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This paper introduces a new methodology for the design of navigation systems for autonomous
vehicles. Using simple kinematic relationships, the problem of estimating the velocity and position
of an autonomous vehicle is solved by resorting to special bilinear time-varying filters. These
are the natural generalization of linear time-invariant complementary filters that are commonly
used to properly merge sensor information available at low frequency with that available in the
complementary region. Complementary filters lend themselves to frequency domain interpretations
that provide valuable insight into the filtering design process. This paper extends these properties to
the time-varying setting by resorting to the theory of linear differential inclusions and by converting
the problem of weighted filter performance analysis into that of determining the feasibility of a
related set of Linear Matrix Inequalities (LMIs). Using this set-up, the stability of the resulting
filters as well as their ”frequency-like” performance can be assessed using efficient numerical analysis
tools that borrow from convex optimization techniques. The paper introduces the mathematical
background that is required for complementary time-varying filter analysis and design and describes
its application to the design of a navigation system that estimates position and velocity of an
autonomous vehicle by complementing position information available from GPS with the velocity

information provided by a Doppler sonar system.

1 Introduction

Currently, there is considerable interest in the development of navigation systems to provide robotic

vehicles with the capability to perform complex missions in an autonomous mode. See [1, 4, 15,
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16, 18, 21| and the references therein for in depth presentations of navigation systems for aircraft
and (8, 13, 22, 24] for an overview of similar systems and related research issues in the underwater
robotics area.

Traditionally, navigation system design is done in a stochastic setting using Kalman-Bucy fil-
tering theory [6]. In the case of nonlinear systems, design solutions are usually sought by resorting
to Extended Kalman filtering techniques [6]. The stochastic setting requires a complete character-
ization of process and observation noises, a task that may be difficult, costly, or not suited to the
problem at hand. This issue is argued at great length in [7], where the author points out that in a
great number of practical applications the filter design process is entirely dominated by constraints
that are naturally imposed by the sensor bandwiths. In this case, a design method that explicitly
addresses the problem of merging information provided by a given sensor suite over distinct, yet
complementary frequency regions is warranted.

Complementary fiters have been developed to addresss this issue explicitly. See for example
[7, 18] for a concise introduction to complementary fiters and their applications. In the linear time-
invariant setting, filter design is ultimately reduced to the problem of decomposing an identity
operator into stable low and high pass transfer functions that operate on complementary sensor
information. The bandwith of the low pass tranfer function becomes a tuning parameter aimed
at matching the physical characteristics of the ”low frequency” sensor. Therefore, the emphasis is
shifted from a stochastic to a deterministic framework, where the main objective is to shape the
filter closed-transfer functions.

This paper extends complementary filter design and analysis techniques to a time-varying set-
ting, and offers a solution to the problem of estimating the linear position and velocity of a vehicle
using time-varying complementary filters. The time-dependence is imposed by the fact that some of
the sensors provide measurements in inertial coordinates, while other measurements are naturally
expressed in body axis. To merge the information from both types of sensors - while being able
to compensate for sensor biases - requires that the rotation matrix from inertial to body axis be
explicitly included in the navigation filters. The resulting filters are bilinear and time-varying, but
the time dependence is well structured. By exploiting this structure, the problem of filter design
and analysis can be converted into that of determining the feasibility of a set of Linear Matrix
Inequalities (LMIs) [3, 20] that arise in the theory of linear differential inclusions [2, 3]. As a con-
sequence, the stability of the resulting filters as well as their ”frequency-like” performance can be
assessed using efficient numerical analysis tools that borrow from convex optimization techniques
(3, 17].

The paper is organized as follows. Section 2 reviews some basic mathematical background

on linear time-varying systems, induced operator norms, and polytopic systems. Section 3 sets



the motivation for the sections that follow : a simple filtering problem is formulated, and its
solution in terms of complementary linear time-invariant filters is described. The new concepts of
low and high pass filters for linear time-varying systems are also introduced. Section 4 describes
the navigation problem addressed in this paper and formulates it mathematically in terms of an
equivalent time-varying filter design problem. Section 5 provides the main theoretical tools for
linear time-varying filter design and analyis using the theory of linear matrix inequalities. Section
6 describes a practical algorithm for complementary filter design and illustrates the performance
of the new filtering structure in simulation. Section 7 discussed extension of the results reported

in previous sections to the case of accelerometers. The paper ends with conclusions.

2 Mathematical background

This section summarizes the mathematical formalism that is required for the study of linear systems,

both from an internal and an input-output point of view.

2.1 Linear systems. Internal and input-output descriptions.

We denote by R (respectively R, the set of real (respectively positive real) numbers. The symbol
RP denotes the Euclidean space of p-tuples of real numbers. Let X be the linear space of function
cal f mapping R, to RP. For any 7 € R, I, denotes the projection operator defined for every f
in X by IL, f(t) = f(t) when ¢t < 7, and 0 otherwise. Let Ls[0, 0o; R?] denote the Hilbert space of

of Lebesgue measurable functions in X', endowed with the usual norm

171 = [ 1701

and define the extended space Lq.[0,00; R?] := {f € X : I, f € L3[0, oo; R?] for all finite 7 in R }.
In the sequel we compress the notation Le.[0, 0o; RP] and L0, co; R?] to L%, and L%, respectively.
This notation wil be further simplified to Ly, and Ly whenever the dimension of p is not relevant.

