
Kalman-Bucy Filter-Based Tracking Controller Design and

Experimental Validations for a Quadcopter with Parametric

Uncertainties and Disturbances

ZHU Xuan-Zhia, David Cabecinhasa, Wei Xieb∗ , Pedro Casauc, Carlos Silvestred†,
Pedro Batistaa,c and Paulo Oliveiraa,e

a Institute for Systems and Robotics, Laboratory for Robotics and Engineering Systems,
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ABSTRACT

This paper addresses the problem of trajectory tracking for a quadcopter subject to
parametric uncertainties and disturbances. Using the backstepping technique and
assuming known parametric uncertainties and disturbances, a nominal controller is
proposed for the quadcopter. In order to ensure that the controller is adaptive to
parametric uncertainties (i.e., unknown but constant mass and moment of inertia)
and external disturbances, an exponentially stable estimator is designed based on
the Kalman-Bucy filter. The interconnected closed-loop system of the plant, the
controller, and the estimator is such that the backstepping error is uniformly ulti-
mately bounded. Furthermore, simulation and experimental results are presented,
validating the stability and robustness properties of the proposed control strategy.

KEYWORDS

Quadcopter; adaptive control; backstepping; Kalman-Bucy filter; estimator

1. Introduction

Motion control of quadcopters has become a hot research topic in recent years due to
their promising applications in both military and civilian fields. For instance, they have
been widely used in search, surveillance, mapping, and rescue mission in hazardous en-
vironments that impede direct human intervention. These small-scale vehicles demon-
strate many favorable characteristics, such as easy maintenance, hovering capability,
vertical take-off and landing (VTOL) capability, and low cost, making them highly
versatile and maneuverable test platforms. Among different motion control tasks, the
focus of this paper is on the basic problem of trajectory tracking for a quadcopter
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subject to certain parametric uncertainties, which involves the design of control laws
that steer the vehicle to follow a time parameterized reference.

The dynamics of a quadcopter inherit: (a) nonlinearity; (b) underactuation; (c)
parametric uncertainty; and (d) external disturbances. (a) and (b) make it difficult
to control quadcopters in general. To cope with (a), linear controllers, e.g., Castillo,
Lozano, and Dzul (2005); Hoffmann, Huang, Waslander, and Tomlin (2007), were
proposed but only guarantee local stability with restrictive region of attraction and
usually depend on linearization around certain operating point. They are popular and
among the first controllers developed for quadcopters. Being aware of such limita-
tion, nonlinear controllers have been developed to achieve a wider flight envelope with
more general tracking trajectories, e.g., backstepping control Bouabdallah and Sieg-
wart (2005); Madani and Benallegue (2006), sliding mode control Xu and Özgüner
(2006), and feedback linearization Lee, Kim, and Sastry (2009). Since the controllers
above parametrize the orientation of the quadcopter in Euler angles, they exhibit sin-
gularities when representing complex rotational maneuvers. Meanwhile, the proposed
nonlinear control laws are often discontinuous or time-varying due to (b), which pre-
vents the existence of any time-invariant feedback control law by violation of Brock-
ett’s condition Brockett et al. (1983). Notably, by parametrizing the orientation of
the quadcopter in the Special Orthogonal Group of order 3 and embracing Brock-
ett’s condition, a singularity-free time-invariant nonlinear controller was proposed in
Aguiar and Hespanha (2007) that is able to globally drive a quadcopter to an arbitrary
small neighborhood of a position reference. Furthermore, most of the aforementioned
controllers rely on accurate dynamical models, but (c) can hinder their performance
and robustness properties. Indeed, the presence of (c) and/or (d) is inescapable in
realistic application scenarios. On one hand, it is not always possible to accurately
measure/identify dynamical model parameters (e.g., mass, moment of inertia), espe-
cially in tasks where payload changes. On the other hand, quadcopters are sensitive
to external disturbances such as wind gusts due to their small size and weight.

To mitigate the effects of uncertain parameters and external disturbances, adaptive
control and other robust control strategies were proposed by a few works and achieve
different levels of stability, adaptivity, and robustness in the problem of trajectory
tracking for a quadcopter. In terms of the underlying adaption scheme, the proposed
strategies fall into the following categories: (a) estimation of parametric uncertainties
in Dydek, Annaswamy, and Lavretsky (2013); Islam, Liu, and El Saddik (2014); Wang,
Song, Huang, and Tang (2016); (b) estimation of quadcopter states (position, linear
velocity, attitude, etc.) by nonlinear deterministic filters in Hua and Allibert (2018),
by Kalman-type filters in Barrau and Bonnabel (2017), by geometric stochastic fil-
ter in Hashim, Abouheaf, and Abido (2021); and (c) both in Aguiar and Hespanha
(2007). In this paper, we are given estimates of the quadcopter states with relatively
low noise level, enabled by an indoor motion capture system (to be introduced later).
Our interest is to perform (a), namely online parameter identification of a controlled
quadcopter, which suffers from parametric uncertainties (mass, moment of inertia, and
external disturbances) and may be subject to certain Gaussian noise in its dynamics.
While most of the related works rely on a suitable adaptation law to achieve adaptivity
or robustness, the underlying design is coupled with that of the control law. Moreover,
the adaption law therein is derived via accommodating negative time derivative of a
Lyapunov function along solutions, with no guarantees that the estimates converge
to the actual parameter values. Moreover, consideration of both inertia uncertainties
(mass and moment of inertia) and external disturbances is absent in Aguiar and Hes-
panha (2007); Cabecinhas, Cunha, and Silvestre (2014); Fang and Gao (2012); Huang,
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Xian, Diao, Yang, and Feng (2010); Lee et al. (2009); Mellinger, Lindsey, Shomin, and
Kumar (2011); Mukherjee and Waslander (2012); Pounds, Bersak, and Dollar (2012);
Wang, Nahon, and Trentini (2014); Zeng et al. (2011). In particular, the works Fang
and Gao (2012); Huang et al. (2010); Pounds et al. (2012); Wang et al. (2014) assume
constant moment of inertia with yet varying mass, which is conceptually unacceptable.
It is worth mentioning that a parameter estimator that considers both inertia uncer-
tainties and external disturbances is designed on top of a backstepping controller in
Cabecinhas, Batista, Oliveira, and Silvestre (2018) for trajectory tracking control of a
2-D hovercraft. However, the persistent of excitation condition therein is not sufficient
for asymptotic stability of their parameter estimator and hence the stability analysis
lacks rigor. Nevertheless, it offers inspiration on how we approach a solution to the
trajectory tracking problem for a 3-D quadcopter, which brings more challenges since
the controller should be designed carefully to meet time-critical flight tasks.

