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Abstract: Diffusion-based trajectory observers have been recently proposed as a
simple and efficient framework to solve diverse smoothing problems in underwater
navigation. For instance, to obtain estimates of the trajectories of an underwater
vehicle given position fixes from an acoustic positioning system and velocity
measurements from a DVL. The observers are conceptually simple and can
easily deal with the problems brought about by the occurrence of asynchronous
measurements and dropouts. In its original formulation, the trajectory observers
depend on a user-defined constant gain that controls the level of smoothing and
is determined by resorting to trial and error. This paper presents a methodology
to choose the observer gain by taking into account a priori information on the
variance of the position measurement errors. Experimental results with data from
an acoustic positioning system are presented to illustrate the performance of the
derived observers. Copyright c©2007 IFAC.

1. INTRODUCTION

In many applications, one is interested in deter-
mining a smooth trajectory that fits a set of sparse
and noisy measurements in a fixed time interval.
For instance, when post-processing underwater
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navigation data obtained with an acoustic posi-
tioning system and a Doppler Velocity Log (DVL)
(Jouffroy and Opderbecke, 2007), (Kinsey et al.,
2006), (Ferrini et al., 2007). Although off-line nav-
igation is of crucial practical importance for the
correction of geo-referenced scientific data, it has
received considerably less attention than real-time
navigation (Alcocer et al., 2007), (Kinsey and
Whitcomb, 2004), (Whitcomb et al., 1999).

Diffusion-based trajectory observers have been re-
cently proposed as a simple and efficient frame-



work to solve diverse smoothing problems in un-
derwater navigation (Jouffroy and Opderbecke,
2004), (Jouffroy and Opderbecke, 2007). These
observers are conceptually simple, and can cope
naturally with asynchronous measurements and
dropouts (temporally loss of measurements). From
a conceptual point of view, diffusion-based tra-
jectory observers have strong links with several
other disciplines such as de-noising and snakes
in image processing (Rudin et al., 1992), (Cohen
and Cohen, 1993), (Xu and Prince, 1998), and
nonparametric smoothing splines (Eubank, 1999).

In the original formulation, the objective is to
minimize an energy-like functional that penalizes
the derivatives of the trajectory and a function
of the distances between points along the trajec-
tory and a set of available measurements. The
trajectory is modeled as a curve s 7→ X(s) ∈ R

n,
s ∈ [sb, se] where n ∈ {2, 3} is the dimension of
the trajectory ambient space, and [sb, se] ⊂ R is
the time interval of interest. Suppose there are Nm

position measurements Xm(τi) ∈ R
n correspond-

ing to times τi ∈ I = {τ1, . . . , τNm
}. Consider an

energy-like functional of the form

E =

∫ se

sb

α1‖∇X(s)‖2 + α2‖∇2X(s)‖2

+ Kγ(s)‖X(s) − Xm(s)‖2ds (1)

where α1, α2 > 0 are user-defined parameters, ∇i

stands for the i’th order derivative with respect
to the trajectory time s, and K is a user-defined
gain. The factor γ(s) is introduced to capture the
fact that position measurements are available only
at some discrete instants of time and is defined as

γ(s) =
∑

τi∈I

δ(s − τi), (2)

where δ(·) stands for the Dirac delta function. For
simplicity of presentation, in this paper we will
focus on energy functionals of the type (1). This
corresponds to the acoustic data smoothing prob-
lem in (Jouffroy and Opderbecke, 2007) where it is
assumed that no velocity measurements are avail-
able. Including continuous velocity measurements
can be easily done with minor modifications in the
derivation that follows by considering terms of the
form ‖∇X(s)− Vm(s)‖2 in the energy functional.