An input-output system G is identified with an operator G : Ly, — Lo and is said to be causal
if II,.GII, = II,G for all ¢t in R,. A causal system is (finite — gain)stable if the induced operator
norm ||G||? (abbv. ||G||), defined as

I,
||g|| = SUP{M o f € Lae, 1L f 7& 0,7 ¢ R+}
[T f1]2

is finite. We now focus our attention on the concept of internal stability for linear time-varying
(LTV) systems. Throughout this paper, we will restrict ourselves to the class of LTV systems G
with finite-dimensional state-space realizations Xg := {A(t), B(t),C(t), D(t)} of bounded, piece-

wise continuous matrix functions of time. Often, we will use the same symbol G to denote both an
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LTV system and its particular realization g, as the meaning wil become clear from the context.
A realization is said to be exponentially stable if the null solution to the linear differential equation
dx(t)/dt = A(t)x(t) is uniformly asymptotically stable, that is, there exist positive real constants
a and [ such that ||®(¢,7)|| < aexp[—B(t — 7)] for all ¢ > 7, where ®(¢,7) denotes the transition
matrix associated with A(¢). To simplify the exposition, we will henceforth refer to an exponentially
stable system as internally stable, while a (finite-gain) stable system will be simply called stable. If
G : Ly, — Lo, has an internally stable realization, then G defines a stable operator from Ly — Ls.

The extension of these definitions to the case where the operator inputs and outputs belong
to the space of essentially bounded functions of time is immediate, and can be found in [23].
Throughout the text, Ly [0, 00; R?] (abbv. L) denote the space of Lebesgue measurable functions

in X, endowed with the norm
1 F]loo = ess sup [|f(2)]]2-
teER 4+

If an operator G admits a state space representation g that is internally stable, then G maps L,

to L, and the corresponding induced operator norm

19.]s

Gllooyi :=
19l = 20

cfE€ Ly, t €ERLY

is finite.

2.2 Computation of induced operator norms. Polytopic systems.

Let G be a stable linear time invariant (LTI) system with a minimal realization 3¢ := {A, B, C, D},
and let G(s) = C(sI — A) !B + D denote the corresponding transfer matrix. Then, the induced

operator norm ||G|| equals the H,, norm of G, denoted ||G||, Where
1G] == Sggamaw(GT(_jw)G(jw))

and gz (.) denotes the naximum singular value of a matrix. Given a positive integer v > 0, then
[|G|| < v if and only if there exists a positive definite matrix P that satisfies the matrix inequality
3]

ATP 4+ PA PB CT
BTP —2I DT| <0 (2.1)
C D -I

If D = 0, then the inequality degenerates to



ATP+ PA+CTC PB

<0 2.2
BTP 21 22)

The above matrix inequalities are linear matrix inequalities (LMIs) in the matrix variable P.
Checking for the existence of P > 0 is easily done by resorting to widely available numerical

algorithms [17]. In this paper, we will also deal with linear time-varying systems with realizations
{A(t), B(t),C(t), D(t)} € @ := Co{{A1, B1,C1, D1}, ...,{Ar, Br,CL, D1} }
where

L
CoS = {Z )\,,,.A,L|A,L € S, M+ ...+ AL = 1}

i=1
is the convex hull of the set S := {A,..., A,}. These systems are usually referred to in the
literature as polytopic differential inclusions [3]. It can be shown that given a polytopic system G,

then ||G|| < -y if there exists a positive definite matrix P such that

ATP 4+ PA; PB; CT
BTP  —42I DY | <0;i=1,2,.., L. (2.3)

K3

C; D; I

Again, checking that such a P exists can be done quite efficiently using highly efficient numerical
algorithms.

The results above have their natural counterpart for the case of operators that map L, to L.
As discussed in [20], the problem of computing the L,,— induced norm of an operator can still be
cast in the framework of LMI theory. However, the computational procedure is more complex and

requires a line search over a real parameter.

3 Complementary filters. Low and high pass time-varying

filters.

This section reviews the basic structure of complementary filters and introduces the key definitions

of low and high pass filters for linear time-varying systems.
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Figure 3.1: Process model.

3.1 Complementary filters: basic concepts and definitions

Complementary filters arise naturally in the context of signal estimation based on measurements
provided by sensors over distinct, yet complementary regions of frequency. Brown [7] was the first
author to stress the importance of complementary filters in navigation system design. Since then,
this subject has been studied in a number of publication that address theoretical as well as practical
implementation issues; see for example [1, 16, 18, 19, 21| and the references therein. The key ideas
in complementary filtering are very intuitive, and can be simply introduced by referring to the
example of Figure 3.1. The figure captures the practical situation where it is required to estimate
the heading ¥ of a vehicle based on measurements r,, and ¥,,, of r = zp and v respectively, provided

by a rate gyro and a fluxgate compass. The measurements are corrupted by disturbances r4 and
(2

Let ¢(s) and r(s) denote the Laplace Transforms of ¢ and r, respectively. Then, for every
k > 0, ¢(s) admits the stable decomposition

9s) = T p(s) = o bls) + o d(e)
= Ta(s)ls) + Ta(s)(s), (3.1)

where T1(s) = k/(s + k) and Tx(s) = s/(s + k) satisfy the equality

Ti(s) + Tu(s) = 1. (3.2)
Using the relationship r(s) = s¢(s), it follows from the above equations that

¥(s) = Fy(s)p(s) + Fr(s)r(s),
where Fy(s) =Ti(s) = k/(s+ k) and F,(s) = 1/(s + k). This suggests a filter with the structure

1/; = f¢¢m+frrm



where F,, and F, are linear time-invariant operators with transfer functions Fy(s) and F,(s),

respectively. Clearly, the filter admits the state space realization

~

b =~k + ko +
= T+ k(Ym — 9) (3:3)

that is represented in figure 3.2.

Fifter - F

Figure 3.2: Complementary filter.

Let 77 and 7; denote linear time-invariant operators with transfer functions T3(s) and T3(s),

respectively. Simple computations show that

¥ = (Ti+ Ta)¢ + Fypa + Frra,
that is, the estimate Q,ZY consists of an undistorted copy (71 + 72)¥ = v of the original signal v,
together with corrupting terms that depend on the measurement disturbances 14 and 7.

Notice the following important properties:

e Ti(s)is low-pass: the filter relies on the information provided by the compass at low frequency

only.

e T)(s) = I — Ti(s): the filter blends the information provided by the compass in the low

frequency region with that available from the rate gyro in the complementary region.

e the break frequency is simply determined by the choice of the parameter k.