Taking into account the aforementioned aspects, this paper takes advantage of the
backstepping technique in Aguiar and Hespanha (2007) and the parameter estima-
tor design in Cabecinhas et al. (2018). Specifically, we consider a quadcopter with
unknown but constant mass, moment of inertia, and external force disturbances, for
which an adaptive backstepping controller is proposed consisting of a backstepping
controller and a parameter estimator that exponentially recovers unknown parame-
ters. In this way, we extend the results in Aguiar and Hespanha (2007) by separating
the controller design and the estimator design, while we extend the results in Cabecin-
has et al. (2018) by designing exponentially convergent cascaded Kalman-Bucy filters
for recovery of unknown parameters of a 3-D quadcopter. Comparing to other control
methods, the reasons for using a backstepping controller are threefold: (a) enlargement
of the region of attraction compared to linear controller or linearization methods; (b)
free of chattering phenomenon as often happens in sliding mode control; (c) avoidance
of dynamic extension which can lead to singularity in feedback linearization control.
Because the plant dynamics are linear with respect to the unknown parameters, some
natural choices of the parameter estimator can be considered: least-squares Mellinger
et al. (2011), gradient descent Wang et al. (2014), Kalman-Bucy filter. Comparing
to the former two methods, the Kalman-Bucy filter not only suffers no singularity
issues but also has the following advantages: (a) emulation-like design of the adaptive
backstepping controller: a nominal controller is first designed without considering the
unknown parameters, afterwards, we take into account the effects induced by the latter
and we derive an appropriate persistence-of-excitation condition to ensure stability for
the obtained system, as in the works Aguiar and Hespanha (2007); Cabecinhas et al.
(2018). This adds flexibility on controller design and simplicity in estimator design;
(b) guarantees of exponentially convergent estimates: the stability analysis of both
the open-loop and the closed-loop estimator leverages on solid stability analysis on
the Kalman-Bucy filter Kalman and Bucy (1961) and perturbed Kalman-Bucy filter
Viegas, Batista, Oliveira, and Silvestre (2016); (c) optimality: the Kalman-Bucy filter
is the optimal minimum mean-square error estimator when the process noise and the
observation noise are zero-mean Gaussian random processes.

One of the difficulties in the course of our controller design is the occurrence of
singularities in the control law if one directly inverts the estimates, which can lead to
unbounded control signals. Fortunately, by using a cascaded Kalman-Bucy filter, one
is able to eliminate those singularities, where the newly added filter provides estimates
of parameter inverses. Another difficulty in this pursuit lies in finding the persistent
of excitation condition for exponential convergence of the parameter estimator. We
handle this issue by studying uniform complete observability for a linear time-varying

3



system generated by the quadcopter dynamics and arriving at concrete conditions for
persistence of excitation, which is closely related to richness of control signals. The
other difficulty is the stability proof of the interconnected system consisting of the
plant, the backstepping controller, and the parameter estimator, for which we resort
to Lyapunov analysis. Although our proposed control scheme guarantees sound theo-
retical results, the following challenges remain: the persistent of excitation condition
should be verified, and the initial estimation errors should be small enough. To solve
the former problem, we verify a posteriori the persistent of excitation condition in
a case-dependent manner. To solve this problem completely, one may turn to model
predictive control in order to pick in an online manner the control signals that fulfill
the persistent of excitation condition. As for the latter problem, we suggest two so-
lutions: to obtain good initial estimates or to wait for some time until the open-loop
parameter estimator approaches sufficiently close to the actual parameters and then
close the loop.

