
Design, Development, and Testing of a Mission Control System

for the MARIUS AUV ∗

P. Oliveira, A. Pascoal, V. Silva, C. Silvestre

Institute for Systems and Robotics

Instituto Superior Técnico

Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

E-mail address: antonio@isr.ist.utl.pt

Abstract

This paper describes the design, development, and
sea testing of a Mission Control System for the MAR-
IUS Autonomous Underwater Vehicle (AUV). The
design methodology builds on the key concept of Ve-
hicle Primitive, which is a parameterized specifica-
tion of an elementary operation performed by the ve-
hicle. A Vehicle Primitive is obtained by coordinat-
ing the execution of a number of concurrent System
Tasks. Vehicle Primitives are activated to form Mis-
sion Procedures, which are executed as determined by
Mission Programs, and in reaction to external events.

System Task design is carried out using well estab-
lished tools from continuous/discrete-time dynamic
system theory, and finite state automata to describe
its logical interaction with Vehicle Primitives. The
design and analysis of Vehicle Primitives and Mis-
sion Procedures build on the theory of Petri nets,
which are naturally oriented towards the modeling
and analysis of asynchronous, discrete event systems
with concurrency. Vehicle Primitives and Mission
Procedures are developed and implemented in the ve-
hicle’s computer system using the specially designed
software programming environments named CORAL
and ATOL, respectively. The first is a set of software
tools that allows for graphically building a library of
Vehicle Primitives embodied in Petri nets, and run-
ning them in real-time. The latter provides similar
tools for Mission Procedure programming, but relies
on a reactive synchronous programming language as
a way to manage the potential complexity introduced
by the occurrence of large Petri net structures.

The paper provides a brief summary of the theo-
retical issues addressed in the course of designing the
Mission Control System for the MARIUS AUV, dis-
cusses relevant implementation details, and describes
the results of a series of sea tests for system design
validation carried out in Sines, Portugal.

∗This work was supported by the Commission of the Eu-
ropean Communities under contract MAS2-CT92-0021 of the
MAST-II programme, and by the Portuguese PRAXIS pro-
gramme under contract 3/3.1/TPR/23/94.

1 Introduction

Among the challenges that face the designers of
underwater vehicle systems, the following is of the
utmost importance: design a computer based Mis-
sion Control System that will

• enable an operator to define a vehicle mission
in a high level language, and translate it into a
mission plan.

• provide adequate tools to convert a mission plan
into a Mission Program that can be formally ver-
ified and executed in real-time.

• endow an operator with the capability to follow
the state of progress of the Mission Program as
it is executed, and modify it if required.

Meeting those objectives poses a formidable task to
underwater system designers, who strive to develop
vehicles that can be programmed and operated by
end-users that are not necessarily familiarized with
the most intricate details of underwater system tech-
nology. Identical problems face the designers of com-
plex robotic systems in a number of areas that include
advanced manipulators, industrial work cells, and au-
tonomous air and land vehicles. The widespread in-
terest of the scientific community in the design of
Mission Control Systems for advanced robots is by
now patent in a sizeable body of literature that cov-
ers a wide spectrum of research topics focusing on
the interplay between event driven and time-driven
dynamical systems. The former are within the realm
of Discrete Event System Theory [6], whereas the lat-
ter can be tackled using well established theoretical
tools from the field of Continuous and Discrete-Time
Dynamical Systems [10].

Early references in this vast area include the pi-
oneering work of K.S. Fu [13], Saridis [23, 24] and
Albus [1], which set the ground for the study of learn-
ing control systems, intelligent machine organization,
and general architectures for autonomous undersea
vehicles, respectively. For an overview of recent the-
oretical and applied work in the field, the reader is

1

referred to [2] and [27], which contain a number of
papers on the design of advanced control systems
for unmanned underwater vehicles, combined under-
water vehicle and manipulator systems, intervention
robots, and air vehicles.

Spawned from the availability of small embedded
processors and the ever increasing capabilities of un-
derwater communications and acoustic sensors, there
is now considerable interest in validating the theoreti-
cal approaches to Mission Control System design with
experiments conducted with prototype vehicles. The
reader will find in [27] a large number of publications
describing vehicles operated by a number of univer-
sities and research institutes in Europe, Asia and the
US, and on the state of development of their Mission
Control Systems. Representative vehicles include
VORTEX (IFREMER, France), ROBY (Istituto Au-
tomazione Navale, Italy), MARIUS (operated by the
Instituto Superior Tecnico, Portugal on behalf of the
European Commission), PHOENIX (Naval Postgrad-
uate School, U.S.A), ODYSSEY (M.I.T. Sea Grant
Programme, U.S.A.), OTTER (MBARI/Stanford,
U.S.A.), MT-88 and TUNNEL SEA LION (IMTP,
Russia), and PTEROA (Japan).

A recent publication [7] provides a very lucid pre-
sentation of some of the problems encountered in es-
tablishing a common syntax and framework for coop-
eration among the researchers in the field, and clearly
identifies different issues/paradigms that warrant fur-
ther investigation in the area of software and hard-
ware architectures for underwater robotics.

As part of the international effort to develop ad-
vanced systems for the underwater vehicle mission
control, IST has designed a first version of a Mission
Control System for the MARIUS AUV [3]. This pa-
per provides a brief summary of the framework for
design, analysis and implementation of the Mission
Control System proposed, and reports the results of
a series of sea tests for system validation conducted
in Sines, Portugal. The work reported here has been
influenced by the solid body of research carried out
by INRIA/IFREMER in France, with applications to
the VORTEX vehicle, and at NPS in the U.S. with
applications to the PHOENIX vehicle, see [17] and
the references therein.

The methodology adopted by IST for the design
of a Mission Control System for the MARIUS AUV
builds on the key concept of Vehicle Primitive, which
is a parameterized specification of an elementary op-
eration performed by the underwater vehicle. A Ve-
hicle Primitive is obtained by coordinating the exe-
cution of a number of concurrent (Vehicle) System
Tasks. Vehicle primitives are activated to form Mis-
sion Procedures as determined by Mission Programs,
and in reaction to external events.

System Task design is carried out using well estab-
lished tools from continuous/discrete-time dynamic
system theory, and finite state automata to describe
its logical interaction with vehicle primitives. The

design and analysis of Vehicle Primitives and Mis-
sion Procedures build on the theory of Petri nets,
which are naturally oriented towards the modeling
and analysis of asynchronous, discrete event systems
with concurrency. This approach leads naturally to a
unifying framework for the analysis of the logical be-
haviour of the discrete-event systems that occur at all
levels of the Mission Control System. Vehicle Prim-
itives and Mission Procedures can be developed and
implemented using the specially developed software
programming environments CORAL and ATOL, re-
spectively. The first is a set of software tools that
allows for graphically building a library of Vehicle
Primitives embodied in Petri nets, and running them
in real-time. The latter provides similar tools for Mis-
sion Procedure programming, but relies on a reac-
tive synchronous programming language as a way to
manage the potential complexity introduced by the
occurrence of large Petri net structures.

At the core of the Mission Control System imple-
mentation is the CORAL software programming en-
vironment, which consists of two fundamental mod-
ules: i) the Vehicle Primitives Library Editor and
Generator, and ii) the CORAL Engine. The main
goal of the Library Editor and Generator is to em-
body each Vehicle Primitive into a Petri net descrip-
tion, and to assemble a set of translated Vehicle Prim-
itives into a Vehicle Primitive Library. The defini-
tion of each Primitive can be input either graphi-
cally through a CORAL graphic input interface, or
directly using the CORAL language. A CORAL
compiler/linker is in charge of processing the Vehicle
Primitives inputs and of assembling the correspond-
ing output data in the Vehicle Primitives Library. As
an intermediate step, the CORAL graphic input in-
terface produces a CORAL Graphics Library for later
use during real-time operation. Currently, the Vehi-
cle Primitives Library Editor and Generator can be
run on a PC/DOS or on a Unix Workstation. Dur-
ing real-time operation, each vehicle primitive is exe-
cuted by the CORAL Engine, which sends commands
to and receives responses from the Vehicle System
Tasks. It is important to remark that the CORAL
Engine remains fixed, and that the implementation of
a new Vehicle Primitive simply requires that a new
data set produced by the CORAL compiler be added
to the Vehicle Primitives Library. This fact is impor-
tant, as it simplifies the programming of new missions
and makes the task of loading and unloading differ-
ent Vehicle Primitives trivial. Currently, the CORAL
Engine runs on the GESPAC-based target computer
network of MARIUS.

The methodology exposed was initially developed
to implement Vehicle Primitives. However, it was
soon realized that the same methodology could be ex-
tended to implement a first kernel of its Mission Con-
trol System. Following the methodology adopted, a
Mission Program can be effectively embodied into a
- higher level - Petri Net description that controls

2

the scheduling of Vehicle Primitives concurring to the
execution of a particular mission. Furthermore, the
Mission Program can be generated using the graphic
approach described above. During real-time opera-
tion, the Mission Control System can report its state
to a Mission Assessment System implemented on a
PC/DOS machine (using an aerial link during sur-
face testing, or the acoustic communication link while
diving). This information is then displayed on a com-
puter screen using the CORAL Graphics Library de-
scribed before. The set-up developed allows for easy
programming of missions, and endows the system de-
veloper with a graphic interface to evaluate the state
of progress of the mission based on the evolution of
tokens in a Petri Net.

The organization of the paper is as follows: Sec-
tion 2 describes the MARIUS AUV, and discusses
briefly its mission requirements and functional orga-
nization. Section 3 describes the basic framework
adopted for Mission Control System design and im-
plementation using the software programming envi-
ronments CORAL and ATOL. This section builds
heavily on Petri net theory, which is briefly summa-
rized for the sake of completeness. Section 4 discusses
the problem of formal mission verification. Section 5
describes the Mission Control System of the MAR-
IUS AUV, and illustrates the basic steps involved in
the design of a Mission Program for a simple mis-
sion example. Finally, Section 6 focuses on practical
issues. It describes the set-up for mission execution
and mission follow-up from a shore station, and re-
ports the results of running the mission described at
sea.