The frequency decomposition induced by the complementary filter structure holds the key to
its practical success, since it mimicks the natural frequency decomposition induced by the phys-
ical nature of the sensors themselves: compasses provide reliable information at low frequency
only, whereas rate gyros exhibit biases and drift phenomena in the same frequency region and are

therefore useful at higher frequencies.



Complementary filter design is then reduced to the computation of the gain k so as to meet a
target break frequency that is entirely dictated by the physical characteristics of the sensors. From
this point of view, the emphasis is shifted from a stochastic framework - that relies heavily on a
correct description of process and measurement noise [7] and the minimization of filter errors - to
a deterministic framework that aims at shaping the filter closed-transfer functions.

As convincingly argued in [7], the latter approach is best suited to tackle a large number of
practical situations where the characterization of process and measurement disturbances in a sto-
chastic context does not fit the problem at hand, the filter design process being entirely dominated
by the constraints imposed by sensor bandwidths. Once this set-up is adopted, however, one is free
to use any efficient design method, the design parameters being simply viewed as ”tuning knobs” to
shape the charateristics of the closed loop operators. In this context, filter design can be done using
H, or H,, design techniques [6, 10, 11, 12, 19]. Filter analysis is easily carried out in the frequency

domain using Bode plots. In the simple case described here, the underlying process model can be

written as
{ Y =tmTe (3.4)
¢m = "p + ¢d

where 74 and 4 play the roles of process and measurement disturbances, respectively. Notice the
important fact that v, (the measured value of 1) is an input to the system. In an H, setting, the
objective is to minimize the estimation error ¢ — Q,ZY for given values of the covariances of 14 and
r4. The optimal solution to this problem has the complementary filter structure described in (3.3).
The covariances of 14 and r4 are simply viewed as design parameters to vary the break frequency.

In practice, the simple complementary structure described above can be modified to meet ad-
ditional constraints. For example, to achieve steady state rejection of the rate gyro bias, the filter
must be augmented with an integrator to obtain the new complementary filter depicted in figure

3.3 with the realization

B

b =10 1}[“] (3.5)

where z; and x5 denote the states associated with 1/3 and the bias term respectively, and k; and

ko are filter gains. To bring out its relationship with a conventional Kalman filter, the expression
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Figure 3.3: Complementary filter with bias estimation.

above can be rewritten as

x = Ax+ Bu+ H(y —9)
g = Cx

where x = [z125]T, u = 1, ¥y = ¥, and

,C=[10],H= [le

01
00

A= ,B =

2

Simple computations show that in this case

~

Yv=(Ti+T)Y+n

where

kis + ko 52

_Memh2 g .
2+ kys + ko' 2(s) 21 kys+ kg’

Tu(s) =
and n = Fypq + F,rq is a noise term, the intensity of which depends on Fy(s) = Ti(s) and
Fo(8) = a7 Asain, notice that Ti(s) + Ta(s) = I, T1(s) is low pass, and T5(s) is high-pass.
The filter blends naturally the information provided by the compass at low frequency with that
available from the rate gyro in the complementary frequency range, leaving the original signal ¢
undistorted. Furthermore, any constant terms in 74 (rate gyro bias) will be naturally rejected at
the output since F,.(0) = 0. Notice also that the filter rejects naturally high frequency noise present
in the fluxgate mesurements.

In view of the discussion above, we henceforth adopt a deterministic framework for complemen-

tary filter design and analysis where the objective is to shape the filter transfer functions to obtain

desired bandwidths. Furthermore, in preparation for the sections that follow, it is convenient to



formally introduce the definition of a complementary filter for the underlying process model (3.4)

(with r4 = 14 = 0) in a state-space framework, see figure 3.1.

Definition. (r,7) Complementary Filter. Consider the process model

b o=r
M"/’T = Y =9 (37)
T =T

and a filter F with realization
x = Ax + B,ry, + By,
1/; = (Cx
Then, F is said to be a complementary filter for M, if

e F it is internally stable

For every any initial conditions 9 (0) and x(0) limy_o{®(t) — P (t)} = 0.

F satisfies a bias rejection property, that is, lz'mHoot/A) = 0 when v¢,,, = 0 and r,, is an arbitrary

constant.

e The operator Fy : ¥, — Q,ZY is a finite bandwith low pass filter.

Clearly, for every ki, ks > 0 the filter with realization (3.5) is a complementary filter for the
process My, in (3.7). It is importante to point out that according to the definition above, (3.5) is
but one representative of a large class of complementary filters for M,,. In this paper, however,

and for simplicity of exposition, we restrict ourselves to complementary filter structures similar to
(3.5).

3.2 Low and high pass filters: a linear time-varying setting.

The concepts of low pass and high pass filters play a key role in assessing the performance of
complemntary filters and are well understood in the case of linear time-invariant systems. We now
extend these concepts to the class of linear time-varying systems. The new concepts will play a
major role in assessing the performance of the linear time-varying complementary filters that will
be introduced later.

Definition. Low pass property. Let G be a linear, internally stable time-varying system
and let W be a low-pass, linear time-invariant Chebyschev filter of order n and cutoft frequency

w. The system G is said to satisfy a low pass property with indices (¢, n) over [0,w,] if

(G =W <e

10



Definition. Low pass filter with bandwith w.. A linear, internally stable time-varying

system G is said to be an (¢,n) low pass filter with bandwidth w, if

e lim, ,0|[(G — I) W"|| is well defined and equals 0.

o w.:=sup{w: |[(G—I)W"|| < €}, i.e. G satisfies a low pass property with indices (¢,n) over
[0,w] for all w € [0, w,) but fails to satisy that property whenever w > w..

e For every § > 0, there exists w* = w*(J) such that ||G(I — W)|| < § for w > w*.