Compared to the aforementioned works on adaptive and/or robust backstepping
control, the main contributions of this paper are:

1. a novel adaptive backstepping controller for trajectory tracking of a quadcopter
by coupling a backstepping controller and cascaded Kalman-Bucy filters. In fact,
by first designing a nominal controller assuming no modeling uncertainty then
feeding the unknown parameters with convergent estimates, we are using a con-
trol scheme referred in the literature as self-tuning control Slotine, Li, et al.
(1991). For the interconnected system consisting of the plant and the controller,
we show ultimate boundedness of backstepping errors if the persistent of ex-
citation condition holds, which is closely related to richness of control signals.
Nevertheless, few works have simultaneously proposed this control strategy and
proved its stability;

2. a singularity-free time-invariant continuous control law obtained by cascading
two Kalman-Bucy filters that attain inverse of unknown parameters, as opposed
to Fang and Gao (2012); Huang et al. (2010); Islam et al. (2014); Wang et al.
(2016), whose controllers suffer from singularities due to linearization or dynamic
extension or parameter inversion;

3. design of an exponentially stable parameter estimator that recovers the unknown
parameters while allowing one to tune their convergence rates through the as-
sociated noise covariance matrices, as opposed to Aguiar and Hespanha (2007);
Benrezki, Tayebi, and Tadjine (2018); Cabecinhas et al. (2014); Fang and Gao
(2012); Huang et al. (2010), which consider only some but not all of these pa-
rameters and have little implication of how the convergence rate may be tuned;

4. validation of the proposed control scheme through simulation and experimental
runs in terms of: practical stability of the interconnected system, exponential
stability of the parameter estimator, and robustness against endogenous dis-
turbance (mass, moment of inertia, and external force disturbances) as well as
exogenous disturbance (white Gaussian noises).

The remainder of the paper is organized as follows. Notations and the parameter
estimator design for a general linear-in-parameters system are introduced in Section
2. The quadcopter dynamical model and the control objective are presented in Section
3. Section 4 focuses on the development of a nominal backstepping controller. Section
5 and Section 6 analyze the stability of the interconnected system in an open-loop and
closed-loop manner, separately. Simulation results are presented in Section 7. Section
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8 and Section 9 shows the experimental setup and results, respectively. Section 10
summarizes the paper and describes potential future work.

2. Mathematical Preliminaries

2.1. Notations

Let R denote the real field, R≥0 := [0,∞), R>0 := (0,∞), Z>0 := {1, 2, . . . }. The
Euclidean n-space is denoted by R

n, endowed with the inner product 〈x,y〉 := x⊤y

for every x,y ∈ R
n and the Euclidean norm ‖x‖ :=

√
〈x,x〉 for every x ∈ R

n.
Given a vector x ∈ R

n and some i ∈ Z>0, xi denotes its i-th component. Given
a matrix A ∈ R

n×m and some i, j ∈ Z>0, aij denotes the entry of A on the i-
th row and j-th column. The identity matrix of order n is denoted by In, the zero
matrix of size n × m is denoted by 0n×m, and the n-dimensional vector whose each
component is 1 is denoted by 1n. The symbol ei denotes a unit vector of appropriate
dimension whose i-th component is 1. For every vector x ∈ R

n, define the function
diag : Rn → R

n×n as diag(x) := [x1e1 x2e2 · · · xnen]. For every matrix A ∈ R
n×m,

let Null(A) := {x ∈ R
m : Ax = 0n×1} denote its null space. Given an n × n real

symmetric matrix A, let its n real eigenvalues be arranged such that λ1(A) ≥ λ2(A) ≥
· · · ≥ λn(A). A function f : X → R

m with X ⊂ R
n is of class Ck if all of its partial

derivatives up through order k exist and are continuous. The Special Orthogonal group
of order 3 is SO(3) :=

{
R ∈ R

3×3 : R⊤R = I3,det(R) = 1
}
, whose Lie Algebra is

so(3) := {M ∈ R
3×3 : M = −M⊤} together with the Lie bracket [X,Y] := XY−YX

for every X,Y ∈ so(3). The operator S : R3 → so(3) defines the isomorphism between
the algebras (R3, · × ·) and (so(3), [·, ·]) satisfying

S(x)y := x× y (1)

for every x,y ∈ R
3.

2.2. Parameter estimator background

Since Kalman-Bucy filtering plays an important role in this paper, we present below the
framework adopted for parameter estimation. A generic nonlinear dynamical system
can be represented by the differential equation

ẋ = f0(x, ξ, t), (2)

where x ∈ R
n is the state, ξ ∈ R

m is the unknown parameter, and f0 : R
n×R

m×R≥0 →
R
n. We say that (2) is linear-in-parameters if it can be written as

ẋ = A0(x, t)ξ + b0(x, t), (3)

where the continuous bounded function A0 : Rn × R≥0 → R
n×m and the bounded

continuous function b0 : R
n × R≥0 → R

n. Assuming that the solution to (3) is a
continuous bounded function on R≥0 and that the unknown parameter ξ is constant,
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we define the following system

ẋ = Aξ(t)ξ + bξ(t),

ξ̇ = 0m×1,
(4)

where the continuous functions Aξ : R≥0 → R
n×m and bξ : R≥0 → R

n. Assuming full
state measurement, we have that

y = x, (5)

where y ∈ R
n is the state measurement.