2 The MARIUS AUV. Mis-
sion Control Requirements
and Vehicle System Organi-
zation.

To motivate and better focus the presentation that
follows, this section provides a brief description of the
MARIUS AUV - depicted in Figure 1 - and outlines
some of its envisioned mission scenarios. For details
on the design, development and testing of the vehi-
cle, including its computer network, actuators and
sensors, see [3, 20] and the references therein.

The MARIUS vehicle is 4.5m long, 1.1m wide and
0.6 m high. The vehicle is equipped with two main
back thrusters for cruising, four tunnel thrusters for
station keeping maneuvers, and rudders, elevator and
ailerons for vehicle steering in the vertical and hori-
zontal planes. Attached to the top part of the hull are
two transducers that are part of the vehicle’s acous-
tic communication and long baseline positioning sys-
tems. The vehicle has a dry weight of 1060 kg, a
payload capacity of 50 kg, and a maximum operating
depth of 600 m. Its maximum rated speed with re-

spect to the water is 2.5m/s. At the speed of 1.26m/s,
its expected mission duration and mission range are
18 h and 83 km, respectively.

2.1 Mission Control Requirements

The mission requirements for the MARIUS AUV
have been analyzed in [4, 20], where the reader will
find the description of two envisioned mission scenar-
ios in Danish and Portuguese coastal waters, focusing
on civilian applications. One of the scenarios takes
place in the North Sea/Skagerrak - Kattegat area,
and aims at localizing and estimating the spatial ex-
tension of areas with high sedimentation or lateral in-
put of phytoplankton to the benthos, and establishing
their correlation with an important pelagic front area.
The extension of the frontal zone (50 km × 50 km),
the water depths (from 30 to 150m) involved, and the
need to probe for interesting features underwater in
an unsupervised manner, make traditional surveying
using divers or towed sensors very costly or inade-
quate to the task at hand. The mission envisioned
consists of a series of grid surveys along linear tracks,
each track being traversed twice: this leads to a bot-
tom survey in one direction, followed by a surface
survey back to the starting point while performing
an undulating maneuver to determine the spatial ex-
tension of the boundary layer. During part of the
survey, the vehicle is required to cruise at constant
speed and height above the seabed, while acquiring
data on water temperature, salinity and fluorescence.
The taking of video images and photographs at sites
on a pre-determined grid is also required while the
vehicle is hovering. During operation close to the
seabed, the vehicle should be able to detect and avoid
unforeseen obstacles.

Guided by a detailed analysis of the missions en-
visioned, a basic set of performance requirements for
the MARIUS AUV has been specified in [4]. Those
include good platform stability and maneuverability,
robustness against vehicle parameter variations, low
sensitivity to external disturbances, error recovery
capabilities, payload carrying capacity, and the pos-
sibility to program and follow the execution of vehicle
missions using user-friendly interfaces. These consid-
erations led to the basic vehicle system organization
that is explained in the sequel.

2.2 Vehicle System Organization

The basic vehicle systems and their interconnec-
tions can be identified in Figure 2, which

Vehicle Support System (VSS) - The Vehicle
Support System controls the distribution of energy
to the electrical and electromechanical hardware in-
stalled on-board the vehicle, and monitors its energy
consumption. This system is also in charge of detect-
ing basic hardware failures and triggering appropri-
ate emergency reflexive maneuvers whenever required

3

Figure 1: The MARIUS Vehicle.

(e.g., upon detection of a leak in a pressure container,
it forces the vehicle to surface by inflating a lift bag).

Actuator Control System (ACS) - The Ac-
tuator Control System is responsible for controlling
the speed of rotation of the propellers and the deflec-
tions of the ailerons, rudders and elevator. Actuator
set points are provided by the Vehicle Guidance and
Control System. Actuator data are fed back to the
Mission Control System for vehicle status assessment.

Navigation System (NS) - The Navigation Sys-
tem provides estimates of the linear position and ve-
locity of the vehicle, as well as of its orientation and
angular velocity. This system merges information
provided by the Positioning System (a long baseline
unit with a network of transponders) and a Motion
Sensor Integration System. The motion sensor pack-
age includes the following units:

• 3 rate gyros, 2 pendulums and 1 fluxgate (Wat-
son Attitude & Heading Reference Unit AHRS-
C303).

• 1 flowmeter TSA-06-C-A (EG& G Flow Tech.).

• 1 depth cell DC 10R-C (Transinstruments).

• 2 echosounders ST200 (Tritech).

• 1 Doppler Log TSM 5740 with 4 beams in
a Janus configuration, operating at 300 KHz
(Thomson-ASM).

The outputs of the Navigation System are input to
the Vehicle Guidance and Control System, and sent
to the Mission Control System for vehicle perfor-
mance assessment.

Vehicle Guidance and Control System
(VGCS) The Vehicle Guidance and Control System
accepts as inputs reference trajectories issued by the

Mission Control System, and navigational data pro-
vided by the Navigation System. It outputs com-
mands to the Actuator Control System (set points
for the speed of rotation of the propellers and deflec-
tion of the surfaces), so that the vehicle will achieve
precise trajectory tracking in the presence of shifting
sea currents and vehicle parameter uncertainty. In
applications where precise trajectory tracking is not
required, the Guidance Module is not activated. In
that case, the Vehicle Control Module is responsible
for achieving accurate tracking of set-points that in-
clude the vehicle’s desired speed, depth and heading.

Communication System (COMS) - The Com-
munication System controls a bidirectional link that
is used by the operator to issue mission directives
to the Mission Control System, and by the vehicle
to relay back information regarding its internal state
and/or the state of progression of the mission. Two
distinct modes of operation are possible: i) via an
RS232 radio link, when the vehicle is at the surface
or submerged, and pulling a small buoy with an an-
tenna; ii) via an acoustic modem, otherwise. The
bidirectional acoustic link of MARIUS enables real-
time communications with a support ship in shallow
water, up to a distance of 3 km, at a frequency of
12 KHz. At the heart of the link is a digital multi-
modulation acoustic transmission system whose mod-
ulation schemes and baud rates can be remotely re-
configured during operation. Achievable baud rates
vary from 20 bit/s using CHIRP modulation, up to
2400 bit/s using PSK, see [3]. For operation in shal-
low waters, the main difficulty facing this system is to
achieve communications at distances exceeding 3 km
in the face of multipath propagation, rapidly chang-
ing channel characteristics and Doppler shift.

Environmental Inspection System (EIS) -
The Environmental Inspection System collects data
from a suite of environmental sensors that measure

4

and Control System
Vehicle Guidance

and steering)

Actuator Control System

(Vehicle stabilization

Thrusters, Rudders,

actuator

Fluxgate, Flowmeter, Depth

Ailerons and Elevator

Rate gyros, Pendulums,

set-points

Motion Sensor

Cell, Doppler Sonar,

Positioning System

Vehicle Support System

and Monitoring,
(Local Actuator Control)

Echosounders

Navigation System

Integration System
System

Environmental Sensors
Video Camera

Basic Failure Detection

(Data Acquisition)

(Energy Distribution

and Emergency Handling)

Acoustic Modem

RS232 Radio Link

Multimodulation

Communication System

Unit

Long Baseline

Environmental Inspection

support system data

actuator data

reference trajectory data

navigation data

Data Logging System

Management
Data Logging

(Mission execution)

Mission Control System

Figure 2: Vehicle System Organization.

conductivity, temperature, pressure, turbidity, fluo-
rescence, oxygen and pH. A video camera is included
to provide close-up images of the seabed. Data acqui-
sition is controlled by the Mission Control System.

Data Logging System (DLS) - The Data Log-
ging System acquires and stores internal vehicle data.
The data stored can be used for on-line consistency
analysis, and for post-mission processing.

Mission Control System (MCS) - Based on
a Mission Program obtained from a set of mission
specifications, the Mission Control System sequences
and synchronizes the execution of the basic vehicle
system tasks that concur to the execution of that
mission, and provides inbuilt recovery to vehicle and
mission level faults.

2.3 Vehicle Computers

To implement the above systems, the MARIUS
vehicle is equipped with an open, distributed hard-
ware/software architecture that simplifies the task of
incrementally adding sensor and actuator interfaces,
as well as processing power.

At present, the vehicle computer network includes
two MC68020+FPU (microprocessor and math co-
processor) based computers, together with a more
advanced MC68030+FPU computer. The first two
units are dedicated to navigation, guidance, con-
trol, and vehicle support management tasks. The
third unit is dedicated to implementing the Mission
Control System. All the computers run the OS/9
operating system, which allows for real-time multi-
tasking operation, process and memory management,
and interprocess communication facilities that in-

clude shared memory and events. The computer
system chosen is built around the proven Motorola
MC680X0 family of general processors boards, sup-
ported on the GESPAC G96 bus. The vehicle’s Lo-
cal Area Network (LAN) has been designed to allow
easy upgrading from the current RS232 19.2 Kbaud
point to point communication network to an indus-
trial standard Bit Bus, and to an ethernet network
at a later stage.

3 Mission Control: System De-
sign and Implementation

This section proposes a general framework for the
design and implementation of Mission Control Sys-
tems for Underwater Robotic Systems that is well
rooted in the area of Discrete Event System the-
ory. The framework proposed arose in the course
of designing a Mission Control System for the MAR-
IUS AUV, as the need for a solid foundation to sys-
tem design became a matter of great concern. The
work described was strongly influenced by and builds
upon the results obtained a number of researchers
in the field. The reader will therefore find that the
nomenclature and the structure for Mission Control
proposed will at times reflect the inspiring influence
of the excellent body of work conducted at INRIA,
France [9] and NPS, USA [15].

