is fed to the second KF to
obtain an estimate of the rotation matrix. Although topolog-
ical constructions are lifted, a last-step projection operator
is employed that maps the final rotation matrix estimate
onto SO(3). Briefly, two linear time-varying systems are
designed, with no linearizations whatsoever, that are shown
to be uniformly completely observable, thus rendering the
overall solution globally exponentially stable. Simulation
results are presented that allow to assess the performance
of the cascaded KF duo. A set of experimental results is
also presented that validates the efficiency of the proposed
solution and deems it a suitable attitude estimation choice
for applications where only one body-vector measurement
is available.
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I. INTRODUCTION

D ETERMINING the attitude of a body allows to describe
how it is oriented in its enclosing space. Attitude mea-

surements, often expressed by rotation matrices with respect to
a known inertial reference frame, represent crucial information
across important engineering fields; for instance, in control of
earth-orbiting satellites and spacecrafts [1], [2], in navigation
problems [3], [4], in mobile robot applications [5], [6], etc.

The Wahba’s problem, one of the first approaches to the classic
problem of satellite attitude estimation, proposed a means of
determining the best least squares fit over two sets of observed
points as to obtain a proper orthogonal matrix [7]. The purely
algebraic solution to this problem does not include steps of
noise removal and reduction, thus leaving the door open for
the development of filters and observers capable of smoothing
estimated data, based on the use of complementary information
from a set of appropriate sensors.

Soon, the celebrated extended Kalman filter (EKF) became a
frequent solution for nonlinear attitude estimation applied to a
broad range of applications. Amid an extensive literature on the
subject, see, e.g., the works in [8] and [9], which raised aware-
ness for the pitfall associated with linearizations of propagation
equations, and with model inaccuracies.

There have been, however, efforts to detour around these
two major drawbacks. Particularly, in [10], an optimal linear
attitude estimator is presented that applies the Cayley conformal
mapping over the rotation matrix in order to build a linear uncon-
strained problem; and, the work in [11] proposes a discrete-time
attitude observer, where no knowledge of the attitude dynamics
model is assumed, based on a discretized Lagrangian inspired
by Wahba’s problem.

Nevertheless, despite its inherent limitations, the EKF re-
mained a popular choice in terms of nonlinear estimators, and
is still actively researched. Recently, the work in [12] pre-
sented, in a deterministic context, a solution based on symmetry-
preserving observers and on the invariant EKF, which, under
certain observability conditions, is shown to be an asymptotic
observer. From the same authors, in [13], a class of simple filters
is proposed, on Lie groups, whose discrete-time error’s evolution
is independent of the system’s trajectory. In one of the problem
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settings illustrated therein, the rotation of the Earth is taken into
account, an interesting practical scenario which is tackled in this
article.

Typically, in most mission layouts, the rotating body’s angular
velocity is available through gyro sensors. Thanks to recent
advances in the development of high-grade rate gyroscopes, such
as the commercial off-the-shelf fiber optic gyro (FOG) inertial
measurement unit (IMU) KVH 1775, the Earth’s instantaneous
rotation vector can also be perceived with precision, although
not explicitly.

This fact motivated the previous work by the authors, pre-
sented in [14]–[16], where single body-fixed vector measure-
ments of a constant inertial vector and of a triaxial high-grade
rate gyro are considered. In [14], it is shown that with only
implicit knowledge of the Earth’s spin, it is still possible to
design an attitude observer, but with extremely slow settling
times (around 24 h). In [15], a globally exponentially stable
(GES) cascade observer explicitly estimates the Earth’s angular
velocity, and then estimates the rotation matrix without topo-
logical constraints. Alternatively, in [16], the estimates of the
rotation matrix evolve on the two-sphere manifold but with-
out global stability guarantees. As opposed to those works, in
this article, the discrete-time Kalman filter cascade has faster
convergence rates, and entails a much simpler and straightfor-
ward tuning process through its covariance matrices, bypass-
ing the need for piecewise gains. Furthermore, experimental
results are presented that validate the efficiency of the proposed
technique.

With explicit knowledge of two body-fixed vector measure-
ments, it is always ensured, under a mild geometrical assumption
between these vectors, that the attitude can be uniquely deter-
mined at every instant. Hence, conducting a second vectorial
measurement when only one is available is of paramount impor-
tance. This has recently been addressed in the construction of a
discrete attitude observer for fusing monocular vision with GPS
velocity measurements [17], and was also studied in [2] to solve
an attitude control problem by output feedback. In [18], an al-
gorithm is proposed, focused on ground-based robots subjected
to low body-accelerations, that uses accelerometer data and rate
gyro sensors.

This work builds upon [15] by proposing a cascade of
two discrete-time linear time-varying (DT-LTV) Kalman filters
(KFs) for the problem of attitude estimation considering a full
discrete-time setting, as opposed to systems with continuous-
time models and discrete-time observations [13]. The objective
behind the first filter is to estimate a second vector measure-
ment, which, in this case, corresponds to the Earth’s angular
velocity. This estimate, combined with measurements of another
body-fixed vector, will be used by the second filter to determine
the rotation matrix. Most noticeably, there is no linearization
involved in the design of the proposed cascade, as it stems from
an exact discretization of the system dynamics proposed in [15].
Despite not evolving on SO(3), the second KF’s estimates are
shown to converge globally exponentially fast to elements of
this manifold, as the underlying linear system is proved to be
uniformly completely observable (UCO).

This system can be used in scenarios where high accuracy is
a key demand, for instance, on ships and submarines as an alter-
native to gyrocompass-based solutions, or used for stabilization
purposes concerning rotational platforms.

This article is organized as follows. In Section II, a brief
introduction of the problem statement and the design of the first
KF to estimate the Earth’s angular velocity are presented. In
Section III, the construction of the cascade is completed with
the design of the second KF, which yields an estimate of the
rotation matrix. Both Sections II and III also feature, in a similar
fashion, an extensive observability analysis. Section IV includes
simulation results that allow to validate the performance of the
KF cascade. In Section V, an experimental setup is described and
its results reported, further allowing to assess the effectiveness
of the proposed solution in real-world applications. Finally,
Section VI concludes this article.

A. Notation

Throughout the article, a bold symbol stands for a multi-
dimensional variable, the symbol 0 denotes a matrix of zeros
and I an identity matrix, both of appropriate dimensions. When
suitable, In conceals an identity matrix of dimensions n× n. A
block diagonal matrix is represented as diag(A1, . . . ,An). The
special orthogonal group is denoted by SO(3) := {X ∈ R3×3 :
XXT = XTX = I ∧ det(X) = 1}. In R3, the skew-symmetric
matrix of a vector a ∈ R3 is defined as S(a), such that given
another vectorb ∈ R3, one has a× b = S(a)b. The Kronecker
sum and product are represented by ⊕ and ⊗, respectively.
N (μ,σ) stands for a multivariate normal distribution with
mean μ and standard deviation σ. Finally, for convenience, the
transpose operator is denoted by the superscript (·)T .