The minimizing trajectory must satisfy the Euler
Lagrange equation

− α1∇2X(s) + α2∇4X(s)

+ Kγ(s)(X(s) − Xm(s)) = 0 (3)

and can be computed using a dynamical system,
called a trajectory observer, that follows the neg-
ative gradient-like flow and is defined as follows:

∂

∂t
X(s, t) =α1∇2X(s, t) − α2∇4X(s, t)

− Kγ(s)(X(s, t) − Xm(s)). (4)

Note that we are now considering a continuous
of trajectories X(s, t) where s is the trajectory
time, and t is the improvement time. The ob-
server is started at some initial trajectory X(s, 0),
and the desired solution is the limit of X(s, t) as
t → ∞. The question of whether the previous
flow converges and has a unique stable equilibrium
trajectory is of crucial importance. In (Jouffroy
and Nguyen, 2004) the stability proof for a similar
flow based on Lyapunov analysis is presented. In
(Jouffroy and Opderbecke, 2004) the convergence
of a finite difference implementation of the ob-
server is guaranteed given that the observer gain
K is a positive constant.

In practice, the choice of the value of the observer
gain is often left to the user and is done through
trial and error. In many situations, however, there
is some a-priori knowledge on the variance of the
measurement errors that could be used in order to
chose K. In this paper we propose a methodology
to determine K based on minimizing an energy
like function subject to a variance constraint that
can for all purposes be viewed as an observer
”tuning knob”. The observer gain is viewed as
a Lagrange multiplier, as inspired by (Rudin et
al., 1992), and determined by solving a system of
equations involving that constraint.

2. TRAJECTORY OBSERVERS WITH
VARIANCE CONSTRAINTS

Suppose the variance of the position measurement
errors σ2

X is known. Consider the minimization of
the cost function

E =

∫ se

sb

α1‖∇X(s)‖2 + α2‖∇2X(s)‖2ds (5)

subject to the constraint

1

Nm

∫ se

sb

γ(s)‖X(s) − Xm(s)‖2ds = σ2
X . (6)

The minimizing trajectory must now satisfy the
Euler Lagrange equations (3) and (6). In order
to determine the value of K that satisfies both
equations, we can multiply (3) on the left by
γ(s)(X(s)−Xm(s))T and integrate in the interval
[sb, se] to obtain

K =
1

σ2
XNm

∫ se

sb

γ(s)(X(s) − Xm(s))T

(α2∇4X(s) − α1∇2X(s))ds. (7)

Injecting the derived gain in the trajectory ob-
server equations (4) can be interpreted as a gra-
dient projection method for the constrained min-
imization problem (5)-(6).



2.1 Numerical Implementation

The observer derived above has the form of a
nonlinear partial differential equation that is not
easy to solve in practice. Next, we formulate a
finite difference approximation to the observer
that can be easily implemented.

The differential equation that defines the observer
is well suited to estimate the trajectory at all
times s in the closed interval [sb, se]. In practice,
one is often interested in estimating the trajectory
only at a set of uniformly distributed instants of
time {s1, s2, . . . , sN}, where s1 = sb, sN = se, and
∆s = si+1−si, that is, in estimating a discretized
version of the trajectory defined as

X =











X(s1)
T

X(s2)
T

...

X(sN )T











∈ R
N×n. (8)

The position measurements can also be put in
this form, assuming that I ⊆ {s1, s2, . . . , sN}, by
defining a matrix Xm ∈ R

N×n with row i given by
Xm(si)

T whenever there is a measurement at time
si and a row of zeros otherwise. Let vec() denote
the operator that stacks the columns of a matrix
from left to right. Define the vector variables x =
vec(X) ∈ R

Nn, and xm = vec(Xm) ∈ R
Nn. The

finite difference implementation of the trajectory
observer (4) can now be written as






ẋ = f(x) = Ax − KΓ(x − xm) + b

K =
1

σ2
XNm

(x − xm)T Γ(Ax + b)
(9)

where

A = In ⊗ (α1L1 − α2L2) ∈ R
Nn×Nn, (10)

Γ = In ⊗







γ1 0
. . .

0 γN






∈ R

Nn×Nn, (11)

γi =

∫ se

sb

γ(si)ds =

{

1 if si ∈ I,

0 otherwise,
(12)

In is the n × n identity matrix, and ⊗ denotes
the Kronecker product of matrices. The matrices
L1,L2, defined as

L1 =
1

∆s2













−2 1 0 · · ·
1 −2 1

. . .

. . .
. . .