The presentation of the Mission Control System
structure is motivated with simple examples and
leads, in a crescendo, to an organizational diagram
that captures the interaction among such entities as

5

System Tasks, Vehicle Primitives and Mission Pro-
cedures, which are defined in the sequel. The en-
tities described can be designed and implemented
using two specially developed programming environ-
ments named CORAL and ATOL, and provide the
mechanisms for mission execution that rely on suc-
cessive transitions among system states, driven by
asynchronous events. For the sake of completeness,
the section starts with a review of the necessary back-
ground material in the important area of Petri Net
theory, as applied to the study of Discrete Event Sys-
tems.

3.1 Petri Net Theory: A Framework
for the Study of Discrete-Event
Systems

This section provides a brief summary of the basic
concepts of Petri net theory, and how it can be ap-
plied to the study of discrete event systems (DES).
The nomenclature and the style of presentation have
been strongly influenced by the material in the text-
books of Cassandras [6] and Peterson [22], which con-
tain excellent introductions to the subject.

A Petri net is a device that manipulates events ac-
cording to well-defined rules. Since rules can be ar-
bitrarily complex, Petri nets are naturally suited to
represent a very large class of discrete event systems.
In the theory of Petri nets, events are referred to as
transitions. In order for a given transition to occur, a
set of enabling conditions must be satisfied. Informa-
tion related to those conditions is stored in elements
called places. Places associated with the conditions
required for a transition to occur are viewed as in-
puts to that transition. Other places, with condi-
tions that are affected by the occurrence of a transi-
tion, are viewed as the outputs of that transition. In
what follows, P = {p1, p2, ..., pn} denotes a finite set
of places, T = {t1, t2, ..., tm} denotes a finite set of
transitions, A is a set of arcs that consists of a subset
of (P × T) ∪ (T × P), and w : A → Z+ is a weight
function that assigns positive integers (weights) to a
set of arcs. A Petri net is formally defined as a four-
tuple

(P, T, A, w).

The following additional notation is required: the
symbol I(tj) = {pi : (pi, tj) ∈ A} denotes the set
of input places to transition tj , while O(tj) = {pi :
(tj , pi) ∈ A} is the set of output places from transi-
tion tj .

Associated with a Petri net, there is a Petri net
graph consisting of two types of nodes: circles repre-
senting places, and bars representing transitions, see
Figure 3. The arcs that connect places and tran-
sitions represent elements of the arc set A. Each
arc is shown together with an integer representing
its weight. The absence of an integer means that the
weight is 1. Clearly, if there is an arc directed from

t 1

t 2 t 3

t 4

t 1

p4

p2 p3

p5

p1

t 2 t 3

t 4

t 1

p1

p2

p4

p3

p5

Figure 3: Example of a Petri net

pi to tj , then pi ∈ I(tj). Similarly, an arc directed
from tj to pi means that pi ∈ O(tj).

To be of practical use, a Petri net requires a mech-
anism indicating whether the conditions under which
events can occur are met or not. This is done by
assigning tokens to places. If a token appears in one
place, this means that the condition described by that
place is satisfied. The way in which tokens are as-
signed to places in a Petri net is defined by a marking
function µ : P → Nn, which maps the set of places P
to the n-tuple x = x(P) = [x(p1), x(p2), ..., x(pn)]′ of
nonnegative integers, with x(pi) denoting the number
of tokens in place pi. When using Petri net graphs,
a token assigned to place pi is indicated by a dark
dot positioned in that place. The original definition
of Petri net is then naturally modified to obtain a
marked Petri net, a five-tuple (P, T,A, w,x0) where
(P, T, A, w) is a Petri net and x0 is an initial marking.

Since the execution of a Petri net is controlled by
the number and distribution of tokens in the net, it
is natural to define the state of a Petri net as its
marking x. It follows from the above definitions that
the state space X of a Petri net with n places con-
sists of all n-dimensional vectors with nonnegative
integer entries. A transition tj ∈ T in a marked
Petri net is said to be enabled if x(pi) ≥ w(pi, tj)
for all pi ∈ I(tj), that is, if the number of tokens
in each input place pi to the transition tj is at least
as large as the weight of the arc connecting pi to
tj . If enabled, a transition may fire and change the
state of a Petri net by removing tokens from its input
places and creating new tokens which are distributed
to its output places. The motion of tokens through
the net is specified by a state transition function φ :
X×T → X defined, for each enabled transition tj , by
xk+1(pi) = xk(pi)−w(pi, tj)+w(tj , pi), i = 1, 2, ..., n,
where xk(pi) and xk+1(pi) denote the number of to-
kens in place pi before and after tj fires, respectively.
According to this definition, if pi is an input place to
the transition tj , it loses as many tokens as the weight
of the arc connecting pi to tj . If pi is the output place
of a transition tj , then it gains as many tokens as the
weight of the arc connecting tj to pi. It is important
to remark that if there are several enabled transitions

6

in a Petri net, the firing of those transitions occurs
in a non-deterministic manner.

Given a marked Petri net (P, T,A, w,x0), its exe-
cution produces a firing sequence {t1, t2, ...}, where tk

denotes the k-th transition fired. The corresponding
marking sequence is {x0,x1, ...}, where xk+1 is easily
obtained from xk, tk and the transition function φ.
For the Petri net of Figure 3, with initial marking
x0 = [1, 0, 0, 0, 0]′, it is easily seen that the segments

[1, 0, 0, 0, 0]′ t1→ [0, 1, 1, 0, 0]′

t2→ [0, 0, 1, 1, 0]′ t3→ [0, 0, 0, 1, 1]′...

and

[1, 0, 0, 0, 0]′ t1→ [0, 1, 1, 0, 0]′

t3→ [0, 1, 0, 0, 1]′ t2→ [0, 0, 0, 1, 1]′...

of firing and marking sequences may occur, where
the symbol above a right arrow denotes the transition
that was fired. Notice that the transitions t2 and t3
are enabled simultaneously (parallel events). How-
ever, their firing cannot occur simultaneously. The
first sequence captures the situation where transition
t1 fires earlier than t2.

The study of the logical or qualitative behaviour
of Petri nets can be carried out by resorting to rig-
orous analysis methods that build on the concepts
introduced above, see [6, 22, 16] and the references
therein. In the analysis, the definitions of liveliness
and boundedness of a marked Petri net play funda-
mental roles. A transition tj of a marked Petri net
is said to be live if for every marking obtained from
the initial marking x0, there exist subsequent firing
and marking sequences in which tj is enabled. A
marked Petri net is live if every transition is live.
A marked Petri net is said to exhibit a deadlock if
there is at least one marking obtained from the ini-
tial marking x0 such that no transition will be en-
abled. Clearly, if a Petri net is live, then it does not
exhibit deadlocks. The absence of deadlocks is one of
the key design strategies in the design of automated
manufacturing systems, as it guarantees that no pro-
cess will be waiting for a particular event that will
never occur [16]. A marked Petri net is said to be
bounded if for each initial marking x0 there exists a
positive integer k = k(x0) such that x(pi) ≤ k for
every place pi and every possible marking obtained
from x0. Boundedness can be viewed as a measure of
stability of a discrete event system, as it will guaran-
tee that the number of states of the system remains
finite. If k = 1, then the Petri net is said to be safe.
Formally, verifying that a marked Petri net is live
and bounded can be done using a number of tech-
niques that include the invariant, reachability graph
and reduction methods, see for example [16] and the
references therein.

At their inception, Petri nets were first used to for-
mally study the mechanisms of communications be-

tween asynchronous components of a computer sys-
tem. Since then, they have found widespread use in
the design and analysis of real-world systems in the
areas of manufacturing, networking and software en-
gineering, as well as in robotic applications, see for
example [6, 22, 24, 11]. In practice, Petri nets ex-
hibit both advantages and disadvantages over state
automata for the modeling of discrete event systems.
As discussed in [6], the most suitable approach to sys-
tem modeling will very much depend on the specific
application. However, Petri nets do exhibit very in-
teresting properties that make them specially attrac-
tive for a structured approach to system modeling.
The following three properties are specially relevant
(see [6] for an in-depth discussion):

• Petri nets are a convenient tool to decompose
or modularize potentially complex systems. In
fact, combining multiple systems can be often
reduced to a simple operation whereby a set
of original nets is kept unaltered, and only a
few places/transitions are added to represent
the coupling effects among the original systems.
This is in striking contrast to state automata,
where the combination of multiple systems of-
ten increases the complexity of the global state
model. Using Petri nets, the individual system
components can be easily identified and the level
of their interactions displayed clearly, thus sim-
plifying the task of incremental modeling.

• Petri nets are naturally oriented towards the
modeling and analysis of asynchronous, discrete
event systems with concurrency.

• Petri net theory provides well developed analy-
sis methods, such as invariants and reachability
trees, which can lead to useful tools for the de-
tection of potential anomalies in the behaviour
of discrete event systems.

Equipped with the basic tools for Discrete Event
System modeling, it is now possible to formalize the
approach to Mission Control System design proposed
in the paper. This will be done by introducing suc-
cessively the concepts of System Task, Vehicle Prim-
itive, Mission Procedure and Mission Program, and
explaining the software programming environments
that were developed for their implementation.