By augmenting the state to include the unknown parameters, the system (4) with
output equation (5) can be written as a linear time-varying system as follows

ζ̇ = Aζ(t)ζ + bζ(t),

y = Cζζ,
(6)

where ζ := [x⊤ ξ⊤]⊤ ∈ R
n+m, Aζ(t) :=

[
0n×n Aξ(t)
0m×n 0m×m

]
, bζ(t) :=

[
bξ(t)
0m×1

]
, and

Cζ :=
[
In 0n×m

]
. Noticing that Aζ is nilpotent, with Ak

ζ = 0(n+m)×(n+m) for k ≥ 2,
we compute the transition matrix Φ associated with Aζ through the Peano-Baker
series as

Φ(t, t0) = In+m +

∫ t

t0

Aζ(τ)dτ =

[
In

∫ t
t0
Aξ(τ)dτ

0m×n Im

]
, (7)

where t0, t ∈ R≥0.
Given the linear structure of (6), we choose a Kalman-Bucy filter to be the param-

eter estimator, described by

˙̂
ζ = Aζ(t)ζ̂ + bζ(t) +Kζ

(
y −Cζ ζ̂

)
,

Kζ = PζC
⊤
ζ R

−1
ζ ,

Ṗζ = Aζ(t)Pζ +PζA
⊤
ζ (t) +Qζ −PζC

⊤
ζ R

−1
ζ CζPζ ,

(8)

where ζ̂ := [x̂⊤ ξ̂
⊤
]⊤ ∈ R

n+m is the estimate, and the positive definite symmetric
matrixRζ ∈ R

n×n and the positive semidefinite symmetric matrixQζ ∈ R
(n+m)×(n+m)

are respectively the so-called measurement noise covariance matrix and process noise
covariance matrix. The initial conditions for (8) are such that ζ̂(t0) ∈ R

n+m and

Pζ(t0) ∈ R
(n+m)×(n+m) is symmetric and positive definite. Defining ζ̃ := ζ − ζ̂ as the

estimation error, the interconnected system consisting of (6) and (8) can be written
as

˙̃
ζ = (Aζ(t)−KζCζ) ζ̃,

Kζ = PζC
⊤
ζ R

−1
ζ ,

Ṗζ = Aζ(t)Pζ +PζA
⊤
ζ (t) +Qζ −PζC

⊤
ζ R

−1
ζ CζPζ .

(9)
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To facilitate the analysis on stability of the system (9), we introduce the observability
Grammian associated with the pair (Aζ ,Cζ)

W(t0, t1) :=

∫ t1

t0

Φ⊤(τ, t0)C
⊤
ζ R

−1
ζ CζΦ(τ, t0)dτ (10)

for every t0, t1 ∈ R≥0, where Φ is defined in (7) and Rζ is defined in (8). Meanwhile,
we borrow from Viegas et al. (2016) the notion of uniform complete observability for
a general linear time-varying system and particularize this concept to (6).

Definition 2.1. Given the system (6) with an initial time t0 ∈ R≥0, the pair (Aζ ,Cζ)
is said to be uniformly completely observable (UCO) if and only if there exist constants
∆t, χ ∈ R>0 such that

χ−1 ≤ d⊤W(t, t+∆t)d ≤ χ (11)

for every t ≥ t0 and every unit vector d ∈ R
n+m, where W is defined in (10).

The following lemma provides a sufficient condition for exponential stability of the
system (9).

Lemma 2.2. Consider the system (6) with an initial time t0 ∈ R≥0. If there exists
ǫ,∆t ∈ R>0 such that for every t ≥ t0 and every unit vector c ∈ R

m,

∥∥∥∥
∫ τ

t
Aξ(σ)cdσ

∥∥∥∥ ≥ ǫ (12)

for some τ ∈ [t, t +∆t], then the estimate ζ̂ of the Kalman-Bucy filter (8) converges
globally exponentially to the state ζ of the system (6).

Proof. Please refer to Appendix A.

In the proof above, we invoke the results of (Jazwinski, 1970, Theorem 7.4) and
(Bucy & Joseph, 1968, Theorem 5.4) to conclude exponential stability of the system
(9). In these works, the system to be estimated is a stochastic one, but the proofs
therein can be adapted to the deterministic case since the homogeneous part of the
filter equation therein is in the same form as that of (9). Furthermore, we point
out that the proofs therein contain an error in the bounds for the error covariance
matrix and have been corrected in Delyon (2001). One may argue the absence of
uniform complete controllability (UCC) in the proof above for exponential stability
of the Kalman-Bucy filter, as often appears in the literature, e.g. (Batista, Silvestre,
& Oliveira, 2011, Theorem 4). However, using similar arguments above leads to the
fact that the pair (Aζ ,Dζ) is UCC by taking Dζ = In+m. This is obvious in the

parameter estimator equation (8), where the evolution of Ṗζ is originally governed by

Ṗζ = Aζ(t)Pζ +PζA
⊤
ζ (t) +DζQζD

⊤
ζ −PζC

⊤
ζ R

−1
ζ CζPζ .

2.3. Technical lemmas

We present below some lemmas which help with the proof of our main results. The
first lemma studies perturbations of a symmetric matrix.
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Lemma 2.3. Let K, K̃ ∈ R
n×n be two symmetric matrices, then

λi+j−n(K+ K̃) ≥ λi(K) + λj(K̃), (13)

where i, j ∈ {1, 2, . . . , n}.

Proof. Please refer to, for instance, Weyl (1912).

The next lemma studies continuity the eigenvalues of a matrix with respect to the
entries of the matrix.

Lemma 2.4. Let K1,K2 ∈ R
n×n, then there exists a permutation τ of {1, 2, . . . , n}

such that

max
1≤j≤n

∣∣λj(K1)− λτ(j)(K2)
∣∣ ≤ 2

2n−1

n (‖K1‖+ ‖K2‖)
n−1

n ‖K1 −K2‖
1

n , (14)

where ‖·‖ denotes the maximum singular value of a matrix.