. . .
. . .

· · · 0 1 −2













∈ R
N×N , (13)

L2 =
1

∆s4















6 −4 1 0 · · ·
−4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4
· · · 0 1 −4 6















∈ R
N×N , (14)

are the centered finite difference approximations
with Dirichlet boundary conditions of ∇2 and

∇4, respectively. Vector b = vec(B) ∈ R
Nn is

obtained from a constant matrix B ∈ R
N×n con-

taining the Dirichlet boundary conditions. More
specifically, assuming that X(s, t) = xb,∀s ≤ sb

and X(s, t) = xe,∀s ≥ se, then B = α1B1−α2B2

where

B1 =
1

∆s2

[

xb 0 . . . 0 xe

]T
, (15)

B2 =
1

∆s4

[

−3xb xb 0 . . . 0 xe −3xe

]T
. (16)

Note that this implementation differs from the
original formulation, that used complex numbers
(Jouffroy and Opderbecke, 2007), and allows to
deal easily with both 2D and 3D trajectories.

The initial trajectory estimate x(0) is an impor-
tant parameter that needs to be carefully chosen.
As shown in the appendix, under some assump-
tions, the observer is only locally asymptotically
stable. One must be aware that there are some
initial trajectories for which the observer diverges.
A natural choice is to start with a linear inter-
polation of the available measurements. Another
possibility is to chose a constant positive gain K
and use the closed form solution to f(x) = 0 given
by

x = −(A − KΓ)−1(KΓxm + b). (17)

where, provided that A is negative definite (see
Lemma 2 in the appendix) and KΓ is positive
semidefinite, matrix A−KΓ is always invertible.

Velocity measurements, as those provided by a
DVL unit, can be easily introduced in the pre-
vious formulation with minor modifications. For
instance, one way of doing so is by assuming
continuous noise-free velocity measurements Vm

and considering the energy functional (1) with
the first term replaced by α1‖∇X(s)−Vm(s)‖2 as
in (Jouffroy and Opderbecke, 2007). The observer
equations (9) remain unchanged, except for vector
b that must now be defined as b = vec(B) −
α1vec(W), with W representing the finite differ-
ence approximation of ∇Vm.

2.2 Tuning the trajectory observer

The free parameters in the observer are α1, α2 and
σX . The first two, are also encountered in the
original trajectory observers, and weigh the rel-
ative penalization of velocities and accelerations.
In (Cohen and Cohen, 1993) it is recommended
to have parameters of the order ∆s2 for α1 and of
the order ∆s4 for α2. The introduction of σX is
the main contribution of the paper. It provides
a simple and intuitive way of tuning the ob-
server. Unlike the original formulation, where the
observer gain K had no physical interpretation,
the new parameter σX is the assumed standard
deviation of the position measurement errors. It



might be known a priori, from sensor specifica-
tions, or roughly estimated from the available data
(for instance using a moving average filter). The
important fact is that it is possible to specify
a priori what will be the size of the mismatch
between the available position measurements and
the estimated trajectory.

3. EXPERIMENTAL RESULTS

The trajectory observer derived was applied to
the post-processing of experimental data from sea
trials in Sines, Portugal, in June 2004. Position
measurements were generated by trilateration of
data coming from an underwater acoustic posi-
tioning system (Alcocer et al., 2007) while ma-
noeuvring an acoustic emitter from a surface ship.
The selected trajectory corresponds to 100s of
data, and position measurements were available
every second. The trajectory was discretized in
N = 100 elements with ∆s = 1s. The observer
parameters were set to α1 = α2 = 1, and σX ∈
{2, 3, 4}m. The observer was initialized at a lin-
ear interpolation of the available measurements.
The results are shown in Figures 1, 2, and 3.
The final trajectory estimates (the steady state
solution of the observer equations) are shown in
Figure 1, together with the actual position mea-
surements. The bigger the standard deviation σX ,
the smoother the resulting trajectory is, and less
weight is given to the measurements. Figure 2
shows the time evolution of the trajectory esti-
mate, which provides a graphical intuition on how
the observer behaves. Figure 3 shows the evolution
of the resulting observer gain.