Definition. High Pass Filter with break frequency w,.. A linear, internally stable time-
varying system G is said to be an (e,n) high pass filter with break frequency w, if (I — G) is an
(e,n) low pass filter with bandwidth w,.

The conditions in the definition of low pass filters generalize the following facts that are obvious

in the linear time-invariant case:

e the filter must provide a gain equal to one at zero frequency.

e there is a finite band of frequencies over which the system behaviour replicates very closely

that of an identity operator.

e the system gain rolls-off to zero at high frequency.

Notice the role played by the weighting operator W[, which was arbitrarily selected as a
Chebyschev filter. In practice, the order of the filter can be made sufficiently large so as to make

it effectively select the ”low frequency components” of the input signal.

4 Navigation system design: problem formulation

This section desribes the navigation problem that is the main focus of the paper and formulates
it mathematically in terms of an equivalent filter desig problem. For the sake of clarity, we first

introduce some basic notation and summarize the kinematic equations for a general vehicle.

4.1 Notation. Vehicle kinematics: a summary.

Let {Z} be a reference frame, and let {B} denote a body-fixed frame that moves with the vehicle.

The following notation is required:

e p=[zy2]" - position of the origin of {B} measured in {Z}.

11



Iv = [# 9 2]T - linear velocity of the origin of {B} measured in {Z}.

v = [u v w]? - linear velocity of the origin of {8} with respect to {Z}, resolved in {B}

w = [p g r|T - angular velocity of {B} with respect to {Z}, resolved in {B}.

A = [¢ 6 ¥]T - vector of roll, pitch, and yaw angles that parametrize locally the orientation
of frame {B} with respect to {Z}.

Given two frames {.A} and {B}, 4R denotes the rotation matrix from {B} to {A}. In particular,
LR (abbreviated R) is the rotation matrix from {B} to {Z}, parametrized locally by A, that is,
R = R(A). Since R is a rotation matrix, it satisfies the orthonormality condition RTR = I. Given

the angular velocity vector w, then
A=QM\w

where () is a matrix that relates the derivative of A with w. The following kinematic relations

apply [4]:

p = lv=Rv and (4.1)
R = RS(w), (4.2)
where
0 —w, wy
Sw):=| w, 0 -w, (4.3)

—wy wy 0

is a skew symmetric matrix, that is, ST = —S. The matrix S satisfies the relationship S(a)b =

a X b, where a,b are arbitrary vectors and x denotes the cross product operation. Furthermore,

IS@)I| = [lwll-

4.2 Time-varying complementary filters. Navigation problem formu-

lation.

We now extend the basic concepts of complementary filtering to the time-varying setting. The
motivation for this work can be simply described by considering the example where one is interested
in estimating the position p and velocity ’v of a vehicle based on measurements p,, and v,, of p
and v, respectively. In the case of an ocean surface vehicle, p,, is provided by a Differential Global
Positioning System (SGPS), whereas v,, is provided by a Doppler sonar. In the case of a fully

submerged underwater vehicle, p,, can be provided by a Long Baseline System.

12



It must be stressed that due to the physical characteristic of the Doppler sonar the measurement
Vi @8 naturally expresseed in body-axis, that is, in the reference frame {B}. Furthermore, Doppler
bias effects are also naturally expressed in {B}. This is in contrast with the measurements p,,,
which are directly available in the reference frame {Z}. These facts impose important constraints

on the class of complementary filters for position and velocity estimation, as will become clear later.

| Model - M p
Y J 1/s
Vd ————= (=] R(t)_l l
% =
Vin I?n
b _
Filter - F

Figure 4.1: Process model.

The underlying process model M, is depicted in figure 4.1, where F is a dynamical system
(filter) that operates on the measurements p,, and v,, to provide estimates p of p. In the figure, py
and v, are measurement disturbances. As in the last section, we study the situation where pg = 0
and vq = vgo where v4 is the Doppler bias. This set-up is all that is required for the design
of complementary filters from a ”frequency-like” domain point of view. Notice that the process
model M,,, is time-varying due to the presence of the rotation matrix R(t). However,the entries of
R(t) and their derivatives are not arbitrary functions of time but exhibit bounds that depend on
each specific vehicle mission under consideration. For example, if an underwater vehicle motion is
restricted to the horizontal plane and the maximum yaw rate achievable with that vehicle is 7,44,
then this information must be explicitly included in the description of the process model M,, as

we explain below. We now introduce the following definitions.

Definition. Process Model M,,. The process model M,, is given by

P =V
MPU =9yPm =P (44)

Vi = R7Iv+ v

We further assume that the matrix R and its derivative R are constrained through the inequalities

and
P(t)] < Prmazs [9(t)] < Gmaes [9(D)] < Traa (4.6)

13



for all t € R;. Notice in the definition above that there are constraints on the roll and pitch
angles ¢ and 6 respectively, but not on the yaw angle ¥. This is due to the fact ocean vehicles are
designed to undergo arbitrary maneuvers in yaw, but pitch and roll excursions are restricted by

vehicle construction.

Definition. Candidate complementary filter. Consider the process model M,, in (4.4) with

V4o an arbitrary constant, and let F be a linear time-varying filter with realization

o { % = A(t)x + By(t)Pm + Bo()Vim (47)

p = C(t)x.
Then, F is said to be a candidate complementary filter for M,, if
e F is internally stable

e For every initial conditions p(0) and x(0), lim; ,.{p(t) — p(t)} = 0.

e F satisfies a bias rejection property, that is, lim; ,, p = 0 when v = 0.

Definition. Complementary filter with break frequency w.. Let F be be a candidate
complementary filter for M,,,, and let F, denote the corresponding operator from p,, to p. Then,
F is said to be an (¢, n) complementary filter for M, with break frequency w, if F, is an (¢, n) low
pass filter with bandwidth w..

The discussion in the previous sections leads directly to the following fiter design problem.