3.2 System Tasks: Design and Imple-
mentation

The concept of System Task arises naturally out
of the need to organize into distinct, easily identifi-
able classes, the algorithms and procedures that are
the fundamental building blocks of a complex Under-
water Robotic System. For example, in the case of
an AUV, it is convenient to group the set of all navi-
gation algorithms to process motion sensor data into

7

a Navigation Task that will be responsible for de-
termining the attitude and position of the vehicle in
space. A different task will be responsible for imple-
menting the procedures for multi-rate motion sensor
data acquisition. In practice, the number and type
of classes adopted is dictated by the characteristics
of the Robotic System under development, and by
the organization of its basic functionalities, as judged
appropriate by the Robotic System designer. These
considerations lead naturally to the following defini-
tion:

A Vehicle System Task (abbv. System Task - ST)
is a parametrized specification of a class of algorithms
or procedures that implement a basic functionality in
an Underwater Robotic System.

Procedures
Algorithms and

data from selected
System Tasks

data to selected
System Tasks

hardware interfaces
to and from

Functional module

Command module

ED

C F

Figure 4: System Task structure.

The implementation of a System Task requires the
interplay of the two modules depicted in Figure 4: a
Functional module that contains selected algorithms
and procedures and exchanges data with other Sys-
tem Taks and physical devices, and ii) a logical Com-
mand module, embodied in a finite state automaton,
that receives external commands, produces output
messages, and controls the selection of algorithms,
procedures and data paths to and from the functional
module. Formally, the state automaton that embod-
ies the command module of System Task ST can be
written as the five-tuple

([C, E], X, [D, F], f, g),

where C and E are finite alphabets of input com-
mands and functional module messages respectively,
D is a finite alphabet that configures algorithms,
procedures, and data paths, F is a finite alpha-
bet that acknowledges received commands and re-
ports error occurrencies, X is a finite state set, f :
X × [C,E] → X is a state transition function, and
g : X × [C, E] → [D, F] is an output function.

In the case of the Navigation Task mentioned
above, the functional module may contain a set of
algorithms that are selected according to the type of
motion sensor data available, and the type of preci-
sion required. Data are received from a specific task

devoted to motion sensor data acquisition, and out-
put to the task that implements the guidance and
control algorithms. The alphabet F may include mes-
sages that report the unavailability of specific sensor
data.

STANDBY

REC.

IDLE

ABORT

OPER.

FeFe

FeFe

Ic

Oc

Rc

Rc

Rc

Re eG

Figure 5: State diagram of a generic automaton.

The design of the functional module is carried out
using well known tools from such diverse fields as
navigation, guidance, and control, electrical measure-
ments and instrumentation, communication theory,
and computer science. See [12] for an example of the
algorithms used for navigation of the MARIUS vehi-
cle. The design of the command module amounts to
specifying a finite state automaton that deals with
the logical aspects of the System Task. Figure 5
represents the transition diagram of a possible fi-
nite state automaton, implemented in the case of the
MARIUS AUV. In order to not clutter the diagram,
the output messages are not included. Furthermore,
only the transitions that connect two different states
are represented. For the sake of clarity, the alpha-
bet C of external commands and the alphabet E of
module messages (including internal errors) have ben
divided into the following classes:

Ic ⊂ C - system initialization commands;

Oc ⊂ C - processing algorithms or procedure selec-
tion commands;

Rc ⊂ C - reinitialization commands;

We ⊂ E - errors that do not affect the normal op-
eration of the System Task;

Re ⊂ E - errors that affect the normal operation
of the System Task, but from which the selected
operation mode can recover internally (e.g. when
no sensor data are available during a sampling
interval);

Fe ⊂ E - errors that affect the normal operation of
the System Task, and from which the selected
operation mode cannot recover (e.g. drastic sen-
sor failure).

8

Ge ⊂ E - messages issued at the end of internal
recovery procedures.

The states of the automaton are the following:

IDLE - The System Task was started, but only the
Command Module process is running. No data
or algorithm initialization were performed.

STANDBY - An initialization or reset type command
was executed. The System Task has all its re-
sources available, and is ready to start.

OPERATIONAL - The System Task is running and
accepts operational commands.

RECOVER - A recoverable error has occurred. The
System Task is recovering locally from the error
condition detected.

ABORT - A fatal error has occurred. The System
Task requires a reset type command to recover
from its current state.

3.3 Vehicle Primitives: Design and
Implementation using CORAL

The concept of Vehicle Primitive plays a key role
in the general framework for Mission Control System
design adopted in this paper. A Vehicle Primitive
corresponds to an atomic, clearly identifiable action
performed by an Underwater Robotic System, and
constitutes the basic building block for the organiza-
tion of complex robot missions. A Vehicle Primitive
will require, for its implementation, the coordinated
execution of a number of concurrent System Tasks.

As an illustrating example, consider the case of an
AUV mission that consists of a seabed survey along
a single track. The mission described can be broken
down into a number of Vehicle Primitives which in-
clude, among others, those in charge of keeping a con-
stant vehicle speed, maintaining a desired heading,
holding a fixed altitude over the seabed, and taking
video images of the seabed at pre-assigned time in-
tervals. In particular, the Vehicle Primitive for speed
keeping will coordinate the execution of the vehicle
system tasks that are responsible for measuring the
vehicle’s speed, running a local speed control loop,
controlling the thrust delivered by the propellers,
and providing the required mechanical, hardware and
software resources. The above set of considerations
motivate the following definition:

A Vehicle Primitive (VP) is a parameterized spec-
ification of an elementary operation mode of an Un-
derwater Robotic System. A Vehicle Primitive corre-
sponds to the logical activation and synchronization
of a number of System Tasks that lead to a struc-
turally and logically invariant behavior of an under-
water robot.

Associated with each Vehicle Primitive, there are
sets of pre-conditions and resource allocation require-
ments that must be met in order for the Primitive

to be activated, as well as a set of Vehicle Primitive
errors. During operation, a Vehicle Primitive will
generate messages that will trigger the execution of a
number of System Tasks. The conditions that deter-
mine the occurrence of those events are dictated by
the logical structure of the Vehicle Primitive itself,
and by the types of message received from the under-
lying Vehicle System Tasks. The normal or abnormal
termination of a Vehicle Primitive will generate a well
defined set of post-conditions that are input to other
Vehicle Primitives, and will release the resources that
were appropriated during its execution.

Using the Petri net formalism presented in Section
3.1, a Vehicle Primitive can be embodied in a Petri
net structure defined by the five-tuple

(PV P , TV P , AV P , wV P ,xV P0),

where PV P , TV P , and AV P denote sets of places,
transitions, and arcs respectively, wV P is a weight
function, and xV P0 is the initial Petri net mark-
ing. The set of places PV P can further be de-
composed as PV P = Ppre ∪ Pres ∪ Perr ∪ Ploc ∪
Ppos, where Ppre, Pres, Perr, Ppos, and Ploc denote the
subset of places that hold information related to
the pre-conditions, resource allocation, errors, post-
conditions, and the remaining state of the Petri net,
respectively.

3.3.1 The CORAL Vehicle Primitive Editor
and Generator. System Task Calls.

Compiler/Linker
CORAL

Primitive
Textual

Description

Graphical

Primitive Editor
Vehicle

Graphical to
Description

Task

Prototype
Header

Primitive

Text
EditorText Translation

Primitive
Library

Syntax/Semantics

Primitive
Library
Execution

Figure 6: CORAL: A Vehicle Primitive programming
environment.

Based on the framework introduced, a Vehicle
Primitive programming environment named CORAL
has been developed. Figure 6 depicts the organi-
zation of the CORAL software tools that are avail-
able to edit and generate a Library of Vehicle Primi-
tives which implement the complete set of atomic ac-
tions required for a specific Underwater Robotic Sys-
tem. Each Vehicle Primitive, embodied in its equiv-
alent Petri net, can be input either graphically via

9

a CORAL graphic input interface, or via a textual
description using the declarative, LR1 synchronous
language CORAL. A CORAL compiler/linker is in
charge of accepting the vehicle primitive textual de-
scriptions, and producing a Vehicle Primitive Library
that is an archive containing the syntax and semantic
descriptions of all Vehicle Primitives, as well as the
data sets required for their execution.

CORAL Description
(partial)

Graphical Description

}

}
signal {

}

wait {

action {

 p

 p , ... , p
0

...
0 j

l r

p p

p p

tk

STname(Dmode,Din ,p)

STname(Dmode,Din ,p)

l

j
st r

st r

Figure 7: CORAL/ System Task interface.

The organization of CORAL can be explained in
very simple terms by focusing on a example that il-
lustrates the design of a Petri net corresponding to a
given Vehicle Primitive. This is done with the help of
Figure 7, which illustrates how the design of a subset
of a generic Petri net is done, and how the equivalent
CORAL language description is obtained. In order
to understand the figure and the design methodology
adopted, three basic concepts are required:

i) System Task Calling Header. Binding of System
Tasks and Vehicle Primitives. - The firing of a generic
transition will start the execution of a System Task,
which is called through an header with the structure

STname(Dmode, Dinst, Pm)

where STname is the System Task name, Dmode is a
string of input data that specifies the particular al-
gorithm or procedure to be executed, and Dinst is a
set of numerical data that are input to the algorithms
or procedures. In the case of the task that imple-
ments the vehicle control system, Dmode may select a
particular algorithm for depth control, in which case
Dinst will contain the reference for depth in meters.
The last calling parameter plays a key role in merging
System Tasks with Vehicle Primitives, by indicating
a finite number of places in the Petri net that must
be marked according to the type of output messages
issued by the System Task automaton, as part of the
alphabet F . The marking of the Petri net can be
formalized by introducing a binding function Fb as
follows: given an alphabet F consisting of a finite
number of messages f1, f2, ..., fn, and given a finite

set Pm = (p1, p2, ..., pn) of n places, Fb : F → x(Pm)
is defined by Fb(fi) = [0, 0, ...0, 1, 0, ...], where the
element 1 occurs at the i− th position.

ii) Wait, Action and Signal keywords - to describe
a Petri net, the CORAL language uses three basic
keywords: wait, action, and signal. The formal equiv-
alence between the textual description of a Petri net
using those keywords and its underlying Petri net
graph, can be explained by referring to Figure 7, and
examining the input and output sets of a particular
transition tk. The following equivalence relationships
follow immediately:

I(tk) ⇔ wait{p0, ..., pj},
O(tk) ⇔ action{STname(Dmode, Dinst, pr)}

signal{pl}.