Proof. Please refer to, for instance, (Horn & Johnson, 2012, Theorem D2).

The following lemma studies the asymptotic behavior of a particular class of func-
tions, which is the core in the proof of our main results.

Lemma 2.5. Let U : Rn × R≥0 → R be defined by

U(x, t) = −σ2(t) ‖x‖
2 + σ1(t) ‖x‖+ σ3(t) ‖x‖

3 , (15)

where σi : R≥0 → R for each i ∈ {0, 1, 2, 3} satisfy

lim
t→∞

σ0(t) = 0, (16)

σ1(t) = max {Σ1, σ0(t)} , (17)

lim
t→∞

σ2(t) = Σ2, (18)

lim
t→∞

σ3(t) = 0 (19)

with Σ1,Σ2 > 0. Then there exist T, c > 0 and 0 < a < b such that

U(x, t) ≤ −c ‖x‖2 (20)

for every t ≥ T and every x such that a ≤ ‖x‖ ≤ b.

Proof. Please refer to Appendix B.

3. Control Objective

The quadcopter, depicted in Fig. 1, is modeled as a rigid body in 3-dimensional space.
Consider a fixed inertial frame {I} and a body frame {B} attached to the quadcopter’s
center of mass. The configuration of {B} with respect to {I} belongs to SO(3).
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Figure 1. Sketch of quadcopter plant with indication of reference frames and thrust forces.

Following the formalization in Castillo et al. (2005), the kinematics and dynamics
of the quadcopter are given by

ṗ = Rv,

Ṙ = RS(ω),

v̇ = −S(ω)v + gR⊤e3 +m−1R⊤b−m−1Te3,

ω̇ = −J−1S(ω)Jω + J−1τ ,

(21)

where p ∈ R
3 is the position in {I}, R ∈ SO(3) is the rotation matrix that maps

vectors in {B} to {I}, v ∈ R
3 is the linear velocity in {B}, S : R3 → so(3) maps

vectors in R
3 to 3-by-3 skew-symmetric matrices, ω ∈ R

3 is the angular velocity in
{B}, g ∈ R>0 is the local gravitational acceleration constant, m ∈ R>0 is the mass
constant, b ∈ R

3 is the constant external force disturbances in {I}, T ∈ R is the
thrust acting on the quadcopter’s center of mass, J ∈ R

3×3 is the constant moment of
inertia, and τ ∈ R

3 is the torque. A common assumption on J is widely adopted in
the literature as follows:

Assumption 1. The moment of inertia is such that J = diag(j), where ji ∈ R>0 for
each i ∈ {1, 2, 3}.

In fact, for a general 3-dimensional body, it is always possible to choose the body
frame {B} such that its moment of inertia is a diagonal matrix. Satisfaction of As-
sumption 1 demonstrates both theoretical and practical advantages. For theoretical
consideration, Assumption 1 enables a linear representation of the moment of inertia
in the plant dynamics, and hence facilitates the use of Kalman-Bucy filtering. This
point will be clear in the sequel. For practical consideration, Assumption 1 holds if
and only if the body frame {B} is the principal axes of inertia. With uniform density
distribution and symmetric geometry of the quadcopter, the body frame can be chosen
as three orthogonal axes of symmetry located at the center point of symmetry. When
the moment of inertia is not diagonal, one may either reselect the body frame {B}
until the moment of inertia becomes diagonal, or turn to other filtering techniques
such as nonlinear filtering and geometric filtering since it is difficult to arrive at a
linear representation of the moment of inertia in the plant dynamics.

In order to have a final system with a linear dependency on the unknown param-
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eters (whose concept will be defined explicitly later), define the following constant
parameters

ξ1 := m−1∈ R,

ξ2 := m−1b∈ R
3,

ξ3 := [(j2 − j3)j
−1
1 (j3 − j1)j

−1
2 (j1 − j2)j

−1
3 ]⊤∈ R

3,

ξ4 := [j−1
1 j−1

2 j−1
3 ]⊤∈ R

3,

Ξ4 := diag (ξ4) = J−1∈ R
3×3

(22)

so that (21) can be rewritten as

ṗ = Rv,

Ṙ = RS(ω),

v̇ = −S(ω)v + gR⊤e3 +R⊤ξ2 − ξ1Te3,

ω̇ = Ω(ω)ξ3 +U(τ )ξ4

(23)

with

Ω(ω) := diag
(
[ω2ω3 ω1ω3 ω1ω2]

⊤
)
,

U(τ ) := diag (τ ) ,
(24)

where p, R, v, and ω the plant states, and T and τ the inputs.
Given a reference trajectory pd : R≥0 → R

3 of at least class C3 with bounded time
derivatives ṗd, p̈d, and

...
pd that are defined on R≥0, we call pd, ṗd, p̈d, and

...
pd the

reference signals. Based on the definitions above, the control objective is stated as
follows:

Problem 1. For the quadcopter (21) with unknown constant mass m, moment of
inertia J, and external force disturbances b, devise a feedback control law such that
each plant state, input, and reference signal (possibly except p, pd) is bounded, the
position tracking error t 7→ ‖p(t)− pd(t)‖ is uniformly ultimately bounded, and the
unknown parameters m, J, and b are exponentially recovered.