Problem formulation. Given the process model My, in (4.4) and positive numbers w., n, and €,

find an (e,n) complementary fiter for My, with break frequency w..

5 Complementary filter design. Main results.

This section introduces a specific candidate complementary fiter structure for M,, and derives
sufficient conditions for the existence of a complementary filter with the structure adopted that

meets required bandwith constraints.

5.1 Candidate complementary filter structure.

Figure 5.1 depicts the candidate filter structure for M,, that will be adopted in the paper. The

structure is motivated by the simple example described in Section 3, where an extra integrator

14
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Figure 5.1: Complementary filter.

was inserted to estimate the rate gyro bias. Notice however that the filter explicitly includes the
rotation matrix R(t), which we assume is available from an attitude reference system. The issue
of robust filter performance against uncertainities in the measurement of R(¢) will be addressed
later in this section. In what follows, for simplicity of notation, we often avoid writing the explicit

dependence of time-varying matrices on time. The following result is obtained.

Theorem 5.1 Consider the process model M,, and the time-varying filter

5(1 = Rvm + RX2 + Kl(p — Xl)
F =1 %3 = R 'Ky(p —x1) (5.1)

P =X

Suppose the filter F is internally stable. Then, F is a candidate complementary filter for M,,.

Proof: From the assumptions, the time-varying filter has the realization

Foo [AO]B0 BT
cw| o
where
Alt) = [_;flm 1; » By(t) = lRflKJ , By(t) = [7(?] ,O(t) = H

Furthermore, v,, = v + V40, where v4 is an arbitrary constant vector (Doppler bias). Let ®(¢,7)

denote the state transition matrix associated with A(t). Then, using the equalities

,Byv(T) = l%p(ﬂ VO ]

0

p(7)

Bpp(T) = —A(T) 1vad,0 = _A(T)

15



the filter state evolution is given by

4)-
X9 (t)

_|_

_ XI(tO) -
®(t, to
( ) _X2(t0) ] to
_ XI(tO) -
®(t, to
(t, o) xalto) |

/tt o(t,7) {—A
tt ®(t, 1) {—

The transition matrix ®(¢, 7) satisfies

dr

i<I>(t, T) =

—®(t, 7)A(T)

and therefore 5.2 can also be written as

ol
X9 (t)

q)(t’tO)l:Etz) +/t:{
el
(I)(t,to)lz:gz) n p(()t)
[VSO B(t, to) Vjﬂ]

(1)
A(T) 0 ] } dr

+ [ @(t,m) {Brp(r) + Bu(v(r) +va)} dr

(5.2)

(5.3)

(5.4)

Since the filter is stable, lim; o ||®(¢,%0)|| = 0. The results follows immediately by observing that

P = X;.

Notice that the state x, of the appended integrator tends asymptotically to —vg4o. Thus, x;

provides an estimate of the Doppler bias in the body frame. This result makes perfect sense form

a physical point of view since the bias is constant in the body frame (not in the reference frame T).
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5.2 The candidate complementary filter: sufficient conditions for sta-

bility and guaranteed break frequency.

The next result establishes sufficient conditions for the existence of fixed gains K; and K, such
that the candidate filter is internally stable and has a a guaranteed break frequency of at least w,

where w, is a design parameter. In preparation for that result we let
w, = [p, ¢ 7 |T = Rw

and define
S, = S(w,) = S(Rw)

Given the original design bounds (4.5)-(4.6), it is possible to compute positive upper bounds p;, g,

and 7 such that

lor| <55 larl < gl <t (5.5)

Let p, = —p,q, = —q;",7, = —r and construct the set {w’,i = {1,..,8}}, where

+ - + +

b, b, b, b, b,

1 — 2 __ — 3 _ + 4 _ + _ +
w,=\|gq |,wri=|qg | wi=|g |,wr=|qg |, .w.=]d
r, r, r, r, rt

Then

w, € Co{w',i={1,.,8}} and
S, € Co{S! = S(w'); i =1{1,..,8}}

r

Theorem 5.2 Consider the linear time-varying filter (5.1) and assume that the bounds (5.5) on

w, apply. Given n and w,, let

Aw | Bw
Cwl O

be a minimal realization for the weighting Chebyschev filter introduced in Section 3.2. Further let

n o ._

we *

01
0 S,

F= , H=[-10].
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Suppose that given ¢ > 0 3 K € R®3, P ¢ RETMx(6+n) P > 0, such that the linear matrix

inequalities

{P F.+ KH KCy F,+ KH KCy
0 Aw 0 Aw o] 0
LLpi(K, P, 6) = HT Bw <0,
+| 7 | —cwl
_CW
0 B | P —e2I
0 I
F = 1, i=q1,.8 5.6
; [0 S(wi)] { } (5.6)

are satisfied. Then, the constant gains

Kl [y—

Ky |
make the filter F internally stable. Furthermore, the operator F, : p — D satisfies a low pass
property with indices (e,n) over [0,w.], that is, |[(Fp, — I)W[ || <.

Proof: Given the realization 5.1, consider the Lyapunov coordinate transformation [5]

¢(t) = P(t)x(t),
where

o |10
Ple) = 10 R(t)

With this change of coordinates, the operator F, admits the realization

{ ¢ = (PAP™'+ PP))¢ + PB,p (5.7)

P = CP¢

Using the relations

N
PAP " =
—K; 0
and
55-1_ |0 0 (o o |0 0
0 RS(w)R ! 0 S(Rw) 0 S(w,)
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(5.7) can be written as

: -K, I K,
p=1[I0¢ (5.8)

Simple algebra now shows that (F, — I) W' admits the state-space representation

K, I K,Cy
Fo W = K, S, K,Cwl| 0 (5.9)
i we ! 0 0 Aw |Bw '