In this case, the System Task called has only one
output message. Its occurrence will activate, through
the proper binding function, the marking of place pr.
The extension to more complex Vehicle Primitives is
immediate.

iii) Global places - The CORAL language allows to
define global places that can be shared among the
Vehicle Primitives.

At the present stage of development, the Vehicle
Primitive Library Editor and Generator can be run
on a PC/DOS or on a Unix Workstation.

3.3.2 The CORAL Engine

In order to run the Vehicle Primitives described
before, a CORAL Engine has been developed that
accepts Vehicle Primitive descriptions and executes
them in real-time. Figure 8 shows a schematic rep-
resentation of the CORAL engine data structure and
its communication mechanisms, as it processes a sin-
gle Vehicle Primitive.

np

tm

2p

t2

input buffer
messages (marks)

p1place structure

System Task Interface

wait{.} action{.} signal{.}

I(t) O(t)

t1transition structure

Vehicle Primitive Interface

Figure 8: CORAL Engine schematic description.

The CORAL Engine accepts input messages corre-
sponding to the markings of the Vehicle Primitive’s
Petri net being run, checks for the current set of en-
abled transitions, and issues output messages that

10

correspond to the new markings determined by the
firing of those transitions. In practice, this is done
by executing a CORAL engine synchronous loop de-
scribed by the following sequence of actions: for each
message in the input buffer,

(1) - update the number of marks in the correspond-
ing place.

(2) - for the current state, check for the set of en-
abled transitions.

(3) - choose one transition tk from the set of enabled
transitions.

(4) - update the number of marks in the set of input
places I(tk) ⇔ (wait{.}).

(5) - issue messages in order to update the number
of marks in the set of outputs places, O(tk) ⇔
(action{...} signal{...});

(6) - repeat (2) through (5) until the set of enabled
transitions has been exhausted.

This cycle is repeated until the input buffer is empty.
It is important to remark that the CORAL En-

gine has a fixed structure, and the implementation of
a new Vehicle Primitive simply requires that a new
data set produced by the CORAL compiler be in-
put to that Engine. This property makes the task
of loading and unloading different Vehicle Primitives
trivial. In particular, the loading of a Vehicle Prim-
itive is an atomic operation performed by a CORAL
module named Loader, and by the CORAL Engine it-
self. Each time a message requesting a certain Vehicle
Primitive arrives in the Loader, the CORAL engine
is stopped and the loading operation is performed as
follows:

• The Loader performs a search over the Vehi-
cle Primitive Library to get the desired Vehicle
Primitive description;

• The CORAL engine transition set is actualized;

• The CORAL engine place set is actualized;

• The initial marking of the Vehicle Primitive is
sent to the input buffer

After the loading operation has been performed, the
CORAL engine may resume its normal operation
mode.

3.4 Mission Programs and Mission
Procedures: Design and Imple-
mentation

Given a mission to be performed by an Underwa-
ter Robotic System, the generation of the correspond-
ing mission plan requires the availability of a set of

entities aimed at specifying robot Actions at a num-
ber of abstraction levels. Those entities - henceforth
referred to as Mission Procedures - allow for modu-
lar mission plan generation, and simplify the task of
defining new mission plans by modifying/expanding
existing ones.

As a motivating example, consider the case of a
simple mission scenario where an underwater vehi-
cle is required to perform a survey operation at con-
stant speed and depth, along a square shaped path
with a given length. Clearly, the mission described
can be performed by executing four times an Action
whereby the vehicle is asked to follow an horizontal
path at constant speed, depth, and heading, during a
pre-specified period of time. With this mission struc-
ture, the set-point for heading changes 90 degrees
each time the Action is executed. The Mission Pro-
cedure that specifies the above robot action should
allow for the parameterization of speed, depth, head-
ing, and Action time, and for a clear definition of the
mechanisms that coordinate the Vehicle Primitives
required for its execution.

The above introduction motivates the following
definition:

A Mission Procedure is a parameterized specifica-
tion of an Action of an Underwater Robotic System.
A Mission Procedure corresponds to the logical and
temporal chaining of Vehicle Primitives - and possibly
other Mission Procedures - that concur the execution
of the specified Action.

According to the definition, the execution of a
robot mission entails the execution of a number of
well defined Actions specified by Mission Procedures,
which in turn embody the mechanisms for the co-
ordinated operation of Vehicle Primitives. In prac-
tice, the activation of Mission Procedures and Vehi-
cle Primitives will be triggered by conditions imposed
by the mission plan structure, and by messages re-
ceived from the underlying Vehicle Primitives during
the course of the mission.

3.5 Vehicle Primitive Calls. Binding
of Mission Procedures and Vehicle
Primitives.

Following the methodology adopted in the pre-
vious subsection, simple Mission Programs could in
principle be embodied into - higher level - Petri nets
that would implement the necessary Mission Proce-
dure structures. This has in fact been done in the
case of the MARIUS vehicle, as explained in Section
5.3. Using that approach, the CORAL software envi-
ronment can be used to program missions graphically,
and to execute them using the CORAL Engine. To
do that, a mechanism similar to that used to link
Vehicle Primitives and System Taks was developed.
The firing of a transition at the Mission Procedure
level will start the execution of a Vehicle Primitive,

11

which is called through an header with the structure

V Pname(Dinvp, Pm),

where V Pname is the Vehicle Primitive name, and
Dinvp is a set of numerical data that are input
to the Vehicle Primitive. The last calling parame-
ter plays a key role in binding Mission Procedures
and Vehicle Primitives, by indicating an ordered set
Pm = (p1, p2, ..., pn) of places in the Petri net for the
Mission Procedure that must be put in correspon-
dence with an ordered set of n places in the Vehicle
Primitive Petri net. The latter set is well-defined, as
it is explicitly listed in the matching header that is
part of the Vehicle Primitive description, see the ex-
ample in Section 5. The binding described becomes
effective from the time the Vehicle Primitive is called
until a new call is executed.

An header with the same structure, and leading
the same type of binding, can be used to call Mission
Procedures from a general Mission Program. The
header is simply written as

MPname(Dinmp, Pm),

where MPname is the Mission Procedure name, and
Dinmp is a set of numerical data that are input to the
Mission Procedure. The meaning of the last calling
parameter is similar to that used in the calling of a
Vehicle Primitive.

At this point, it is important to understand how
the successive binding between Mission Procedures,
Vehicle Primitives and System Tasks is performed.
As an illustrative example, suppose a Mission Proce-
dure requires that all System Tasks be initialized at
the beginning of its execution, and that the transi-
tion to an ABORT state at any time, in any System
Task automaton, be known at the Mission Program
level. This can be simply done by calling a specially
designed Initialization Vehicle Primitive that will ini-
tialize all System Tasks and observe the occurrence
of an ABORT in any System Task automaton. As-
sume the Primitive Petri net includes two places pi

and pj that are marked when the Initialization phase
has ended successfully, and when one of ABORT con-
dition is detected, respectively. Then, a calling to
that Primitive - at the beginning of the Mission Pro-
cedure - with an header where Pm consists of two
places pInitOK and pAbort, will establish a binding
between PInitOK and p1 and between pAbort and p2

that will be effective throughout the duration of the
Mission Program. With the hierarchical binding of
System Tasks to Vehicle Primitives and of Vehicle
Primitives to Mission Procedures, pInitOK and pAbort

will be marked when the Initialization phase has been
performed successfully, and when at least one of the
System Tasks entered an ABORT state. This infor-
mation can be used for further processing at the Mis-
sion Procedure level.

3.6 The ATOL Programming Envi-
ronment.

The analysis of even a simple mission plan pro-
grammed using the methodology explained above,
will convince the reader that the complexity of the re-
sulting Petri net structure can become unwieldy. See
Section 5.3 for a detailed example. Furthermore, the
approach described does not lend itself to capturing
situations where the mission plan includes logical, as
well as procedural statements (e.g., do loops for the
repeated execution of Mission Procedures and Vehi-
cle Primitives, etc.). These considerations motivated
the need to define a specific environment for Mission
Program/Mission Procedure design and implementa-
tion, named ATOL, which is currently being devel-
oped and is briefly introduced in the sequel.

The ATOL software environment consists of the
ATOL programming language, together with a set of
development tools that allows for Mission Program
syntactic and semantic analysis, and Mission Pro-
gram execution. An ATOL program consists of a
series of control flow and reactive statements used to
schedule Actions specified by Mission Procedures and
Vehicle Primitives.

The ATOL language belongs to the class of imper-
ative, reactive synchronous programming languages
[9], which are dedicated to writing programs that
continuously react to events coming from the envi-
ronment. ATOL is based on the assumption that the
environment does not interfere with the application
during the reactions. Furthermore, a reaction to an
external event will start from a set of control points
and finish by reaching another set of control points.
Reactive statements are provided in order to control
the Mission Program execution.

An important constraint was taken into consid-
eration during the design of the ATOL Language:
an ATOL statement should always admit a logically
equivalent Petri net model.

Due to space limitations, an exhaustive definition
of the ATOL language and the ATOL programming
environment are not provided here. The reader is
referred to the next section for a diagram illustrating
the functionalities of ATOL.