In fact, our proposed method, to be specified in the following, can be easily extended
to consider deterministic nonconstant parameters and/or disturbances that follow lin-
ear time-varying dynamics, by taking advantage of Kalman-Bucy filtering. For generic
deterministic nonconstant parameters and/or disturbances, one may turn to adding
extra robustness terms in the Lyapunov function to enforce noise rejection. However,
this goes beyond our current control objective.

4. Nominal Controller

This section focuses on the trajectory tracking controller design for the quadcopter
assuming known mass, moment of inertia, and external force disturbances, which is
referred to as the nominal controller. Define the position tracking error, in the inertial
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frame, as

z1 := p− pd, (25)

whose time derivative is

ż1 = Rv − ṗd. (26)

Choose the first Lyapunov candidate function

V1 :=
1

2
αz⊤1 z1 (27)

for some α ∈ R>0, which is used in the proofs but plays no role in defining the feedback
control law. The time derivative of (27) along the solution to (26) yields

V̇1 = αz⊤1 (Rv − ṗd), (28)

where v can be viewed as a virtual control input to make V̇1 negative, which can be
achieved by setting v equal to −k1R

⊤z1 +R⊤ṗd for some k1 ∈ R>0. To accomplish
this goal, define the linear velocity error as

z2 := v + k1R
⊤z1 −R⊤ṗd − δ, (29)

that we would like to drive to zero, where we introduce the constant δ ∈ R
3\{03×1}

to avoid violating Brockett’s condition Brockett et al. (1983); Oriolo and Nakamura
(1991) at the expense of controlling the linear velocity at δ distance away from
−k1R

⊤z1 +R⊤ṗd. Now, the closed-loop expression of (28) becomes

V̇1 := −αk1z
⊤
1 z1 + αz⊤1 R(z2 + δ). (30)

The time derivative of z2 is given by

ż2 = S(z2 + δ)ω − ξ1Te3 + h(·) (31)

with

h(z1, z2,R, p̈d) := −k21R
⊤z1 + k1(z2 + δ) + gR⊤e3 −R⊤p̈d +R⊤ξ2. (32)

Consider the second Lyapunov candidate function

V2 := V1 +
1

2
z⊤2 z2. (33)

The time derivative of V2 along the solution to (26) and (31) is

V̇2 = −αk1z
⊤
1 z1 + αz⊤1 R(z2 + δ) + z⊤2 (Dµ+ h(·)) , (34)

where the constant matrix D := [−ξ1e3 S(δ)] and the vector µ := [T ω⊤]⊤. In (34),
we deviate from the deduction in Aguiar and Hespanha (2007) by separating the term
αz⊤1 R

⊤z2 from the term z⊤2 (Dµ+ h(·)), as motivated by Xie, Cabecinhas, Cunha,
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and Silvestre (2019), in order to asymptotically stabilize the error z2 around the origin.
This will be made clear in the proof of Lemma 4.2. To proceed, we first present a lemma
that asserts full rank of the matrix D by a suitable choice of δ.

Lemma 4.1. The matrix D defined in (34) has full rank for every δ = [δ1 δ2 δ3]
⊤

satisfying δ3 6= 0. Moreover, Dr := D⊤
(
DD⊤

)−1
is a right inverse of D.

Proof. This proof resembles that of (Aguiar & Hespanha, 2007, Property 1). D has
full rank if there exists a 3-by-3 submatrix of D having nonzero determinant. Consider
the submatrix formed by the first three columns of D, i.e.,




0 0 −δ3
0 δ3 0

−ξ1 −δ2 δ1


 , (35)

whose determinant is −ξ1δ
2
3 . Therefore,D has full rank if δ3 is nonzero. There are other

possible choices of a 3-by-3 submatrix of D, but they lead to additional constraints

on δ. As a result, a right inverse of D can be chosen to be Dr := D⊤
(
DD⊤

)−1
that

is well-defined and satisfies DDr = I3.

Remark 1. Note that the fulfillment of the condition in Lemma 4.1 implies that
Null(D) = {[0 λδ⊤]⊤ : λ ∈ R, δ3 6= 0}.

With such observation, we are allowed to define

µd(z1, z2,R, p̈d, t) := Dr(−h(·)− k2z2) + γ(t)µD (36)

for some k2 ∈ R>0, arbitrary µD ∈ Null(D), and arbitrary bounded function γ :
R≥0 → R of class C1 with bounded derivative. By setting µ in (34) to µd, we zero out
the term Dµ+ h(·) in (34) and introduce negative definite term −k2z

⊤
2 z2 therein.