I 0 —Cw| O

F+KH KC’W 0
Aw
—CW] 0

0
H
{ F,+KH KC’W

0
Aw
—Cy ] 0

i={1,...8}

where

K,
K =
K,

and F, H, and F; are defined above.
Suppose 4 P > 0 and K such that

T
F,+ KH KCy

0 Aw

F,+ KH KCy
0 Aw

pP

T <0,

+ [H — Cw]

w
i o BE| P —I
i={1,..,8}. (5.10)

Then, using standard results on polytopic system analysis (see equation (6.54) in [3])) it follows
that |[(F, —I) W2 || < e. Clearly, if the inequalities (5.10) are satisfied then the gains

Kl o—
5]k -
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guarantee that ||(F, —I) W || < e. Notice if expression (5.10) is satisfied for some P and K then

the matrices

F,+KH KCy
0 Aw

are stable Vi = {1,....8} and therefore the polytopic system (5.8) with state matrix F' + KH is
internally stable [3]. Since Lyapunov transformations preserve internal stability, the original system
5.1 is also internaly stable.
|
The above theorem establishes sufficient conditions for the existence of fixed gains K; and K,
such that the complementary filter (5.1) is internally stable and meets desired ”frequency-like”
response characteristics. However, it does not provide any results on the feasibility of the problem
at hand. The theorem that follows addresses this problem partially, by showing that there always
exists a set of fixed gains for which the filter (5.1) is internally stable.

Theorem 5.3 Consider the linear time-varying filter (5.1). Then, for every set of finite positive
numbers p,q;", and v} such that the bounds (5.5) on w, apply there exist fized gains K; and K,
that make the filter internaly stable.

Proof: From the proof of Theorem 5.2, the filter (5.1) is internally stable if and only if the unforced
polytopic sytem

¢=(F+KH) (5.12)

is internally stable for some choice of K. Given (5.12), consider the related time-invariant system

(=(A+KH)¢ = A«C, (5.13)

01
00|

The simple structures of the matrices A and H implies that (5.13) can be made stable by chosing

where

Ac=A+KH; A=

K, = k11, Ky = koI, where k; and ky > 0 are positive but otherwise arbitrary. This stems from the
fact that the closed loop eigenvalues of A+ K H have multipliciy three and are easily obtained from
the roots of the second order polynomial s? + k;s + ky. Therefore, from basic Lyapunov stability

theory it follows that for every y; > 0,7, > 0 there exists a positive definite matrix

Pll P12

Plz
P12 P22
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such that

—viI 0
ATP + P Ay = —Q = [ n ] (5.14)
0 —’)’2.[
Expanding (5.14) we obtain
—2P11K1 — 2P12K2 ‘—P12K1 — P22K2 + P11 - —’)/1] 0 (5 15)
(—Pi2 Ky — Py Ky + P11)T’ 2P, 0 —7f

and therefore P = —(72/2)I. Furthermore, since K; and K, are diagonal, Pj; and P,y are also

diagonal. Consider now the linar time-invariant systems

b= (F+KH)C = Al i=1,2,..,8 (5.16)
with F; defined as before. Using the relation (S¢)T = —S! it follows that

-l P 125':;
(ST P2 —7l
We now show that (5.17) can be made negative definite for all ¢ = 1,2,...8 by suitable choice

A, P+ Pl Ay, = ci=1,2,...,8 (5.17)

of ; and 7y,. In fact, using Schur complements [3] it easily shown that (5.17) is negative definite if
and only if

Y1l — P1aSiyy 1 (ST Pra = 11l — (72/4)SH(SH)T > 0.

Since ||S!(wi)|| = ||wt]|, the above expression is satisfied with 72 = 4 and 7; > max{||w||? : i =
1,2,...8}. Hence, using the theory of polytopic systems [3] the system (5.12) and therefore the

original complementary filter are internally stable. ]

Note. From the proof of the theorem, it follows that the linear time-varying filter (5.1) is

internally stable for any choice of constant, positive, diagonal matrices K; and K.

We now address the issue of performance robustness of the complementary filter in the presence
of measurement errors in the rotation matrix R. In what follows, we let R = R(A) and R, =
Rm(An) denote the ”true” and measured rotation matrices, which are functions of the ”true” and
measured orientation vectors A and A,,, respectively. We further let R — R,, = AR and assume
that AR is bounded, that is, there exists a positive constant J, such that ||[AR|| < x.

To compute the influence of AR on the estimation error e, = p—p, we set p,, = p and v, = V.
From (4.4) and (5.1) it follows that the error e, is the output of a dynamical system with input v

and state space realization

“K, TR,|AR
Fe=|-R Ky, 0| 0 (5.18)
I 0 \ 0
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The state matrix of F, equals that of F in Theorem 5.1. Therefore, internal stability is obtained if
the conditions of Theorem 5.2 are met with R replaced by R,,. In particular, if the filter gains K;
and K, are constant, diagonal, and positive then internal stability is automatically ensured (see
Theorem 5.3). The issue of robust performance requires further thought, but can be addressed by

viewing F. as an input-output operator with realization

—K, R,
Fer=|-R1IK; 0 |0 (5.19)
I 0 0

and input u = ARv. If v is bounded uniformly in time, that is, ||V||c = Ve < 00 then
lullo < [IARI[[[V]leo = drVoo

Since F, is internally stable, the induced norm ||F,|; of the corresponding operator is finite.

Therefore,
lle@®)ll2 < [lelloe < | Fellooyi OrVoo

for all ¢t in Ry. Thus, the estimation error e(t) remains bounded for all t in the presence of
measurement errors in R and decreases uniformly to zero as dr approaches zero.

From the discussion above, it follows that the induced operator norm ||F,||w is the correct
measure of performance robustness of the filter against measurement perturbations in the rotation
matrix R. A constraint on ||F,||«; can be included in the filter design process by using the circle

of ideas discussed in [20].