3.7 Mission Control System Organi-
zation

The framework for Mission Control System design
and implementation proposed in this paper leads to
the general structure of Figure 9, which captures the
interaction among System Tasks, Vehicle Primitives,
and Mission Program/Mission Procedures, at both
programming and run-time. In the figure, the Hu-
man/Machine Interface provides the user with a text
editor, an on-line checking mechanism for the syn-
tax and semantics of ATOL statements, and formal
Mission Program verification tools.

12

Primitive
Library
Execution

Loader

messages

statements messages

Human/Machine

Commands
Activation
Primitive

Executor
ATOL

Interface

messages

Primitive Assessement
Vehicle

Engine
CORAL

...System Task 1 System Task 2 System Task n

Primitive
Library

Syntax/Semantics

Figure 9: Mission Control System Organization.

From an execution point of view, the ATOL Ex-
ecutor - running an ATOL Mission Program - issues
commands to the CORAL Loader, which transfers se-
lected Vehicle Primitive descriptions from the Vehicle
Primitive Library to the CORAL Engine. The En-
gine runs the Primitives selected by interacting with
the System Tasks, and issues messages that condition
the execution of the ATOL Mission Program. During
mission execution, the status of any Vehicle Primitive
can be displayed on a Vehicle Primitive Assessment
module that allows visualizing the flow of markings
on the corresponding Petri nets. See Section 5.3 for
more details.

4 Formal Mission Verification

The operation of unmanned underwater vehicles
in hazardous environments poses great demands on
their robustness against external disturbances and in-
ternal hardware failures, as well as on adequate, re-
peatable vehicle behaviour, in response to operator
commands and vehicle system errors. Those require-
ments dictate a solid approach to system develop-
ment that includes the use of rigorous analysis tools
to assess the expected behaviour of the vehicle before
it is launched. In practice, that poses the formidable
task of formally verifying all vehicle systems, includ-
ing that in charge of Mission Control. However, in
spite of the plethora of theoretical methods available
for the analysis of time-driven and event-driven sys-
tems, little progress has been done towards the de-
velopment of powerful computer based tools to assess
the performance of Mission Control systems, even at
a purely logical level. Notable exceptions include the
pioneering work pursued at INRIA in France, with
applications to mobile robots. See [9] and the refer-
ences therein. The need for formal logical verifica-
tion tools can hardly be overemphasized: the design
of even a simple mission using the software program-
ming environment proposed in Section 3 may gener-
ate an hierarchical structure of Mission Procedures,

Vehicle Primitives and System Tasks that is hard to
analyze by direct inspection of their text/graphical
descriptions. As a result, logical errors are bound to
occur during the design phase that may lead to seri-
ous deadlock problems, or to the vehicle behaving in
a totally unacceptable manner in response to internal
or external events.

Commands
and Events
Definition

System Tasks

Library

Logical Verification ModelFunctional Model

Mission
Petri Net Model

Petri Net Description

Petri Net Model

Vehicle Primitive

System Task

Mission Program

Definition

Vehicle Primitives
CORAL

Figure 10: Logical verification model.

Motivated by the work described in [9], this sec-
tion discusses very briefly how Petri net theory can
be brought to bear on the formal logical verification
of Mission Control Systems designed according to the
formalism proposed in this paper. The key idea can
be simply explained by referring to Figure 10, which
shows how the System Task Automata, Vehicle Prim-
itives, and Mission Procedures of a given mission can
be converted to a set of merged Petri net models.
These can be formally verified at any hierarchical
level, using classical Petri net analysis tools.

System Task Verification Model In Section 3,
a System Task was shown to contain a Command
module embodied in a state automaton that acti-
vates and/or synchronizes the System Task’s opera-
tion modes, in response to commands sent by a call-
ing Vehicle Primitive. Using well known results from
Discrete Event System theory, the verification model
of a System Task’s state automaton can be equiva-
lently described in terms of a Petri net

(PST , TST , AST , wST ,x0), (1)

where PST , TST , AST , and wST are easily obtained
from the state set, input and output alphabets, state
transition function, and output function of the au-
tomaton, and x0 is derived from its initial state [6].

Vehicle Primitive Verification Model The for-
mal verification model of a Vehicle Primitive is ob-
tained by merging the Vehicle Primitive’s Petri net
model with the Petri nets corresponding to the Sys-
tem Tasks called. The merging of Petri nets can
be done using the binding process described in gen-
eral terms in Section 3.3.1. Furthermore, by exploit-

13

Command Marking

b) System Task

after Merging

c) Formal Equivalent

System Task equivalent Petri Net .

a) Graphical Description

...
0p

...

STname(Dmode)

jp

tk

l rpp

...

STname(Dmode)

0p jp

tk

lp rp lp rp

jp0p

tk
STname(Dmode,Din ,p)st r

Figure 11: Vehicle Primitive formal verification model.

ing the Petri net representation of System Task au-
tomata, the sequence of operations depicted in Figure
11 will lead to the general verification model of Fig-
ure 11.c, which should be compared against Figure
7.

successp
errorp

pPhase1OK

pPhase3OK

(p)reset
Reset

p
Mission

p
InitOK

Init
(p ,p)

InitOK Abort

successt

pPhase2OK

p
Abort

ExitLog LogOK(p ,p)

HorizPath

Phase1OK

HorizPath

Phase2OK

pPhase4OK

2

4

ψ(t=40s,z=1.35m,u=2m/s, =0deg,p)

ψ(t=40s,z=1.35m,u=2m/s, =-90deg,p)

p
Phase0OK

Phase0OKψ(t=20s,z=1.35m,u=2m/s, =0deg,p)

pExitLog

ControlDataLog

pLogOK

preset

Phase4OKψ(t=40s,z=1.35m,u=2m/s, =-270deg,p)
HorizPath

3

1

HorizPath

HorizPath

Phase3OKψ(t=40s,z=1.35m,u=2m/s, =-180deg,p)

p
MissionEnd

Figure 12: Mission structure for formal verification.

Mission Verification Model The formal verifica-
tion model of a Mission is obtained by merging the
mission’s equivalent Petri net model with the equiva-
lent Petri net models of the Mission Procedures and

Vehicle Primitives called. This can be done by using
a binding process that is similar to that described in
Section 3.5, leading to the structure in Figure 12.
Notice how, by proper design, the complete Petri
net model was made to include the following rele-
vant places: pinit - the entry point to the mission; {
perror1, ..., perrorn } - a set of places that reflect possi-
ble mission errors; psuccess - a place that is marked in
case the mission is completed successfully, and pend

- a place that is marked if the mission is completed.
Assume that by construction there is a set of places,
denoted PE, that hold information related to System
Task and Vehicle Primitive errors. Then, answers to
the representative set of questions

1. Is there a set of conditions under which the mis-
sion can be completed?

2. Is there a set of conditions under which the mis-
sion can be completed successfully?

3. In the absence of errors, will the mission be com-
pleted successfully?

4. In the presence of errors, will the mission be com-
pleted?

can in principle be obtained by examining the prop-
erties of reachability and liveliness of the global Petri
net [6]. In particular, the answer to the third ques-
tion will be in the affirmative if it can be proved that
transition tsuccess is potentially fireable [19] with re-
spect to a conveniently defined initial marking vector
such that x(pinit) = 1 and x(PE) = 0, where 0 de-
notes the zero vector. The reader will find in [8, 9] an
illuminating discussion of this circle of ideas, together
with a description of some computer based tools for
formal verification of missions that build on the anal-
ysis of state automata.

14

5 Mission Control of the MAR-
IUS AUV: System Design
and Implementation

This section aims at bridging the gap between
the theoretical framework of Section 3 and the prac-
tice of Mission Control, by describing the basic Sys-
tem Tasks and Vehicle Primitives implemented for
MARIUS, and explaining how a mission can be pro-
grammed using the CORAL software environment.
The mission described is simple, yet it captures the
key steps involved in mission programming using a
graphical editor. The same mission will be revisited
in Section 6, when describing the results of the tests
at sea.

5.1 System Tasks

VST VCT

ACTGCT

STT

VNTMST

Figure 13: Vehicle System Tasks: data communica-
tion paths.

The System Tasks of MARIUS and their data
interconnection structure are depicted in Figure 13,
which should be compared against the diagram of
Figure 2. The following System Tasks can be identi-
fied:

• Vehicle Support Task (VST)

• Actuator Control Task (ACT)

• Vehicle Navigation Task (VNT)

• Motion Sensor Task (MST)

• Guidance and Control Task (GCT)

• Vehicle Communications Task (VCT)

• Space and Time Task (STT)

• Vehicle Log Task (VLT)

As expected, many of the System Tasks can be put in
close correspondence with the blocks that appear in
the Vehicle System Organization of Figure 2, as they
specify classes of algorithms and procedures that im-
plement basic vehicle system functionalities. For that
reason, their formal definitions will not be given here,
as it will become clear from the context. However, the
following System Tasks deserve special consideration:

Motion Sensor Task (MST) - The Motion Sensors
Task manages the operation of all motion sensing in-
strumentation packages installed on-board the vehi-
cle. This task reads data from selected sensor suites,
and routes it to the Vehicle Navigation Task and to
the vehicle operator through the Vehicle Communi-
cation Task.

Space and Time Task (STT) - The Space and Time
Task is used to provide space and time Mission Con-
trol Program synchronization. It relies on the avail-
ability of navigational data provided by the Vehicle
Navigation Task, and on the vehicle operating system
real time resources.

Vehicle Log Task (VLT) The Vehicle Log Task
manages the logging of relevant data inside the ve-
hicle. This task receives data packets from the other
vehicle tasks and stores them for post-mission analy-
sis.