II. ESTIMATION OF EARTH’S ANGULAR VELOCITY

This section provides the basis for the development of an
attitude estimator. The problem statement is first explained,
followed by the design of a KF to produce estimates of the
Earth’s angular velocity.

Suppose there is a robotic platform equipped with a tri-axial
high-grade FOG IMU, e.g., the KVH 1775, that provides angular
velocity readings in addition to sensor-body measurements of
a vector whose inertial counterpart is constant. In applications
where the magnitude of the gravitational field dominates the
value of the body’s acceleration for low frequency response,
one may assume that the inertial acceleration is a constant
vector [19]. Furthermore, assume that the IMU’s rate gyros are
sensitive to the Earth’s velocity of rotation. Hence, the first stage
aims at computing an estimate of the angular velocity of the
Earth as expressed on the body coordinate system installed on
the robotic platform.

A. Continuous-Time Preface to the Problem Statement

Following the steps described in [15], let R(t) ∈ SO(3)
denote the rotation matrix from a body-fixed frame {B} to a

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 20,2020 at 13:57:36 UTC from IEEE Xplore.  Restrictions apply. 



REIS et al.: KALMAN FILTER CASCADE FOR ATTITUDE ESTIMATION ON ROTATING EARTH 329

Fig. 1. Visual conceptualization of the problem statement. Earth’s
curvature depicted as dashed lines.

local inertial coordinate reference frame {I},1 The evolution in
time of R(t) obeys

Ṙ(t) = R(t)S[ω(t)] (1)

where ω(t) ∈ R3 is the angular velocity of {B} with respect to
{I}, expressed in {B}. The high-grade rate gyro measurements
are given by ωm(t) = ω(t) + ωE(t), where ωE(t) ∈ R3 is
the angular velocity of the Earth around its own axis, as ex-
pressed in {B}. In turn, let the single body-vector measurements
be denoted as m(t) ∈ R3. These, when expressed in inertial
coordinates, are assumed constant. Let IωE and Im be the
inertial vector counterparts corresponding to ωE(t) and m(t),
respectively, such that IωE = R(t)ωE(t) and Im = R(t)m(t)
for all t ≥ 0. For ease of notation, the upper left superscripts of
body vectors are dropped, i.e., ωE ≡ BωE and m ≡ Bm.

As previously argued, prior to unequivocally computing an
estimate of the rotation matrix, one needs to determine a second
vector, in addition to the one measured, m(t). In order to do so,
define as system states x1(t) := m(t) and x2(t) := ωE(t)×
m(t). Notice that state x2(t) closely relates to the Earth’s
angular velocity, and further notice that x1(t), albeit known,
will undergo a noise-filtering procedure. Finally,ωE(t) shall be
explicitly determined resorting to the filtered measurements of
m(t) and to the estimates of the auxiliary vectorx2(t). A stylized
concept comprising the North-East-Down (NED) frames and
vectorial quantities involved in this problem is depicted in Fig. 1.
A few additional steps are required to write the linear differential
equations associated with the system states. However, since
these steps have already been thoroughly sketched in [15], they
are herein omitted. Without further ado, consider the nominal
continuous-time linear time-varying (CT-LTV) system{

ẋ1(t) = −S[ωm(t)]x1(t) + x2(t)

ẋ2(t) = A21x1(t)− S[ωm(t)−A22m(t)]x2(t)
(2)

1The frame {I} is not exactly an inertial frame in the sense of the classical
physics, but can be considered as such for this application because the apparent
forces due to the Earth’s movement are within the accelerometer’s errors, which
was the sensor used in the experiments.

where A21 := (ImT IωE)2

‖Im‖2 − ‖IωE‖2 ∈ R, and A22 :=
(ImT IωE)‖IωE×Im‖2

‖Im×(IωE×Im)‖2 ∈ R. Proceed to define the general system

state vector as x(t) := [xT
1 (t) x

T
2 (t)]

T ∈ R6. Accordingly, the
CT-LTV system in (2) can be written in a more compact
form as

ẋ(t) = A(t)x(t) (3)

where

A(t) =

[
−S[ωm(t)] I

A21I −S[ωm(t)−A22m(t)]

]
∈ R6×6.

Notice that A(t) is not expressed in function of x(t); it evolves
only according to measurements. Indeed, as convincingly argued
in [20], all entries of matrix A(t) may just be considered as
continuous bounded known functions of t, whereby an LTV
system can be taken in place of the original nonlinear system.
The limitations of this premise are in line with practical consider-
ations, in particular in what concerns noise over measurements
during the experiments. The objective now is to find an exact
DT-LTV version of (3).

The following assumptions are considered throughout the
remainder of the article.

Assumption 1: (Geometric) The constant inertial vectors
IωE and Im are non-collinear, i.e., IωE × Im 	= 0.

Based on this assumption, let θ denote the angle between
the two constant inertial vectors, such that 0 < θ < π, which
consequently allows to write A21 = − sin2(θ)‖IωE‖2 < 0 and
A22 = ‖IωE‖/‖Im‖ cos(θ).

Assumption 2: (Practical) The rate gyro measurements are
bounded for all time.

Assumption 3: (Computational) The angular velocity ωm

(t) and the vector m(t) remain constant between sampling
instants.

This last assumption bridges the gap of information between
two consecutive sampling instants. It is suitable for this kind
of application, where motions are relatively slow and sampling
times are much faster in comparison.

B. Designing the Cascade’s First KF

Let Tk ∈ R denote the sampling time between consecutive
instants tk and tk+1, i.e.,Tk = tk+1 − tk > 0. Bearing Assump-
tion 3 in mind, it is easy to compute the exact discrete-time
solution of differential (3), which allows to establish a relation-
ship between the system state at time tk, xk, and at time tk+1,
xk+1. On that account, the discrete-time solution of (3) evolves
according to

xk+1 = eAkTkxk (4)

where

Ak =

[
−S[ωmk] I

A21I −S[ωmk −A22mk]

]
∈ R6×6. (5)

Similarly to the continuous-time version, here one has
xk = [xT

1 k xT
2 k]

T , with x1 k = mk and x2 k = ωEk ×mk.
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Finally, ωmk corresponds to the measurement of the angular
velocity taken at time tk.

Solving the 6 × 6 matrix exponential in (4) is relatively simple
and rather fast if one resorts, for instance, to the function expm
from MATLAB. However, a closed-form expression would be
a more elegant and, at the same time, more practical solution if
one is interested in applying the proposed algorithm on low-end
digital systems other than on arbitrarily fast and numerically
precise computers equipped with MATLAB or with other pow-
erful numerical computing environments. Hence, the matrix in
(5) needs to be somehow reorganized in a more convenient and
familiar arrangement in order to avoid computations involving
the series expansion of the matrix exponential. Moreover, by
achieving a closed-form solution for the expression in (4),
one is indeed paving the way for a simpler and unequivocal
observability analysis of the system.