Observe that the first component of the vector µ is the input T and thus we can
set

T (z1, z2,R, p̈d) :=
[
1 01×3

]
µd(·), (37)

where T is independent of t since
[
1 01×3

]
γ(t)µD = 0 (see Remark 1). Further

calculation reveals that (37) can be rewritten as

T (z1, z2,R, p̈d) := −ξ−1
1 δ−1

3 δ⊤hD(·), (38)

where hD(z1, z2,R, p̈d) := −h(·) − k2z2. We use the remaining components of µ,
namely ω, to form the angular velocity error

z3 := ω −
[
03×1 I3

]
µd(·). (39)

With T defined in (38) and z3 defined in (39), the closed-loop form (34) can be written
as

V̇2 = −αk1z
⊤
1 z1 + αz⊤1 R(z2 + δ)− k2z

⊤
2 z2 + z⊤2 S(δ)z3. (40)

12



The time derivative of z3, with T defined in (38), is computed as

ż3 = Ω(ω)ξ3 +Ξ4τ −
[
03×1 I3

]
µ̇d(·), (41)

where µ̇d denotes the time derivative of µd. We introduce the third Lyapunov candi-
date function

V3 := V2 +
1

2
βz⊤3 z3 (42)

for some β ∈ R>0, with its time derivative along the solution to (26), (31), and (41),
and with T defined in (38), given by

V̇3 =− αk1z
⊤
1 z1 + αz⊤1 R(z2 + δ)− k2z

⊤
2 z2

+ βz⊤3
(
Ω(ω)ξ3 +Ξ4τ − [03×1 I3]µ̇d(·) − β−1S(δ)z2

)
.

(43)

In order to cancel the terms Ω(ω)ξ3,
[
03×1 I3

]
µ̇d(·), and β−1S(δ)z2, select the

control law for τ as

τ (z1, z2, z3,R, p̈d, t) := Ξ−1
4

(
− k3z3 −Ω(ω)ξ3 +

[
03×1 I3

]
µ̇d(·) + β−1S(δ)z2

)
(44)

for some k3 ∈ R>0, where ω can be written in terms of z1, z2, z3, R, p̈d, and t in virtue
of (39). Then, the time derivative of V3 along (26), (31), and (41), with T defined in
(38) and τ defined in (44), becomes

V̇3 = −αk1z
⊤
1 z1 + αz⊤1 R(z2 + δ)− k2z

⊤
2 z2 − βk3z

⊤
3 z3. (45)

Now, we are ready to present the stability result.

Lemma 4.2. Under Assumption 1, choose δ such that δ3 6= 0. Given a reference
trajectory pd : R≥0 → R

3 of at least class C3 with bounded time derivatives ṗd, p̈d,
and

...
pd, consider the plant (21) driven by the control laws (38) and (44). For every

initial condition in R
3 × SO(3) × R

6, the solution to (21) exists; v, ω, T , and τ are
bounded on R≥0; t 7→ z1(t) is uniformly ultimately bounded by 2k−1

1 ‖δ‖, z2(t) → 03×1

and z3(t) → 03×1 as t→ ∞.

Proof. Please refer to Appendix C.

5. Open-loop Design of the Parameter Estimator

Consider the system that consists of the parameter estimator in open-loop with the
plant (21) driven by the control laws (38) and (44). The parameter estimator has access
to the state and input information, but its output, namely the estimated parameter,
is not allowed to enter the rest of the system. Such a configuration serves as our
first attempt to approach the control objective. The parameter estimator design is
separated into two phases, as detailed in the sequel. It is noted that each signal in (21)
can be viewed as a bounded continuous function on R≥0 by virtue of Lemma 4.2.
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5.1. Estimator for ξ1, ξ2, ξ3, and ξ4

Rewriting the plant dynamics (23) in the form of (4), we obtain

Aξ(t) =

[
−T (t)e3 R⊤(t) 03×3 03×3

03×1 03×3 Ω(ω(t)) U(τ (t)),

]
(46)

which is bounded and continuous on R≥0, and

bξ(t) =

[
S(ω(t))v(t) + gR⊤(t)e3

03×1

]
(47)

which is bounded and continuous on R≥0. Before proceeding, let us make an assump-
tion that will guarantee global exponential stability of the estimation error system by
direct application of Lemma 2.2.

Assumption 2. Given t0 ∈ R≥0, there exists ǫ,∆t ∈ R>0 such that for every t ≥ t0
and every unit vector c := [c⊤1 c⊤2 c⊤3 c⊤4 ]

⊤ ∈ R
10,

∥∥∥∥
∫ τ

t

[
−T (σ)e3c1 +R⊤(σ)c2
Ω(ω(σ))c3 +U(τ (σ))c4

]
dσ

∥∥∥∥ ≥ ǫ (48)

for some τ ∈ [t, t+∆t].

Assumption 2 essentially states that the signals should be sufficiently rich through-
out time to conclude global exponential stability of the estimation error system, which
can be achieved in practice by choice of an appropriate reference trajectory. To facil-
itate understanding “richness” of signals, let us consider the following trivial exam-
ple. Suppose the reference signals pd(t) = ṗd(t) = p̈d(t) =

...
pd(t) = 03×1 for every

t ∈ R≥0 and the quadcopter is initialized as p = v = ω = 03×1, R = I3. Selecting
b = 03×1, γ(t) ≡ 0, δ = δ3e3, then under open-loop design of the parameter estimator,
we obtain analytic solutions to the equations of motion (21) as1:

p(t) =





(−δ3te
−kt −

δ3
k
e−kt +

δ3
k
)e3, if k1 = k2 = k

(α1e
−0.5λ1t + α2e

−0.5λ2t +
δ3
k1

)e3, if k1 6= k2
(49)

v(t) =

{
kδ3te

−kte3, if k1 = k2 = k

(−0.5α1λ1e
−0.5λ1t − 0.5α2λ2e

−0.5λ2t)e3, if k1 6= k2
(50)

ω(t) = 03×1 (51)