As explained in Section 3.3, each of the abovemen-
tioned System Tasks can be called using a calling
header of the type STname(Dmode, Dinst, Pm). In
the case of the Guidance and Control System Task
(GCT), for example, the header is of the form

GCT (Y AW AUTO,ψ, pyaw auto),

where Y AW AUTO selects a particular mode of op-
eration that implements an automatic control loop
for yaw, and ψ is the yaw set-point. The symbol
pyawauto denotes a place in the calling Petri net that
will be marked when a specific message in the alpha-
bet F of the System Task’s automaton acknowledges
that the mode of operation requested has been en-
tered. For the sake of brevity, the headers for the
other System Tasks are not described here. However,
their meaning will be clear in the examples that fol-
low.

The Task structure of Figure 13 is supported by
the MARIUS’s distributed computer architecture de-
scribed in Section 2.3. The connections shown were
implemented using a message passing mechanism
with asynchronous writing, synchronous reading type
protocols. Each System Task is in close correspon-
dence with two OS9 operating system processes,
which implement the finite state automaton of the
task command module and the task algorithms and
procedures, respectively. The two processes commu-
nicate with each other using a shared memory com-
munication mechanism.

5.2 Vehicle Primitives

A selected set of Vehicle Primitives included in the
Mission Control System of MARIUS is described in
the sequel. Due to space limitations, only the Vehicle
Primitive in charge of implementing the control loop
for yaw is explained in detail at the end of the section.

Init(pEnd, pAbort) - This primitive is in charge of
initializing all vehicle System Tasks. The exe-
cution of an Init(.,.) command drives the state

15

of every System Task automaton to STANDBY,
and switches the operation mode of the vehicle
to manual. At that point, an operator can com-
mand directly the vehicle thrusters and control
surfaces, and examine sensor and actuator data
transmitted via a radio link, and displayed on
a command console. An Init(.,.) command will
also make available to other Vehicle Primitives
a number of vehicle resources that include the
rudders, elevator, ailerons, and thrusters. This
is done by marking a set of global places that
can be shared by the Petri nets embodying those
Vehicle Primitives (see Section 3.3 for the defi-
nition of global places in CORAL). The symbols
pEnd and pAbort denote places that hold informa-
tion related to the successful conclusion of the
Primitive execution, and to the occurrence of an
ABORT in any of the System Tasks, respectively
(see the explanation in Section 3.5)

KeepSpeed(v,pExit,pEnd) - The KeepSpeed Primitive
is responsible for keeping the forward speed of
the vehicle at a desired set-point. To imple-
ment the required speed control loop, this Ve-
hicle Primitive coordinates the execution of the
System Tasks that are in charge of motion sen-
sor data acquisition (MST), navigation (VNT),
dynamic control (GCT), and actuator control
(ACT). The Primitive requests the two back
thrusters as resources required for its execution,
and releases them after completion for possible
use by other Vehicle Primitives. The calling pa-
rameters v, pExit and pEnd consist of the set-
point for speed, a Petri net place that must be
marked to exit the Primitive execution, and a
place that is marked at the end of the Primitive
execution, respectively.

KeepDepth(z,pExit,pEnd) - The KeepDepth Primi-
tive is responsible for driving the depth coordi-
nate of the vehicle to a desired set-point. This
Primitive calls the same System Tasks as the
KeepHeading Primitive. The resources required
are the elevator and the ailerons. The calling
parameters z, pExit and pEnd consist of the set-
point for depth, a place that is marked to exit
the Primitive execution, and a Petri net place
that shall be marked at the end of the Primitive
execution, respectively.

KeepHeading(ψ,pExit,pEnd) - The KeepHeading
Primitive is responsible for driving the heading
of the vehicle to a desired set-point. Its struc-
ture, which is similar to that of the KeepSpeed
and KeepDepth Primitives, will be explained in
detail later in the text.

ControlDataLog(pExit,pEnd) - The ControlDataLog
Primitive is in charge of logging the vehi-
cle’s feedback control loop data. The System
Tasks involved in this Vehicle Primitive are

those responsible for motion sensor data acqui-
sition (MST), navigation (VNT), dynamic con-
trol (GCT), actuator control (ACT), and gen-
eral data logging (VLT). The calling parameters
consist of a Petri net place (pExit) that must be
marked to stop the Primitive execution, and a
place (pEnd) that is marked at the end of the
Primitive execution.

Reset(pEnd) - The Reset primitive can be called at
any time to reinitialize all vehicle System Tasks.
Its execution drives the state of all System Task
automata to STANDBY, and switches the oper-
ating mode of the vehicle to manual. Further-
more, it makes all vehicle resources available for
later use. The symbol pEnd denotes a place that
is marked at the end of the Primitive execution.

yaw_on
p

successp

yaw_auto
p

ACT
(AUTO_RUDDER,p)auto_on

GCT
yaw_auto(YAW_AUTO, , p) ψ

(CNTR_YAW_ON,p) yaw_on

MST

auto_on
p

GCT
yaw_manual(YAW_MANUAL,p)

p
yaw_manual

p
manual_on

ACT
manual_on(MANUAL_RUDDER,p)

Rudder
p

KeepHeading
p

p
End

p
Init

p
cmmd_on

MST
yaw_off

p
yaw_off

VCT

p
cmmd_off

(CNTR_YAW_OFF,p)

(RUDDER_CMMD,OFF,p)

VCT
(RUDDER_CMMD,ON,p)cmmd_on

cmmd_off

p
Rudder

1

2

4

5

3
p

Exit

ψmod KeepHeading(, p , p)Exit End

Figure 14: KeepHeading Vehicle Primitive - pRudder

and pInit are global places.

The Vehicle Primitive in charge of controlling the
heading of the vehicle is now described in detail, by

16

referring to the corresponding Petri net model of Fig-
ure 14.
Vehicle Primitive KeepHeading: Petri net struc-
ture The calling header V Pname(Dinvp, Pm) :=
KeepHeading(ψ, pExit, pEnd) clearly identifies a nu-
merical set point for heading (ψ), a Petri net place
that must be marked to stop the Primitive execution,
and a place pEnd that will hold information related
to the termination of the Primitive execution. The
only pre-condition for the execution of the Vehicle
Primitive is the initialization of all System Tasks (see
the Init command). There are no post-conditions,
and the required Primitive resource is the rudder.
Following the notation of Section 3.3, Ppre = pInit,
and Pres = pRudder. It is important to stress that
pInit and pRudder are global places, which are ini-
tially marked by the Init Vehicle Primitive. Five ba-
sic phases can be identified in the KeepDepth Vehicle
Primitive:

During phase 1, the pre-condition is checked and
the required resource is requested. In fact,the first
transition is enabled only if the places pRudder and
pInit are marked.

Phase 2 configures the vehicle System Tasks that
are required to implement the heading controller.
The VCT is asked to disable direct command of the
rudder from the console, and the ACT is enabled to
receive the rudder commands directly from the yaw
controller (AUTO RUDDER). In parallel, the GCT is
requested to switch on the heading controller (com-
mand YAW AUTO), and to accept the set-point for ψ
given in the System Primitive call. Finally, the MST
is called to output the yaw measurements periodically
to the GCT. Notice that in this case there is no need
to activate the Navigation Task, as the yaw measure-
ment is directly available from the motion sensor unit
installed on-board the vehicle.

In phase 3, the vehicle runs the closed loop control
system that is in charge of keeping the heading of the

pExit1 pExit2 pExit3

pHeadOK

pMPEnd

pDepthOK

timeout
p

p
triggerOK

(Timeout, t, p ,p)
STT

triggerOK timeout

MPEndψmod HorizPath(t, z, u, , p)
p

HorizPath

pSpeedOK

KeepSpeed KeepHeading
ψ

KeepDepth

SpeedOKExit1
(u,p ,p) HeadOKExit2(,p ,p) DepthOKExit3(z,p ,p)

Figure 15: Mission Procedure described in CORAL.

vehicle at the desired set point, until the place pExit

is marked externally.
Phase 4 sets the vehicle heading operation mode

back to manual. This is done by issuing a set of com-
mands to the System Tasks activated during phase 2,
but in reverse order.

In the last phase of execution of the Primitive, the
resource requested at the beginning is released. This
is done by marking the place pRudder (notice that two
places with the same label were used, to simplify the
drawing). The place pEnd is marked to signal the end
of the Vehicle Primitive.

5.3 Mission Design using CORAL

The mission example described here consists of
tracing a square shaped trajectory, at constant depth
and speed of 1.35 m and 2.0 m/s, respectively. The
square maneuver is obtained by requesting the vehicle
to change its heading by −90 deg every 40 seconds.
The initial heading is 0 deg.

The design of the Mission Program involves a
Mission Procedure named HorizPath, whose im-
plementation using the CORAL programming en-
vironment is shown in Figure 15. This Mis-
sion Procedure parametrizes the action of keep-
ing constant heading ψ, depth z, and speed u of
the vehicle, for a period of time t. The corre-
sponding calling header is MPname(Dinvp, Pm) :=
HorizPath(t, z, u, ψ, pMPEnd).

The HorizPath Mission Procedure starts by setting
a timer to generate a timeout after the required ex-
ecution time has elapsed. This is done by issuing
an STT timeout command with the required Mis-
sion Procedure duration time t. To perform the ma-
neuver, three Vehicle Primitives are called in paral-
lel: KeepSpeed with a velocity set-point u, KeepDepth
with a depth set-point of z, and KeepHeading with a
heading set-point of ψ. The generation of a timeout
terminates the execution of HorizPath by exiting the
three Vehicle Primitives.

The Mission Program can be explained with the
help of Figure 16, which shows four distinct phases:

In phase 1, all vehicle System Tasks are initialized
by calling the Init Vehicle Primitive.

In phase 2, the HorizPath Mission Procedure is
called for a period t = 20 s, with a velocity set-point
of u = 2 m/s, a depth set-point of z = 1.35 m, and
an heading set-point of ψ = 0 deg. At the end of this
phase, the vehicle is headed north, and ready to start
the required square maneuver.