Notice that, since x1 k = mk, it must be S[mk]x1 k = 0.
Therefore, without changing the nominal dynamics of the sys-
tem, Ak can be rewritten as

Ak =

[
−S[ωmk −A22mk] I

A21I −S[ωmk −A22mk]

]

which, in turn, can be rewritten as the Kronecker direct sum of
two matrices: one constant and one block diagonal. It follows
that Ak = Ā⊕Dk = Ā⊗ I3 + I2 ⊗Dk, where

Ā =

[
−1 1

A21 −1

]
∈ R2×2

and Dk = I− S[ωmk −A22mk] ∈ R3×3. Next, [21, Propo-
sition 11.1.7] states that eA⊕B = eA ⊗ eB, which allows to
rewrite (4) as xk+1 = eTkĀ ⊗ eTkDkxk.

Recall now the well-known Rodrigues’ rotation formula for
computing the exponential map, exp: so(3) → SO(3), from
skew-symmetric matrices to orthogonal matrices, given by

eS[v] =

⎧⎪⎨
⎪⎩
I+

sin(‖v‖)
‖v‖ S[v] +

1 − cos(‖v‖)
‖v‖2

S2[v], v 	= 0

I, v = 0

(6)

for any vector v ∈ R3. Then, and since matrix multiplications
with the identity are commutative, it follows from (6) that

eTkDk = eTkI−TkS[ωmk−A22mk] = eTkIe−TkS[ωmk−A22mk]

= eTk

(
I− sin (‖Tk (ωmk−A22mk‖)

‖ωmk−A22mk‖ S[ωmk−A22mk]

+
1−cos (‖Tk (ωmk−A22mk) ‖)

‖ωmk −A22mk‖2
S2[ωmk−A22mk]

)

(7)

if ωmk 	= A22mk, or eTkDk = eTkI if ωmk = A22mk. For
ease of representation throughout the remainder of this article,
define ψk := ωmk −A22mk. Therefore, the interesting result
achieved in (7) expresses a rotation of magnitude ‖Tkψk‖

around the unit rotation vector −ψk/‖ψk‖, followed by a scal-
ing factor equal to eTk . Hence, (7) ought to be written in a more
accessible composition, for example, as eTkDk = eTkR∗

k, where
R∗

k is a proper orthogonal rotation matrix, i.e., R∗
k ∈ SO(3),

with R∗
k = I if ψk = 0, or

R∗
k := I− sin(‖Tkψk‖)

‖ψk‖
S[ψk] +

1 − cos(‖Tkψk‖)
‖ψk‖2

S2[ψk]

if ψk 	= 0. Finally, compute the exponential of the 2 × 2 ma-
trix TkĀ, which, taking into account the fact that A21 < 0, as
suggested by Assumption 1, is given by

eTkĀ = e−TkΔk (8)

where

Δk :=

[
cos(δk)

sin(δk)√
|A21|

−√|A21| sin(δk) cos(δk)

]
, det(Δk) = 1 (9)

with δk = Tk

√|A21| > 0. For further details, the reader is re-
ferred to [21, Corollary 11.3.3]. The inverse of (9), useful in the
sequel, is simply given by

Δ−1
k =

[
cos(δk) − sin(δk)√

|A21|√|A21| sin(δk) cos(δk)

]
.

The previous buildup helps writing the propagation equation
of the system state vector, whose termx1 k = mk corresponds to
the single body-vector measurements as well. Thus, regarding
x1 k as an output, one can complete the full definition of the
auxiliary DT-LTV system by writing{

xk+1 = Φkxk +wk

yk = Cxk + nk

(10)

where

Φk = Δk ⊗R∗
k ∈ R6×6 (11)

is the transition matrix that drives the system from tk to tk+1,
C = [I 0] ∈ R3×6 is the constant observations matrix that re-
lates the output of the system to the system state, and wk and
nk are the process and observations noise, both assumed white
and to correspond to zero mean multivariate normal distributions
with covariances Qk, and Nk, respectively.

C. Observability Analysis

The following assumption is used all throughout the rest of
this article.

Assumption 4: (Practical) The sampling rate Tk is bounded
from above and from below. In particular, there exist positive
constants ε1, ε2 ∈ R such that ε1<Tk<ε2.

The classic KF is the natural solution for the DT-LTV system
(10). Through its implementation, the noise over measurements
mk is filtered, while, simultaneously, a vector that is closely
related to the Earth’s angular velocity is estimated. If the system
is UCO, then the resulting error estimates are shown to be
GES [22]. The following theorem encloses the first part of the
main result of this work.
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Theorem 1: The DT-LTV system (10) is observable for all
k ≥ k0. Moreover, given Assumption 4 and assuming ε2 <<
π/
√|A21|, the system is also UCO, which means the estimates

of a KF synthesized from (10) converge globally exponentially
fast to the actual values.

Proof: When considering the minimum interval of sampling
times for observability, the observability matrix associated with
the pair (Φk,C), denoted by O[k, k + 2], is given by

O[k, k + 2] =

[
C

CΦk

]
=

⎡
⎣ I 0

cos(δk)R
∗
k

sin(δk)√
|A21|

R∗
k

⎤
⎦ . (12)

First, note that R∗
k is always nonsingular by definition. Then,

according to Assumptions 1 and 4, it must be δk 	= 0. Still,
sin(δk) = 0 ⇒ δk = mπ, for m ∈ N>0, which means (12) is
not full rank when Tk = mπ/

√|A21|, for some m ∈ N>0,
but, based on Assumption 4, Tk < ε2 << π/

√|A21|. Hence,
under the conditions established above, the observability matrix
O[k, k + 2] is always full rank, thus implying that the DT-LTV
system (10) is observable for all k ≥ k0.

According to [22, Definition 7.153], the DT-LTV system (10)
is UCO if

∃N>0
α>0
β>0

∀k≥k0 αI ≤ J [k +N, k] ≤ βI (13)

with

J [k +N, k] =

k+N∑
i=k

ΞT [i, k+N ]CTCΞ[i, k+N ]

where, for i ∈ [k, k +N ], the term Ξ[k +N, i] corresponds to
the transition matrix that drives the system from ti to tk+N , and
is given by

Ξ[k +N, i] =

⎧⎪⎨
⎪⎩
∏k+N−i

l=1
Φk+N−l, i < k +N

I, i = k +N.

(14)

One of the properties of the transition matrix asserts that
Ξ[i, k +N ] = Ξ[k +N, i]−1. Moreover, based on (11), one
can write, making use of the mixed-product property of the
Kronecker product,

k+N−i∏
l=1

Φk+N−l =

(
k+N−i∏
l=1

Δk+N−l

)
⊗
(

k+N−i∏
l=1

R∗
k+N−l

)
.