6 Filter Design: a practical algorithm. Simulation results.

The previous section introduced the mathematical tools that are required to design a candidate
complementary filter with a guaranteed break frequency. Notice, however, that the outcome of the
design process may very well be a filter with an effective bandwith that is greater than the one
required. Clearly, the set of possible solutions must be further constrained so that the designer
have an extra design parameter at his disposal to select one solution (if it exists) that meets the
required break frequency criterion. This situation is identical to what happens in the case of filter
design using Kalman-Bucy theory, where the noise covariances play the role of ”tuning knobs” to
shape the filter characteristics.

In the linear time-invariant case, a simple analysis of a Bode diagram indicates that an expedite
way of setting an upper bound on the break frequency is to make the filter "roll-oft” sufficiently

fast. In the time-varying setting, this corresponds to making ||F,W2|| < y, where W} is a high

t
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pass Chebyshev filter and w; and  play the role of ”tuning parameters”. In practice, it is sufficient
to vary the value of of the parameter 7.

These considerations lead directly to a practical algorithm for the design of a time-varying
complementary filter with a desired break frequency w.. This is done by using theorem 5.11 with
the additional ”high-frequency” constraint described above, which can be also cast as a Linear

matrix Inequality. The underlying optimization problem can be formulated as follows:

min
e Y

subject to

(I = Fp)Weo I < €0

Oc

1FWE <, (6.1)

where the minimization is performed over the the set of gain matrices K € R%? and ¢, captures
the low-pass requirement constraint. It is simple to see that the high-pass constraint ||F,W,t|| < v
is satisfied if 3 Y > 0 and K such that

r ]
F,+KH KC F,+ KH KCy,
0 AWt 0 AWt Yy KDWt
LHPZ(Ya K) ’Y) = T BWt < Oa
+ [H 0]
|KDw, BE,|Y I
i={1,..8}, (6.2)
where
W = [,
Cw, | Dw,

The optimization problem (6.1) can now be cast in the LMI framework as follows. For given

numbers € > 0 and vy > 0 define the sets
®.p(e) ={K,P:P>0,Lp(K,Pe)<0,Vi=1,..,8}, (6.3)
®pp(y) = {K,Y :Y >0,Lyp,(K,Y,y) <0,Vji=1,..,8}, (6.4)

where the expressions Lpp, (K, P,¢€) and Lyp,(K,Y,v) were defined in (5.6) and (6.2), respectively.
Then the solution K to the optimization problem (6.1) can be obtained by solving the following

constrained optimization problem:

(6.5)

min .
(K,P)GéLp(eg);(K,Y)eéHp(“/)
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The optimization problem (6.5) is nonconvex. However, the matrix inequalities Lpp, (K, P,e) < 0
and Lgp;(K,Y,v) < 0 are jointly linear in the parameters P, K and Y. Therefore, for fixed K
the expressions Lpp, (K, P,€) and Lyp;(K,Y,7) are linear in P and Y respectively, and for fixed
P and Y they are linear in K. This observation suggests the following numerical solution/design
procedure to solve the above constrained optimization problem (see [9] and references therein for

similar approaches reported in the literature):
I Initializiation

1 Fix € > ¢y > 0. From operational conditions, determine the operating range of angular

velocities p,, g, 7

.| <oty lael < gl <)
2 Specify the frequency w, and use it to construct the low-pass weight W, .
3 Specify the bandwidth w; of the high-pass weight W}:. (As a rule-of-thumb choose
wy >> Wwe).

4 Select initial values for the gains K;, Ks. (As suggested by the theorem 5.3 any gains
of the form v11, voI, 3 > 0, 72 > 0 will do.)

II Numerical optimization

1 Low-pass constraint. Solve

€. (6.6)

min
(P,K)EQLp(e),ezeo
Use K = [yT 73] obtained in step 1.4 to initialize K, then iterate over P and K to solve

the optimization problem (6.6). If no solution is found, increase €.

2 High-pass constraint. Let (P*, K*) denote the solution to the optimization problem
(6.6). Solve

(6.7)

min 5.
(Y, K)e@up(7),(P*K)E®LP (e0)
Use K™ as an initial value for K, then iterate over Y and K to solve the optimization
problem (6.7).

Due to nonconvexity the numerical solutions proposed in Steps I1.1 and II.2 are not guaranteed
to converge to a local minimum [9]. Therefore, the algorithm should be run for multiple initial
conditions. It is then up to the system designer to select appropriate values of the tuning parameters

to try and meet all the criteria that must be satisfied by a complementary filter with a desired break
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frequency. See the definitions of complementary filter with break frequency w. and low pass filter
with bandwidth w. introduced early in the paper.

To illustrate the performance of the complementary filtering structure, a simple filter design
exercise was carried out for an autonomous surface vehicle undergoing rotational maneuvers in the
horizontal plane. In this case, the navigation system is required to provide accurate estimates of
the vehicle’s position based on position and velocity measurements provided by a DGPS and a
Doppler sonar, respectively. In the scenario adopted the vehicle progresses at a constant speed of
2m/s while it executes repeated turns at a maximum yaw rate of 3rad/s. The Doppler sonar is
assumed to introduce a constant bias term vqo = [0.1m/s, 0.2m/s]T. The selected break frequency

for the complementary filter was w. = 0.4rad/s.

I I I I I I I I I
5 10 15 20 25 30 35 40 45 50
total number of iterations

Figure 6.1: Filter gain K(1,1) versus iteration number.

The design procedure is illustrated in figures 6.1 - 6.3. In the design, the orders n and n; of
the Chebyschev weights W] and W_* were selected as 2. Furthermore, w; was set arbitrarily to
60rad/s. The performance parameter €y for the low pass filter was chosen as 0.2.

Figure 6.1 shows the evolution of the complementary filter gain K(1,1) for three different
initial values. The bold curve shows clearly the general tendency for the case where the initial
values are small: the filter does not exhibit a high enough break frequency, and therefore the gains
are increased until the low pass requirement is met, possibly with a certain margin (the margin
depends on the particular sequence of iterations obtained by running the first minimization problem
in (6.6)). At this point, the high-pass constraint comes into play, forcing the gains to change until
the low-pass constraint is met, without incurring too much spillover at high frequencies.