Phase 3 calls the HorizPath Mission Procedure re-
peatedly, with heading set-points of 0 deg, −90 deg,
−180 deg, and −270 deg, while maintaining the re-
maining input set-points equal to those in phase 2.
The required duration of each Mission Procedure call
is t = 40s. In parallel, the Vehicle Primitive Control-
DataLog is called to start logging control loop data
for later off-line analysis.

17

...

Equivalent Model

Mission Program

init

success error 1p p error np

...

p

successt t error 1 t error n

p
end

Figure 16: Mission program described in CORAL.

Finally, in phase 4 the vehicle is placed in manual
mode. The logging of control loop data is stopped,
and the mission ends normally if no errors are re-
ported. Should an error occur during the mission,
the place pAbort will be marked, and a Reset com-
mand will be issued. This will bring the vehicle to
the default manual mode, and the mission is aborted.

6 Mission Control of the MAR-
IUS AUV: Tests at Sea

In order to assess the performance of the Mis-
sion Control System of MARIUS, a series of tests
were conducted at sea in Sines, Portugal, in January
1996. The tests included programming and running
the mission described in Section 5.3. Throughout the
mission, the vehicle pulled a buoy with an antenna,
thus enabling radio communications between the ve-
hicle and a shore station. The software for Mission
Control was run on the computer network installed
on-board the AUV. The shore station consisted of two
IBM PCs running the MS Windows multi-task oper-
ating system, and of a Vehicle Command Console.
A man-machine interface named MUCIS (MARIUS-
User Command Interface System) was developed for
the tests, to enable manual remote control when re-
quired, and to assess the internal state of the vehicle
and the state of progression of the mission during
mission execution, see Figure 17. The PC dedicated
to mission control follow-up enabled the display of
the mission Petri net network, together with the re-
spective marking sequences. Figures 18 through 21
display some of the data acquired in the course of the
mission, which was executed to perfection. Figures 18
and 19 show the commanded and measured heading,
and the rudder activity, respectively. Figures 20 and
21 show the slight variations in heading and depth
caused by the wave action in shallow water.

References

[1] J. Albus, “System Description and Design Architec-
ture for Multiple Autonomous Undersea Vehicles,”
National Institute of Standards and Technology, Tech-
nical Note 1251, September 1988.

[2] P. Antsaklis, K. Passino, An Introduction to Intel-
ligent and Autonomous Control, Kluwer Academic
Publishers, 1993.

[3] G. Ayela, A. Bjerrum, S. Bruun, A. Pascoal, F-
L. Pereira, C. Petzelt, J-P. Pignon, ” Development of
a Self-Organizing Underwater Vehicle - SOUV, Pro-
ceedings of the MAST-Days and Euromar Conference,
Sorrento, Italy, November 1995.

[4] C. Bizingre, P. Oliveira, A. Pascoal, F. Pereira,
J. Pignon, E. Silva, C. Silvestre, J. Sousa, “Design of a
Mission Management System for the Autonomous Un-
derwater Vehicle MARIUS,” Proceedings of the Sym-
posium on Autonomous Underwater Vehicle Technol-
ogy, Cambridge, MA, July 1994.

[5] R. Byrnes, S. Kwak, R. McGhee, A. Healey,
M. Nelson, “Rational Behaviour Model: An Im-
plemented Tri-Level Multilingual Software Architec-
ture for Control of Autonomous Vehicles,” Proc. 8th
International Symposium on Unmanned Untethered
Submersible Technology, Durham, New Hampshire,
September1992, pp. 160–179.

[6] C. CassandrasDiscrete Event Systems. Modeling and
Performance Analysis,Aksen Associates Incorporated
Publishers, 1993.

[7] E. Coste-Maniere, H. Wang, A. Peuch,“Control Ar-
chitectures: What’s Going On?,” Proc. US/Portugal
Workshop on Undersea Robotics and Intelligent Con-
trol, Lisbon, Portugal, March 1995, pp. 54–60.

[8] B. Espiau, D. Simon, K. Kapellos, “Formal Verifi-
cation of Missions and Tasks,” Proc. US/Portugal
Workshop on Undersea Robotics and Intelligent Con-
trol, Lisbon, Portugal, March 1995, pp. 73–77.

[9] B. Espiau, K. Kapellos, M. Jourdan, D. Simon,“On
the Validation of Robotic Control Systems, Part I:
High Level Specification and Formal Verification,” In-
ternal Report N0. 2719, INRIA, November 1995.

[10] G. Franklin, J. Powell, M. Workman, Digital Control
of Dynamic Systems, Addison-Wesley, 1990.

[11] P. Freedman, “Time, Petri Nets, and
Robotics,”IEEE Transactions on Robotics and
Automation, Vol. 27, No. 4, Aug. 1991.

[12] D. Fryxell, P. Oliveira, A. Pascoal, C. Silvestre e
I. Kaminer, Navigation, Guidance and Control Sys-
tems of AUVs: An Application to the MARIUS Vehi-
cle, To appear in IFAC Control Engineering Practice,
March, 1996,

[13] K.S. Fu,“Learning Control Systems-Review and
Outlook,” IEEE Transactions on Automatic Control,
Vol.AC-15, No.2,1970

[14] A. Healey,“Tactical/Execution Level Coordination
for Hover Control of the NPS AUV I Using Onboard
Sonar Servoing,” Proceedings of IEEE Symposium on
Autonomous Underwater Vehicle Technology , Cam-
bridge, Massachusetts, pp. 129-138, 1994.

18

Shore
Station

Sensors Actuators

MARIUS

Radio

Vehicle

Primitive
Description

Radio

Graphical

Half Duplex Radio Link

RS232 RS232

Computer Network

OS9 / G96

Vehicle Command
Console

Figure 17: MUCIS - MARIUS user interface unit.

[15] A. Healey, D. Marco, R. McGhee, ” Autonomous
Underwater Vehicle Control Coordination using a Tri-
Level Hybrid Software Architecture, to appear in the
Proceedings of the IEEE Robotics and Automation
Conference, Minneapolis, April 1996.

[16] M. Jeng, F. DiCesare, ‘A Review of Synthesis Tech-
niques for Petri Nets with Applications to Automated
Manufacturing Systems,”IEEE Transactions on Sys-
tems, Man and Cybernetics, Vol. 23, No. 1, Jan/Feb.
1993, pp.301–312.

[17] M. Lee, R. McGhee, Editors, Proceedings of the
IARP 2nd Workshop on Mobile Robots for Subsea
Environments, Monterey, California, May 1994.

[18] D. Marco, A. Healey, R. McGhee, “Autonomous Un-
derwater Vehicles: Hybrid Control of Mission and Mo-
tion,” to appear in the Journal of Robotics, 1996.

[19] T. Murata,“Petri Nets: Properties, Analysis, and
Applications,”Proceedings of the IEEE, Vol. 77, No.
4, April 1989, pp.541–580.

[20] A. Pascoal, “The AUV MARIUS: Mission Scenarios,
Vehicle Design, Construction and Testing,” Proceed-
ings of the 2nd Workshop on Mobile Robots for Subsea
Environments, Monterey Bay Aquarium, Monterey,
California USA, May 1994.

[21] A. Pascoal, F. L-Pereira, A. Bjerrum, K. Chris-
tiansen, J. P-Pignon, G. Ayela, C. Petzelt, “Devel-
opment of a Self-Organizing Underwater Vehicle,”
Proc. MAST Days and EUROMAR Market, Brussels,
March 1993.

[22] J. Peterson, Petri Net Theory and the Modeling of
Systems, Prentice-Hall,1981.

[23] G. Saridis, “Towards the Realization of Intelligent
Controls,”IEEE Proceedings, Vol. 67,No.8, 1979.

[24] G. Saridis, “Analytical Formulation of the Princi-
ple of Increasing Precision with Decreasing Intelli-
gence for Intelligent Machines,”Automatica, Vol. 25,
pp. 461–467.

[25] V. Silva, P. Oliveira, C. Silvestre, A. Pascoal , ”
CORAL: A Software Package for the Design and Im-
plementation of Real Time Mission Control Systems
for Autonomous Underwater Vehicles, MAST-SOUV
report, October 1994.

[26] D. Simon, B. Espiau, E. Castillo, K. Kapellos,
“Computer Aided Design of a Generic Robot Con-
troller Handling Reactivity and Real Time Control
Issues,”IEEE Transactions on Control Systems Tech-
nology, Vol. 1, No. 4, Dec. 1993, pp. 213–229.

[27] K. Valavanis, G. Saridis, A. Pascoal, P. Lima, F-
L. Pereira, editors. Proc. of the Joint U.S./Portugal
Workshop on Undersea Robotics and Intelligent Con-
trol, Lisbon, Portugal, March 1995.

[28] F. Wang, K. Kyriakopoulos, A. Tsolkas, G. Saridis,
“A Petri-Net Coordination Model for an Intelligent
Mobile Robot,”IEEE Transactions on Systems, Man
and Cybernetics, Vol. 21, No. 4, July/August 1991,pp.
777–789.

19

0 20 40 60 80 100 120 140 160
−300

−250

−200

−150

−100

−50

0

50

time [s]

Y
aw

 a
nd

 Y
aw

 c
om

m
an

d
[d

eg
]

Figure 18: Commanded and measured heading.

0 10 20 30 40 50 60 70 80

−30

−20

−10

0

10

20

30

time [s]

ru
dd

er
 a

ct
ua

ti
on

 s
ig

na
l [

de
g]

Figure 19: Rudder deflection.

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

Y
aw

 a
nd

 Y
aw

 c
om

m
an

d
[d

eg
]

Figure 20: Measured heading (zoom in).

0 5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

time [s]

de
pt

h
an

d
de

pt
h

co
m

m
an

d
[m

]

Figure 21: Commanded and measured depth.

20