Notice that both matrices in the previous Kronecker product
are invertible. Therefore, for i < k +N , the inverse of (14)
satisfies

Ξ[i, k +N ] =

(
k+N−1∏

l=i

Δ−1
l

)
⊗
(

k+N−1∏
l=i

(R∗
l )

−1

)
(15)

where the invertible product property of the Kronecker product
was employed. The inverse of a rotation matrix equals its trans-
pose. Therefore, as the right side of (15) expresses a Kronecker
product between a matrix of scaling factors and a rotation matrix,
it can be simplified, for i < k +N , as Ξ[i, k +N ] = Fi ⊗ R̄i.

Specifically, from the result stated in (8), one has

Fi =

k+N−1∏
l=i

e−Tle−TlĀ = e−τie−τiĀ

=

⎡
⎢⎣ cos

(
τi
√|A21|

)
− sin

(
τi
√

|A21|
)

√
|A21|√|A21| sin

(
τi
√|A21|

)
cos
(
τi
√|A21|

)
⎤
⎥⎦

with τi :=
∑k+N−1

l=i Tl > (k +N − i)ε1 > 0. Regarding R̄i,
since only its properties are of interest in the remainder of the
proof, it is not explicitly determined. Next, let there be a unit
vector c = [cT1 cT2 ]

T ∈ R6, with c1, c2 ∈ R3, and left and right
multiply it with all terms in (13) to convert the matrix expression
into an equivalent scalar one, resulting in

α ≤ cTJ [k +N, k]c = ‖c1‖2

+

k+N−1∑
i=k

∥∥C (Fi ⊗ R̄i

)
c
∥∥2 ≤ β. (16)

Regarding the right inequality, the upper bound is always
satisfied as all matrices involved are norm-bounded, and in
particular,

k+N−1∑
i=k

∥∥C (Fi ⊗ R̄i

)
c
∥∥2 ≤

k+N−1∑
i=k

‖C‖2 ∥∥(Fi ⊗ R̄i

)∥∥2 ‖c‖2

≤
k+N−1∑
i=k

∥∥(Fi ⊗ R̄i

)∥∥2

=

k+N−1∑
i=k

‖Fi‖2=

k+N−1∑
i=k

σ2
max(Fi)

≤
k+N−1∑
i=k

‖Fi‖2
F .

Since the squared Frobenius norm of matrix Fi is given by

‖Fi‖2
F = tr

(
FiF

T
i

)
=

2|A21|+ sin2
(
τi
√|A21|

)
(1 − |A21|)

|A21|
it follows that 2 ≤ ‖Fi‖2

F ≤ (1 + |A21|)/|A21|, which allows
to set β = 1 +N(1 + |A21|)/|A21| as a suitable upper bound.
Notice that β >> ε2.

On the other hand, regarding the left inequality in (16), isolate
the last two terms of the series under a new term denoted by Γ
to obtain

α ≤ Γ +
k+N−2∑
i=k

∥∥∥∥∥∥cos
(
τi
√

|A21|
)
c1 −

sin
(
τi
√|A21|

)
√|A21|

c2

∥∥∥∥∥∥
2

with

Γ = ‖c1‖2

+

∥∥∥∥∥∥cos
(
τk+N−1

√
|A21|

)
c1−

sin
(
τk+N−1

√|A21|
)

√|A21|
c2

∥∥∥∥∥∥
2

.
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The previous result can be rewritten in quadratic form as
Γ = cT (Υ⊗ I)c, with

Υ :=

⎡
⎢⎢⎣

1 + cos2
(
τk+N−1

√|A21|
)

− sin
(

2τk+N−1

√
|A21|

)

2
√

|A21|

− sin
(

2τk+N−1

√
|A21|

)

2
√

|A21|
sin2

(
τk+N−1

√
|A21|

)

|A21|

⎤
⎥⎥⎦ .

(17)

As τk+N−1 = Tk+N−1, then, in light of the statement
of the theorem, Tk+N−1

√|A21| << π, whereby Υ is a
positive-definite symmetric matrix, with determinant given
by sin2(τk+N−1

√|A21|)/|A21| > 0. Thus, it follows that Γ ≥
λmin(Υ) > 0, where λmin(Υ) stands for the minimum eigen-
value of (17). Furthermore, Tk+N−1

√|A21| << π also val-
idates the small angles approximation in (17), resulting
in Υ≈[

2 −Tk+N−1
−Tk+N−1 T 2

k+N−1

]. Hence, λmin(Υ) = T 2
k+N−1/2 > ε2

1/2.

Therefore, by setting α = ε2
1/2, and by finally noticing that

α < β, one concludes the proof. �
Remark 1: In the statement of Theorem 1, the upper bound

ε2 was set to be much smaller than π/
√|A21|. Contextually,

when taking into account the speed of Earth’s rotation, herein
set according to the sidereal day, i.e., ‖IωE‖ = 7.2921150 ×
10−5 rad/s, the value expressed by π/

√|A21| would correspond
to absurd and impractical sampling times, therefore, claiming
that ε2 << π/

√|A21| does not, by any means, compromise the
feasibility of the proposed solution.

D. Cascade’s First KF Implementation

Let x̂k = [x̂T
1 k x̂T

2 k]
T denote the state estimate at tk, given

by a KF applied to the auxiliary DT-LTV system (10).
Herein it is important to stress out thatS[mk]x̂1 k is no longer

identically zero, as there is nothing imposing the estimates of
mk, expressed by x̂1 k, to be collinear with the corresponding
measurements. This has to be carefully taken into account when
tuning the KF’s covariance matrix of the process noise.

According to [15], an estimate of the angular velocity of the
Earth can be determined as

ω̂Ek = A22x̂1 k +
x̂1 k × x̂2 k

‖Im‖2
. (18)

Naturally, as both x̂1 k and x̂2 k have GES error dynamics, the
estimates ω̂Ek also converge exponentially fast to zero for any
given initial condition.

This brings to an end the design of the first KF in the proposed
cascade for attitude estimation. In the next section, a second KF
will be derived to obtain an estimate of the rotation matrix Rk,
aided by the estimates (18).

III. ESTIMATION OF ROTATION MATRIX

The second KF in the cascade will resort to: i) the body angular
velocity readings from the triaxial high-grade rate gyro, ωmk;
ii) the filtered measurements yielded by the first KF, x̂1 k; and iii)
the estimates of the Earth’s angular velocity, ω̂Ek. Combining
these three vector quantities under a second DT-LTV system,
and further considering the state estimate vector x̂k as part of a

new set of observations, will allow to estimate the corresponding
rotation matrix, whose entries will converge asymptotically to
elements of SO(3).