It is important to note that before using the de-
rived observer, one should be careful in remov-
ing the outliers from the available measurements.
Even if the smoothing process will somehow min-
imize their influence, the observer is not meant to
deal with outliers. In (Vike and Jouffroy, 2005) an
integrated outlier rejection and smoothing scheme
is presented.

4. CONCLUSIONS AND FUTURE WORK

This paper proposed an extension to diffusion-
based trajectory observers that includes variance
constraints on the position measurements. The
derived observer can be easily implemented and
tuned using physical meaningful parameters. Ex-
perimental results with data gathered from an
acoustic positioning system were presented to il-
lustrate the observer performance. Convergence
analysis showed that under some conditions the
observer is asymptotically stable.

There are many issues that could be further ad-
dressed. First, some improvement over the use of
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Fig. 3. Evolution of the observer gain K with the
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Dirac delta functions to weight the position mea-
surements might be done. Instead, one could use
Gaussian functions whose variance accounts for
the small uncertainty present in the time tags of
the position measurements. Second, the equality
constrained minimization problem (6) may not
seem natural; it was simply chosen so as to yield



a simple solution in the framework of diffusion-
based trajectory observers. By considering in-
equality constraints on the variance, the discrete
version of problem could have been formulated as
a Quadratically Constrained Quadratic Problem
(QCQP). Considering constraints on the variance
of the velocity measurements is another direction
of further research.

Appendix A. CONVERGENCE ANALYSIS

The important question of whether the derived
observer converges warrants careful analysis. Note
that the observer equations are nonlinear due the
gain K which is a quadratic function of the state.
We start by characterizing the equilibrium points
of the observer and then show that, under some
conditions, the desired points are asymptotically
stable.

The observer equations can be written in compact
form as

{

ẋ = f(x) = ξ − Ke

K = ceT ξ,
(A.1)

where

e = Γ(x − xm) ∈ R
Nn×1 (A.2)

ξ = Ax + b ∈ R
Nn×1 (A.3)

c =
1

nXσ2
X

∈ R. (A.4)

The equilibrium trajectories are those satisfying
f(x) = 0. From (A.1), and since K is a scalar, it
can be seen that for this to happen vectors ξ and
e must be aligned. That is, their inner product
must be ξT e = ±‖ξ‖‖e‖. The set of equilibrium
trajectories can then be characterized as Ω = Ω1∪
Ω2 ∪ Ω3, where

Ω1 = {ξ = 0},
Ω2 = {ξT e = +‖ξ‖‖e‖ > 0, c‖e‖2 = 1},
Ω3 = {ξT e = −‖ξ‖‖e‖ < 0, c‖e‖2 = 1}.

The first set Ω1 consists only of the solution x =
−A−1b, which in general does not satisfy the vari-
ance constraint and can be therefore considered as
degenerate. The following proposition gives suffi-
cient conditions that ensure that the sets Ω2 and
Ω3 are composed of isolated asymptotically stable
and unstable equilibrium points, respectively.

Proposition 1. Define the constants

β2 =
√

c(σ(A)‖xm‖ − ‖b‖) − σ(A)

β3 =
√

c(σ(A)‖xm‖ − ‖b‖) − 2σ(A) − σ(A)

where σ(A), σ(A) denote the minimum and max-
imum singular values of matrix A, respectively.
Then,

(1) If β2 > 0, the equilibrium points in Ω2 are
isolated and (locally) asymptotically stable.

(2) If β3 > 0, the equilibrium points in Ω3 are
isolated and unstable.

Matrix A has an important role in determining
the observer properties. The following result will
be useful in proving the previous proposition:

Lemma 2. Matrix A defined in (10) is negative
definite, and in particular invertible.