The three lower curves in figure 6.2 are plots of ||(F, — )W || as a function of w,, the operator

F, being computed with the gains obtained at steps A, B, and C of figure 6.1. The top curve
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Figure 6.3: Generalized bode plots - high pass property

shows the case where the filter gains were set to values much smaller than those obtained in step
A. Henceforth, we will refer to such plots as generalized Bode plots. The figure shows clearly that
the filter starts with a break frequency that is smaller than that required, that frequency being
increased until the break frequency requirement is met. It is the role of the ”high-pass” constraint
to guarantee that the low-pass requirement be met while reducing the spillover at high frequencies.
Figure 6.3 shows the evolution of ||(F,)W[¢|| as a function of w;. The iterative procedure described
above aims at minimizing the value v of these generalized Bode plots at w = 60rad/s subject to
the low pass constraint described before. The cases I and A violate the low pass constraint and are
therefore not important to examine. Notice, however, how the value of v decreases from iteration

B to C, thus showing that in case C less spillover is introduced at high frequency.

26



The performance of the resulting filter was assessed in simulation. Figure 6.4 shows the actual
and estimated vehicle position when the initial state of the filter was set to x; = [10m, 20m|T and
xy = [0m/s, O0m/s]*. Figure 6.5 captures the evolution of the first component of the Doppler bias
estimate. It can be concluded from the figures that the filter provides good tracking of the actual

inertial trajectory and rejects the bias introduced by the Doppler unit in the body-axis.

vehicle trajectory

.~ estimated trajectory

Figure 6.4: Actual and estimated vehicle trajectory.

-0.5

Doppler bias - m/sec.

-15

-25
0

Figure 6.5: - Doppler bias esimate.

7 Extension to Accelerometers

In this section we extend the results discussed above to include the case of complementing posi-
tion information with that available from onboard accelerometers. This is a scenario commonly

encountered in the case of air vehicles. First, we introduce additional notation:
e ’a - linear acceleration of the origin of {B} measured in {Z}.

e a - linear acceleration of the origin of {B} with respect to {Z}, resolved in {B}
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Using this notation we establish the following kinematic relationships for the case of accelerometers:

p="1v (7.1)
Iy = Ta=Ra (7.2)
R = RS(w), (7.3)
\ IV Model - M p
a J 1/s 1 /s
& — 10~ re’
% D
a P E)
IT»
Filter - F Y w

Figure 7.1: Process model M,,

The underlying process model M, is depicted in figure 7.1, where F is a dynamical system
(filter) that operates on the measurements p,, and a,, to provide estimates p of p. In the figure,
Pq and a; are measurement disturbances. As in section 5, we study the situation where pg; = 0

and ag = ago where a, g is the accelerometer bias.

Definition. Process Model M,,. The process model M,, is given by

P ="'v
I"f — Ia

Mpa = (74)
Pm = P

a, — R 11a + a4,0
The discussion in the previous sections leads directly to the following fiter design problem.

Problem formulation. Given the process model M,, in (7.4) and positive numbers w., n, and €,
find an (e,n) complementary fiter for My, with break frequency w..

The theorem that follows introduces a candidate complementary filter for M,, (see Figure
7.2). The filter structure is motivated by the results presented in previous sections, where an extra

integrator was inserted to estimate the Doppler bias.
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Figure 7.2: Complementary filter F,.

Theorem 7.1 Consider the process model My, and the time-varying filter
x; = X3+ Ki(p — x1)

5(2 = Ram + RX3 + K2(p — Xl)

5(3 = RilKg(p — Xl)

P =X

(7.5)

Suppose the filter F is internally stable. Then, F is a candidate complementary filter for My,.

The next result establishes sufficient conditions for the existence of fixed gains K;, K; and K3
such that the candidate filter is internally stable and has a a guaranteed break frequency of at least

we, where w, is a design parameter.

Theorem 7.2 Consider the linear time-varying filter (7.5) and assume that the bounds (5.5) on
w, apply. Gien n and w,, let W, be given by Theorem 5.2. Further let

0710
F=|0o01I|, H=[I00].
00&,

Suppose that given € > 0 3 K € R®3, P ¢ ROtxO+n) P > (0 such that the linear matrix

inequalities

[ [F+KH KCw F+KH KCw |,
0 Ay 0 Aw pl| 0
HT By <0,
+ o | [H —Cwl
_CW
i 0 BE| P —e2]
0I 0
FE=oo 1 |, i={1,.8 (7.6)
00 S(wi)
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are satisfied. Then, the constant gains

K
K2 =K
K

make the filter F internally stable. Furthermore, the operator F, : p — P satisfies a low pass
property with indices (e,n) over [0,w.], that is, |[(Fp — I)W[ || <.

The proofs of theorems 7.1 and 7.2 follow directly from the proofs of theorems 5.1 and 5.2
and can also be found in [14]. The robustness of the filter F with respect to uncertainties in the
rotation matrix R(t) can be analyzed using the steps outlined in Section 5. Similarly, the filter

design procedure given in Section 6 applies to the design of filter 7.5.

8 Conclusions

This paper extended the theory of complementary filtering to the time-varying setting. In partic-
ular, the frequency domain interpretations of complementary filters were extended by resorting to
the theory of linear differential inclusions and by converting the problem of weighted filter perfor-
mance analysis into that of determining the feasibility of a related set of Linear Matrix Inequalities
(LMIs). Using this set-up, it has been shown how the stability of the resulting filters as well as their
”frequency-like” performance can be assessed using efficient numerical analysis tools that borrow
from convex optimization techniques. The cases of complementing position information with that
available from onboard Doppler sonar and accelerometers have been considered. The resulting de-
sign methodology was successfully applied to a design example. Future work will aim at extending

these results to the discrete-time, multi-rate case.
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