A. Discrete-Time Attitude KF Design

As suggested in [15], start by considering a stacked column
representation of the rotation matrix R(t), given by z(t) =
[rT1 (t) r

T
2 (t) r

T
3 (t)]

T∈R9, where R(t)=[r1(t) r2(t) r3(t)]
T ∈ R3×3. In nominal terms, it follows that ż(t) = −S3[ωm(t)
− ωE(t)]z(t), where S3[x] := diag(S[x], S[x], S[x]). Simi-
larly to what was described at the beginning of Section II-B, solv-
ing this differential equation is straightforward if bearing in mind
all the assumptions established. Thus, based on (6), one obtains
zk+1 = R̄3,kzk, where R̄3,k = e−TkS3[ωmk−ωEk] = diag(R̄z,k,
R̄z,k, R̄z,k), with

R̄z,k = I− sin (‖Tk (ωmk − ωEk)‖)
‖ωmk − ωEk‖ S[ωmk − ωEk]

+
1 − cos (‖Tk (ωmk − ωEk) ‖)

‖ωmk − ωEk‖2
S2[ωmk − ωEk]

for ωmk 	= ωEk, or R̄z,k = I for ωmk = ωEk. Define now the
(nominal) observations as vk = C2zk, where

vk =
[
xT

1 k xT
2 k (x1 k × x2 k)

T
]T

∈ R9

and

C2 =

⎡
⎢⎢⎣

ImT

(IωE × Im)T

(Im× (IωE × Im))T

⎤
⎥⎥⎦⊗ I ∈ R9×9.

Hence, in the presence of sensor noise, the DT-LTV system for
attitude estimation can be written as{

zk+1 = R̄3,kzk +wz,k

vk = C2zk + nz,k

(19)

where wz,k ∼ N (0,Qz,k) and nz,k ∼ N (0,Nz,k). Both ma-
trices Qz,k and Nz,k are positive definite, representing the
covariances of the process and observations noises, respectively.
Letting ẑk denote the estimate of zk, a KF follows once again as
the natural solution for (19), with the nominal values x1 k, x2 k

and ωEk being replaced by their estimates x̂1 k, x̂2 k and ω̂Ek,
respectively.

Remark 2: Since the actual values of the dynamics matrix
R̄3,k and of the output vk are not available, one must resort
to estimates of these quantities. But, since the rate of decay of
their associated error dynamics was shown to be exponential,
one may assume these estimates to be, in fact, nominal values
subjected to perturbations that decay exponentially fast with
time. Furthermore, if the nominal system is UCO, and if the
state and the matrices of the system are bounded, then a KF is a
suitable estimator, as it was shown in [23], on a continuous-time
framework. However, these results are analogous to the discrete-
time formulation, since they rely exclusively on Kalman filtering
theory, including solutions of the Riccati matrix equation and
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Fig. 2. KF cascade enclosed in dashed red rectangle. The blocks for
computing ω̂E,k are arranged according to (18).

observability Gramians, which entails a direct correspondence
between continuous- and discrete-time settings [24].

Remark 3: In this work, high-grade gyroscopes are assumed
available. These devices are extremely precise inertial measure-
ment units that display very low noise levels. Hence, the terms
that result from time-correlation are much smaller compared to
the remaining ones, which means that the approximation on the
propagation of the covariances in the KF is negligible; in turn,
the KF is not optimal but still convergent.

The output ẑk of this KF corresponds to an estimate of
the rotation matrix Rk with GES error dynamics. However,
the resulting rotation matrix estimates, henceforth denoted by
R̂k, do not belong to SO(3) as the KF ignores topological
constructions. Nevertheless, R̂k can be projected on SO(3)
a posteriori, for instance, through the technique described in
[25, Proposition 3.5], which stems from the singular value
decomposition. Defining R̂e,k as the projection of the estimated
rotation matrix onto the manifold, it follows that

R̂e,k = R̂kUdiag

(
1√
Λ1

,
1√
Λ2

,
s√
Λ3

)
UT (20)

such that R̂T
k R̂k = UT diag(Λ1,Λ2,Λ3)U and s = 1 if

det(R̂k) > 0 or, else, if s = −1, then det(R̂k) < 0.
In general, if all elements of the estimated rotation matrix

R̂k are sufficiently close to elements of SO(3), the projection
operator (20) is an efficient technique. Otherwise, as it is the
case when det(R̂k) = 0, one can always resort to an open
loop integration on SO(3) of the previous attitude estimate by
computing R̂e,k = R̂e,k−1e

−TkS[ωk−ω̂E,k].
The final scheme of the KF cascade is depicted in Fig. 2,

where the SO(3) block consists in a direct application of the
projection expressed by (20). This implementation requires a
light computational workload.

B. Observability Analysis of Attitude Estimation Problem

This section encloses the second part of the main result of this
work.

Theorem 2: The DT-LTV system (19) is UCO, which means
the KF estimates of the rotation matrix converge globally expo-
nentially fast to the actual values.

Proof: Following the same steps presented in Section II-C,
according to [22, Definition 7.153], the DT-LTV system (19) is

UCO if

∃N̄>0
ᾱ>0

β̄>0

∀k≥k0 ᾱI ≤ J2[k + N̄ , k] ≤ β̄I (21)

withJ2[k + N̄ , k] =
∑k+N̄

i=k ΞT
2 [i, k + N̄ ]CT

2 C2Ξ2[i, k + N̄ ],
where, for i ∈ [k, k + N̄ ], the term Ξ2[k + N̄ , i] corresponds to
the transition matrix, associated with pair (R̄3,k,C2), that drives
the system from ti to tk+N̄ , and is given by

Ξ2[k + N̄ , i] =

⎧⎪⎨
⎪⎩
∏k+N̄−i

l=1
R̄3,k+N−l, i < k + N̄

I, i = k + N̄ .

Note that, for i < k + N̄ , the matrix Ξ2[k + N̄ , i] preserves
the structure of R̄3, a block diagonal of rotation matrices.
Therefore, the inverse of Ξ2[k + N̄ , i] is also a block diagonal
of rotation matrices. Furthermore, let there be a unit vector
d = [dT

1 dT
2 dT

3 ]
T ∈ R9, with d1,d2,d3 ∈ R3, and left and

right multiply it with all terms in (21) to obtain

ᾱ ≤
k+N̄∑
i=k

∥∥C2Ξ2[i, k + N̄ ]d
∥∥2 ≤ β̄. (22)

Define d̄i := Ξ2[i, k + N̄ ]d as a unit vector that results from
rotating d, with d̄k+N̄ = d. Inequality (22) becomes

ᾱ ≤
k+N̄∑
i=k

∥∥C2d̄i

∥∥2 ≤ β̄. (23)

An obvious upper bound is related to the spectral norm of
C2, whereby one can set β̄ = (N̄ + 1)‖C2‖2. With regard to
the lower bound, start by noticing that the summation consists
entirely of nonegative. Moreover, based on Assumption 1 and on
the properties of the Kronecker product, the matrix C2 is shown
to be full rank, as indicated below:

rank (C2) = rank

⎛
⎜⎜⎝
⎡
⎢⎢⎣

ImT(
IωE × Im

)T
(
Im× (IωE × Im

))T

⎤
⎥⎥⎦
⎞
⎟⎟⎠ rank(I) = 9.