Proof If the matrix C = (α1L1−α2L2) is negative
definite the result follows since A = In ⊗ C is
symmetric and with the same eigenvalues as C

(with n times its multiplicities). Matrix L1 defined
in (13) is negative definite (Ames, 1977, p.57).
It follows that its square L2

1 is positive definite.
Moreover, it is easy to see that matrix L2 defined
in (14) is also positive definite since it can be
expressed as

L2 = L2
1 + e1e

T
1 + eNeT

N � L2
1

where ei ∈ R
N has a 1 on its i’th entry and

zeros elsewhere, and where given two symmetric
matrices A,B, the expression A � B denotes
that the difference A−B is positive semidefinite.
Because α1, α2 > 0, C is the sum of two negative
definite matrices and is itself negative definite.
The result follows immediately. 2

Note that if instead of Dirichlet (fixed extreme
positions) one had considered Neumann boundary
conditions (fixed extreme velocities), the corre-
sponding finite difference approximation matrix of
∇2, L1 would be only negative semidefinite, and
the result would not be valid.

Proof (Proposition 1) After some computations,
the Jacobian of the system can be found to be:

∂f

∂x
= (I − ceeT )A − c eξT Γ − c eT ξI (A.5)

When evaluated in Ω2,

∂f

∂x
|Ω2

= (I − ceeT )A − c
√

c‖ξ‖eeT −
√

c‖ξ‖I

since Γe = e, Γξ = KΓe = ξ, and
√

c‖e‖ = 1.
Moreover, when restricted to Ω2 the following
bounds apply

√
c/c = ‖e‖ = ‖Γ(x − xm)‖ ≥ ‖Γxm‖ − ‖Γx‖

= ‖xm‖ − ‖Γx‖ =⇒
‖x‖ ≥ ‖Γx‖ ≥ ‖xm‖ −

√
c/c (A.6)

‖ξ‖ = ‖Ax + b‖ ≥ ‖Ax‖ − ‖b‖
≥ σ(A)‖x‖ − ‖b‖
≥ σ(A)(‖xm‖ −

√
c/c) − ‖b‖ (A.7)



ceeT A + cAeeT � ‖ceeT A + cAeeT ‖I
� ‖ceeT A‖I + ‖cAeeT ‖I
= 2‖ceeT A‖I
� 2‖ceeT ‖‖A‖I
= 2σ(A)I (A.8)

where we used the fact that, since matrix A is
negative definite, −σ(A)I � A � −σ(A)I. The
symmetric part of the Jacobian

Js =
1

2

(

∂f

∂x
+

∂f

∂x

T
)

, (A.9)

when evaluated in Ω2, satisfies

Js|Ω2
= A − c

2
(eeT A + AeeT ) −

√
c‖ξ‖I

− c
√

c‖ξ‖eeT

� −σ(A)I +
1

2
‖ceeT A + cAeeT ‖I −

√
c‖ξ‖I

� −σ(A)I + σ(A)I −
√

c‖ξ‖I
� −σ(A)I +

√
c(σ(A)‖xm‖ − ‖b‖)I

= −β2I (A.10)

As a result, if β2 > 0, Js|Ω2
is negative defi-

nite. This implies that the Jacobian has all of
its eigenvalues negative and, in particular, it is
invertible. By the inverse function theorem, there
is a neighborhood D of every point in Ω2 in
which f is bijective, and thus the equilibriums
points are isolated. Moreover, the stability of such
equilibriums can be analyzed by using a Lyapunov
function candidate V : D → R given by

V (x) = ‖f(x)‖2 (A.11)

that is positive definite in D. Its time derivative,
given by

V̇ = f(x)T Jsf(x) ≤ −β2‖f(x)‖2, (A.12)

is negative definite in D. It follows that the equi-
librium points in Ω2 are isolated and asymptot-
ically stable (Khalil, 2000). In order to prove
part (2) of the proposition we follow a similar
reasoning. Evaluating the symmetric part of the
Jacobian on Ω3, and using (A.6)-(A.8), we find
that

Js|Ω3
= A − c

2
(eeT A + AeeT ) +

√
c‖ξ‖I

+ c
√

c‖ξ‖eeT

� −2σ(A)I +
√

c‖ξ‖I
� β3I (A.13)

Now if β3 > 0, then Js|Ω3
is positive definite, and

all of its eigenvalues are positive. The equilibrium
points in Ω3 can then be shown to be isolated and
unstable. 2
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