This means that the homogeneous system C2d̄i = 0 is only
verified by the trivial solution d̄i = 0, but that contradicts the
fact that ‖d̄i‖ = 1 for all i. Therefore, a suitable lower bound
is ᾱ = ‖C2d‖2, which corresponds to the last term of the
summation presented in (23), or, more specifically, to the square
of the smallest singular value of C2. Specifically, by resorting
to the singular value decomposition of C2, one easily deduces
that the smallest singular value of C2 is given by min(‖Im‖2,
‖IωE × Im‖2, ‖Im× (IωE × Im)‖2), thus concluding the
proof. �

IV. SIMULATION RESULTS

Consider a robotic platform describing a rotational motion
while vector measurements of the gravitational field are col-
lected by an accelerometer, and angular velocity readings are
provided by a triaxial rate gyro. The attitude of the robotic
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TABLE I
COVARIANCE MATRICES OF THE TWO KFS

platform evolves according to an angular velocity, which,
in order to comply with Assumption 3, follows a discrete-
time sequence given by ωk = [5 sin( 2π

60 k) sin( 2π
180k) −

2 sin( 2π
300k)]

T deg/s, for k = 0, 1, 2, . . .. The sampling instants
k correspond to instances when measurements are collected.
Changes in other variables involved in the simulation are as-
sumed to occur synchronized with these instants as well. In
case data from different sensors were unsynchronized, i.e., low
bandwidth measurements being fused with high bandwidth ones,
complementary filtering techniques can be of assistance; for
further details, see [26].

To be coherent with the experimental setup in the next sec-
tion, the location of the robotic platform’s local inertial frame,
in simulated environment, is considered to exist on the same
geographical location as that of the real setup’s own local
inertial frame. Thus, select a NED geographical coordinate
system as local inertial frame (see Fig. 1), and choose the
coordinates to be centered at a latitude of ϕ = 38.777816◦

North, a longitude of λ = 9.09757◦ West, and at sea level. As
mentioned before in Section II-C, take into account the length
of time known as sidereal day. The corresponding norm of the
Earth’s angular velocity is ‖IωE‖ = 7.2921159 × 10−5 rad/s.
Its vectorial representation in the NED frame is given by
IωE = ‖IωE‖[cos(ϕ) 0 − sin(ϕ)]T rad/s. In light of the sea
level and of the latitude indicated above, and according to
the International Gravity Formula 1980, the components of
the gravitational field are given by Im = [0 0 9.80061]T m/s2.
As such, IωE × Im 	= 0 (θ = 128.7778◦), which satisfies As-
sumption 1. The evolution of the rotation matrix follows by
integrating the piecewise differentiable equation (1), starting
from an initial attitude set to R0 = I. In order to emulate the
worst-case specifications of the FOG IMU KVH 1775, with
digital output, the rate gyro measurements are deemed corrupted
by an angle random walk noise of 0.7◦/h/

√
Hz, while a veloc-

ity random walk noise of 0.12 mg/
√

Hz is considered for the
accelerometer. The covariance matrices of the initial estimation
error, process, and observations noises of each KF were set as
shown in Table I.

Since the measurements of the second KF correspond, in
fact, to the estimates of the first one, the covariance matrix
of the error concerning these estimates was feedforwarded to
the second filter to act as covariance matrix of the observations
noise. However, this only allows to obtain the covariance of
the error regarding x̂1 and x̂2. Unfortunately, the covariance of
the error associated with x̂1 × x̂2 is not provided by the first
filter, and its computation is not trivial. Therefore, through an
empirical process, this covariance was set to 10−10I, for which
the best results were obtained. The initial estimates of the first

Fig. 3. x̃1 - Estimation error of x̂1.

Fig. 4. x̃2 – Estimation error of x̂2.

Fig. 5. ω̃E – Estimation error of ω̂E .

KF were all set to zero, while the initial estimates of the second
one were set to correspond to an initial attitude estimate equal
to R̂k=0 = diag(−1, 1,−1), which is equivalent to a maximum
angle error of 180 degrees. The sampling time in the simulations
was set to a constant value of Tk = 0.1 s.

The plots with both the initial convergence and steady-state
evolution of the estimation errors of x̂1, x̂2, and ω̂E are displayed
in Figs. 3–5, respectively. Henceforward, and in the same order,
refer to x̃1 := x1 − x̂1, x̃2 := x2 − x̂2 and ω̃E = ωE − ω̂E as
the estimation errors of the first KF.

Overall, the cascade’s first KF shows a very fast perfor-
mance and, as opposed to the observer presented in [15],
does not require a set of piecewise constant gains, which
eases the burden of tuning gains. In steady-state, computed
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Fig. 6. z̃ – Estimation error of ẑ.

Fig. 7. Angle representation error.

for k ≥ 4200 (t ≥ 7 min), the standard deviation of the Earth
angular velocity error is [0.0346 0.0184 0.023]T deg/h in the
NED frame, which is a good result when compared to the real
sidereal angular velocity of 15.0411 deg/h. Likewise, for the
same steady-state region, the standard deviations of the errors
x̃1 and x̃2, in the NED frame, are [0.028 0.0256 0.02505]T

and [0.8985 0.8055 0.7120]T mg/h, respectively, which com-
pare well with the magnitude of the corresponding actual values,
that is, ‖x1‖ = 1 g and ‖x2‖ = 1.6114 g/h.

Regarding the second filter, let z̃ := z− ẑ be the error as-
sociated with the estimates of the rotation matrix. The plot
of this error is shown in Fig. 6, from where an evaluation
is difficult to grasp. Instead, consider the axis-angle repre-
sentation associated with the rotation matrix error, given by

ζk = 180
π cos−1(

tr(RT
k R̂e,k)−1

2 ) deg, and observe the resulting
plot, in Fig. 7, for the evolution of the angle error. The initial
rotation matrix estimate chosen before ensures that the angle
error starts from its maximum deviation, 180 degree. The perfor-
mance of this second filter is as fast as the first one in the cascade,
exhibiting initial convergence times well below the 1-min mark,
as seen from both Figs. 6 and 7. The mean angle error, computed
for k ≥ 6000 (t ≥ 10 min), is 0.1638 degrees with a standard
deviation of 0.0629 degrees, which deem the proposed solution
a suitable choice for the problem of attitude estimation.

V. EXPERIMENTAL RESULTS

In order to validate the robustness of the proposed KF cas-
cade, an experiment was conducted using a tri-axial high-grade

Fig. 8. Experimental setup: FOG IMU KVH 1775 mounted on a metal
plate. The MRT’s unlimited rotation axis is normal to the plate.

FOG IMU KVH 1775 mounted on an Ideal Aerosmith Model
2103HT Three-Axis Positioning and Motion Rate Table (MRT)
System, which is designed to provide precise position, rate, and
acceleration motion, for instance, for the development and/or
production testing of IMUs. The ground-truth data from the
MRT is characterized by a rate accuracy of 0.5%± 0.0005 deg/s
on its limited rotation axes (y and z) and 0.01% ± 0.0005 deg/s
on its unlimited rotation axis (x), and by a position accuracy
of 30′′ on all axes. The final experimental setup is depicted in
Fig. 8.

The FOG IMU provides tri-axial angular velocity, accelera-
tion, and magnetometer readings. The tri-axial magnetometer is
unreliable because it is greatly affected, in this particular case,
by the metallic structure of the MRT and magnetic fields induced
by electrical currents on the motors, which cannot be com-
pensated by calibration [27]. Therefore, we resort exclusively
to accelerometer measurements, taking into consideration slow
maneuvers in order to ensure that the approximation described
in the beginning of Section II is valid. At room temperature, this
FOG IMU’s accelerometer is characterized by a velocity random
walk of 0.12 mg/

√
Hz, the same used in the simulations. A cali-

bration procedure was implemented beforehand that determined
a matrix of constant scaling factors, a constant bias, and a cor-
responding inertial vector (with respect to the MRT’s own local
NED inertial frame), for both the rate gyros and accelerometers.
Data acquired from the MRT was sampled at 128 Hz, and later
down-sampled to 25 Hz to match the sampling frequency of the
FOG IMU. The MRT is crucial in providing actual reference val-
ues for performance evaluation, while allowing for user inputs.
Fig. 9 shows the ground-truth data corresponding to the MRT’s
user-designed and user-programmed angular velocity, expressed
in its reference frame.

The covariance matrices of the initial estimation error, pro-
cess, and observations noises of each KF were set according to
Table II. Some values differ from those in Table I mainly due to
the nature of the measurements. Furthermore, noises, which, in
simulation, were assumed additive white Gaussian sequences,
may not exactly share, in practice, the properties of normal
distributions. In particular, the covariance of the observations
noise was determined after a statistical analysis of the signals
involved.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 20,2020 at 13:57:36 UTC from IEEE Xplore.  Restrictions apply. 



336 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 1, FEBRUARY 2020

Fig. 9. MRT angular velocity.

TABLE II
EXPERIMENTAL COVARIANCE MATRICES OF THE TWO KFS

Fig. 10. x̃1 – Experimental estimation error of x̂1.

Fig. 11. x̃2 – Experimental estimation error of x̂2.

The plots with both the initial convergence and steady-state
evolution of the estimation errors of x̂1, x̂2, and ω̂E are displayed
in Figs. 10–12, respectively. The magnitude of the steady-state
error in Fig. 12 compares well with that of Fig. 5, which indi-
cates a good performance in practice. Initial convergence times
are almost unnoticeable, but that, compared to the simulated
scenario, is somewhat expected in the sense that the sampling
frequency in the experiments is 2.5 times faster than in sim-
ulation. Once again, in steady state, this time computed for

Fig. 12. ω̃E – Experimental estimation error of ω̂E .

Fig. 13. z̃ – Experimental estimation error of ẑ.

Fig. 14. Experimental angle representation error.

k ≥ 60 000 (t ≥ 40 min), the standard deviation of the Earth
angular velocity error is [0.1203 0.2661 0.2139]T deg/h in the
NED frame. The computed standard deviations of the errors x̃1

and x̃2, also in the NED frame, are [0.5044 1.3369 1.3948]T

and [3.9732 3.3558 4.2108]T mg/h, respectively, which com-
pare very well with the magnitude of the corresponding real val-
ues, that is‖x1‖ = 1 g = 9.80061 m/s2 and‖x2‖ = 1.6114 g/h.
All these results are in line with the simulation outcomes
achieved for the first KF in the cascade.

The plots with the evolutions of the rotation matrix error
and the corresponding angle error are presented in Figs. 13 and
14, respectively. As opposed to the simulation results, it takes
approximately 15 min for both errors to reach steady state. This
might be related to the fact that, in the experiments, there exist
vibrations caused by the MRT, leading to higher noise levels.
Moreover, the acceleration may only be approximately constant
when represented in inertial coordinates, which means that some
terms associated with an apparent force were not accounted for
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during the experiment. Finally, some mild model inaccuracies
may have resulted from the calibration process. This, however,
does not compromise the feasibility of the solution, as proven
by its good convergence and steady-state accuracy. The results
for the angle error are very good, with the mean and standard
deviation, calculated also for (t ≥ 40 min), equal to 0.4020◦ and
0.2207◦, respectively.

VI. CONCLUSION

In this article, a discrete-time attitude estimation solution
featuring a cascade of two linear time-varying KFs was pre-
sented. The first filter in the cascade obtains an estimate of the
Earth’s angular velocity from a set of measurements that include
angular velocity, provided by a triaxial high-grade rate gyro,
and a body-vector whose inertial counterpart is constant. The
output of the first KF, along with the same set of measurements,
is feedforwarded to the second KF, which estimates a rotation
matrix. This rotation, in spite of not belonging to SO(3), has
its entries converging exponentially fast to the manifold. The
overall cascaded KF system was shown to be UCO, in turn
ensuring global exponential stability. Simulation and experi-
mental results were presented that demonstrate the robustness
of the proposed solution, which can be very useful for space and
underwater applications, where high accuracy is required while
simultaneously using high-grade rate gyros capable of sensing
the Earth’s rotation.

REFERENCES

[1] J. K. Deutschmann and I. Y. Bar-Itzhack, “Evaluation of attitude and orbit
estimation using actual earth magnetic field data,” J. Guid. Control, Dyn.,
vol. 24, no. 3, pp. 616–623, May 2001.

[2] D. S. Laila, M. Lovera, and A. Astolfi, “A discrete-time observer design
for spacecraft attitude determination using an orthogonality-preserving
algorithm,” Automatica, vol. 47, no. 5, pp. 975–980, 2011.

[3] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi, “Attitude estimation
using biased gyro and vector measurements with time-varying reference
vectors,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1332–1338,
May 2012.

[4] L. Chang, F. Zha, and F. Qin, “Indirect Kalman filtering based attitude esti-
mation for low-cost attitude and heading reference systems,” IEEE/ASME
Trans. Mechatronics, vol. 22, no. 4, pp. 1850–1858, Aug. 2017.

[5] H. Rehbinder and X. Hu, “Drift-free attitude estimation for accelerated
rigid bodies,” Automatica, vol. 40, no. 4, pp. 653–659, Apr. 2004.

[6] Y. Zhang, K. Song, J. Yi, P. Huang, Z. Duan, and Q. Zhao, “Absolute
attitude estimation of rigid body on moving platform using only two gy-
roscopes and relative measurements,” IEEE/ASME Trans. Mechatronics,
vol. 23, no. 3, pp. 1350–1361, Jun. 2018.

[7] G. Wahba, “A least squares estimate of satellite attitude,” SIAM Rev., vol. 7,
no. 3, pp. 409–409, Jul. 1965.

[8] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering for
spacecraft attitude estimation,” J. Guid. Control Dyn., vol. 5, no. 5, pp. 417–
429, Sep. 1982.

[9] M. L. Psiaki, F. Martel, and P. K. Pal, “Three-axis attitude determination
via Kalman filtering of magnetometer data,” J. Guid. Control Dyn., vol. 13,
no. 3, pp. 506–514, May 1990.

[10] D. Mortari, F. L. Markley, and P. Singla, “Optimal linear attitude estima-
tor,” J. Guid. Control Dyn., vol. 30, no. 6, pp. 1619–1627, Nov. 2007.

[11] M. Izadi, E. Samiei, A. K. Sanyal, and V. Kumar, “Comparison of an
attitude estimator based on the Lagrange-d’Alembert principle with some
state-of-the-art filters,” in Proc. IEEE Int. Conf. Robot. Autom., May 2015,
pp. 2848–2853.

[12] A. Barrau and S. Bonnabel, “The invariant extended Kalman filter as a
stable observer,” IEEE Trans. Autom. Control, vol. 62, no. 4, pp. 1797–
1812, Apr. 2017.

[13] A. Barrau and S. Bonnabel, “Intrinsic filtering on lie groups with applica-
tions to attitude estimation,” IEEE Trans. Autom. Control, vol. 60, no. 2,
pp. 436–449, Feb. 2015.

[14] J. Reis, P. Batista, P. Oliveira, and C. Silvestre, “Nonlinear observer
on SO(3) for attitude estimation on rotating earth using single vector
measurements,” IEEE Control Syst. Lett., vol. 3, no. 2, pp. 392–397,
Apr. 2019.

[15] P. Batista, C. Silvestre, and P. Oliveira, “Globally exponentially stable
attitude observer with Earth velocity estimation,” Asian J. Control, vol. 21,
no. 4, pp. 1409–1422, Jul. 2019.

[16] P. Batista, C. Silvestre, and P. Oliveira, “Attitude observer on the special
orthogonal group with Earth velocity estimation,” Syst. Control Lett.,
vol. 126, pp. 33–39, Apr. 2019.

[17] A. Khosravian, T. J. Chin, I. Reid, and R. Mahony, “A discrete-time attitude
observer on SO(3) for vision and GPS fusion,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2017, pp. 5688–5695.

[18] A. P. Vinod, A. D. Mahindrakar, S. Bandyopadhyay, and V. Muralidharan,
“A deterministic attitude estimation using a single vector information and
rate gyros,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2630–
2636, Oct. 2015.

[19] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” IEEE Trans. Autom. Control,
vol. 53, no. 5, pp. 1203–1218, Jun. 2008.

[20] P. Batista, C. Silvestre, and P. Oliveira, “Sensor-based globally asymptot-
ically stable filters for attitude estimation: Analysis, design, and perfor-
mance evaluation,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2095–
2100, Aug. 2012.

[21] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas With
Application to Linear Systems Theory, vol. 41. Princeton, NJ, USA:
Princeton Univ. Press, 2009.

[22] A. H. Jazwinski, “Stochastic processes and filtering theory,” in Mathemat-
ics in Science and Engineering. New York, NY, USA: Elsevier Science,
1970.

[23] D. Viegas, P. Batista, P. Oliveira, and C. Silvestre, “On the stability
of the continuous-time Kalman filter subject to exponentially decaying
perturbations,” Syst. Control Lett., vol. 89, pp. 41–46, 2016.

[24] M. W. A. Smith and A. P. Roberts, “An exact equivalence between the
discrete- and continuous-time formulations of the Kalman filter,” Math.
Comput. Simul., vol. 20, no. 2, pp. 102–109, Jun. 1978.

[25] M. Moakher, “Means and averaging in the group of rotations,” SIAM J.
Matrix Anal. Appl., vol. 24, no. 1, pp. 1–16, 2002.

[26] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Complementary filter design
on the special orthogonal group SO(3),” in Proc. 44th IEEE Conf. Decis.
Control, 2005, pp. 1477–1484.

[27] J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and B. Cardeira,
“Geometric approach to strapdown magnetometer calibration in sensor
frame,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 1293–1306,
Apr. 2011.

Joel Reis received the M.Sc. degree in aero-
space engineering from the Instituto Superior
Técnico, Lisbon, Portugal, in 2013, and the
Ph.D. degree in electrical and computer engi-
neering from the University of Macau, Macau, in
2019.

He is currently a Research Assistant with the
Faculty of Science and Technology, University
of Macau. His research interests include estima-
tion theory based on underwater positioning and
localization systems, and design of nonlinear
attitude estimation algorithms.

Pedro Batista (SM’16) received the Licen-
ciatura degree in electrical and computer engi-
neering, in 2005, and the Ph.D. degree, in 2010,
both from the Instituto Superior Técnico (IST),
Lisbon, Portugal.

From 2004 to 2006, he was a Monitor with the
Department of Mathematics, IST. Since 2012,
he has been with the Department of Electrical
and Computer Engineering of IST, where he is
currently an Assistant Professor with the De-
partment of Electrical and Computer Engineer-

ing at IST. His research interests include sensor-based navigation and
control of autonomous vehicles.

Dr. Batista has received the Diploma de Mérito twice during his gradu-
ation and his Ph.D. thesis was awarded the Best Robotics Ph.D. Thesis
Award by the Portuguese Society of Robotics.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 20,2020 at 13:57:36 UTC from IEEE Xplore.  Restrictions apply. 



338 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 1, FEBRUARY 2020

Paulo Oliveira (SM’11) received the Licen-
ciatura, M.S., and Ph.D. degrees in electrical
and computer engineering, and the Habilitation
in mechanical engineering from the Instituto Su-
perior Tecnico (IST), Lisbon, Portugal, in 1991,
2002, and 2016, respectively.

He is an Associate Professor with the Depart-
ment of Mechanical Engineering of IST and Se-
nior Researcher with the Associated Laboratory
for Energy, Transports, and Aeronautics. He is
the author or coauthor of more than 65 journal

papers and 175 conference communications and participated in more
than 30 European and Portuguese research projects, over the last 30
years. His research interests include autonomous robotic vehicles with
a focus on the fields of estimation, sensor fusion, navigation, positioning,
and mechatronics.

Carlos Silvestre received the Licenciatura de-
gree in electrical engineering from the Instituto
Superior Tecnico (IST) of Lisbon, Portugal, in
1987, the master’s degree in electrical engineer-
ing and the Ph.D. degree in control science from
the same school in 1991 and 2000, respectively.
In 2011, he received the Habilitation in electrical
engineering and computers also from IST.

Since 2000, he is with the Department of
Electrical Engineering, Instituto Superior Tec-
nico, where he is currently on leave. Since 2015,

he is also with the Faculty of Science and Technology, University of
Macau, Macau, where he currently holds a Professor position with
the Department of Electrical and Computers Engineering. His current
research interests include linear and nonlinear control theory, hybrid
systems, multiagent control systems, networked control systems, in-
ertial navigation systems, and real-time architectures for complex au-
tonomous systems with application to unmanned air and underwater
vehicles.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on February 20,2020 at 13:57:36 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