R(t) = I3 (52)

for every t ∈ R≥0. If we select the unit vector c in (48) such that c1 = 0, c2 = c4 =
03×1, then the left-hand side of the inequality becomes zero for any τ ∈ [t, t + ∆t],
which is absurd since ǫ > 0. Hence for this artificial case where the reference signals
are not rich enough and when the quadcopter is perfectly initialized, the assumption
above fails to hold. But in practice, the external disturbances b are not identically
zero, and even if they do, we can select a non-constant function γ and a more generic

1λ1 = k1 + k2 + |k1 − k2|, λ2 = k1 + k2 − |k1 − k2|, α1 = λ2δ3
2k1|k1−k2|

, α2 = − λ1δ3
2k1|k1−k2|
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δ to generate rich signals. Furthermore, we have not closed the loop by feeding the
nominal controller with the estimates coming from the parameter estimator. When we
close the loop in the next section, both the assumption here and the solutions to the
equations of motion here will take a slightly different form. Hence it remains to detect
whether the closed-loop system of this example satisfies Assumption 2.

Remark 2. We present in Appendix E a program that can be used to detect numer-
ically satisfaction or violation of the premise of Lemma 2.2 (and hence Assumption
2). Due to numerical verification, the drawbacks of this program are clear: numerical
integration of the integrand in (48); finite samples of the unit vector c; finite samples
of the lower limit of the integral, namely t. However, the results that will be presented
in Section 7 show versatility and usefulness of this program. In particular, we present
in Section 7.1 a sanity check of the program for the specific example (49)-(52), which
shows violation of Assumption 2.

Remark 3. Assumption 2 is a stronger version compared to that of (Cabecinhas
et al., 2018, Lemma 2) ensuring complete observability. The latter asks for linear
independence of columns of

∫ τ
t Aξ(σ)dσ as functions on [t, t +∆t], which relaxes the

condition (12) by allowing the dependence of ǫ on a chosen t. In that case, stability of
the Kalman-Bucy filter is guaranteed but attractivity may not be.

A naive straightforward application of this estimator in closed-loop with (38) and
(44) can lead to singularities due to the use of parameter inverses in the control laws,
i.e., ξ−1

1 in (38) and Ξ−1
4 in (44). To eliminate singularities, we propose a cascaded

estimator for the parameter inverses, detailed in the sequel.

5.2. Estimator for ξ
−1
1 and Ξ−1

4

It is clear from (22) that ξ−1
1 = m and Ξ−1

4 = J = diag(j). We will first derive an
estimator for m as follows.

Considering the following linear system that describes the dynamics of m,

ṁ = 0,

ym = ξ1m ≡ 1,
(53)

where ym is the output, we arrive at the following set of equations describing the
Kalman-Bucy filter for (53):

˙̂m = km (ym − ξ1m̂) ,

km = r−1
m ξ1pm,

ṗm = qm − r−1
m ξ21p

2
m,

(54)

where m̂ ∈ R is the mass estimate, rm ∈ R>0 and qm ∈ R≥0 are tuning gains. Initial
conditions for (54) are such that m̂(t0) ∈ R and pm(t0) ∈ R>0. In practice, however,
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ξ1 is not known. This fact motivates to construct the following set of equations:

˙̂m = km

(
ym − ξ̂1m̂

)
,

km = r−1
m ξ̂1pm,

ṗm = qm − r−1
m ξ̂21p

2
m,

(55)

where ξ1 in (54) is replaced with its estimate ξ̂1 coming from the estimator in Section
5.1, whose stability is studied in the following lemma.

Lemma 5.1. Under Assumption 2, consider the system (55). The estimation error
t 7→ m̃(t) := m− m̂(t) converges globally exponentially to 0 as t goes to infinity.

Proof. Under Assumption 2, we have that t 7→ ξ̃1(t) converges exponentially to 0 as
t goes to infinity. Therefore, (55) can be seen as a perturbed Kalman-Bucy filter for
(54) in the sense of Viegas et al. (2016) and the stability property remains.

The estimator design for j follows similar lines and is omitted for the sake of simplic-
ity. The estimate of j is denoted by ĵ and the estimate for Ξ−1

4 can be retrieved by the

operation diag (̂j). The corresponding estimation error is defined by t 7→ j̃(t) := j− ĵ(t),
which converges globally exponentially to 0 as t goes to infinity by virtue of Lemma
5.1.

6. Closed-loop Design of the Parameter Estimator

To ease the notational burden, let ξ := [ξ1 ξ⊤2 ξ⊤3 ξ⊤4 ]
⊤ and η := [m j⊤]⊤ denote the

parameters, ξ̂ and η̂ denote the estimates from the parameter estimator, and ξ̃ := ξ−ξ̂

and η̃ := η − η̂ denote the estimation errors.
In this section, we consider that our controller has no access to the actual values

of the parameters. Rather, these parameters are replaced by their estimates obtained
from the parameter estimators, leading to modified control laws. In the sequel, we use

the accent symbol (̂·) to denote modified functions for which ξ and η are replaced ξ̂

and η̂. The modified control law for the thrust is

T̂ (z1, z2,R, p̈d, ξ̂, η̂) := −m̂δ−1
3 δ⊤ĥD(·), (56)

where m̂ comes from the estimator in Section 5.2 and replaces ξ−1
1 in (38). The modified

control law for the torque is

τ̂ (z1, z2, ẑ3,R, p̈d, t, ξ̂, η̂,
˙̂
ξ) := Ĵ

(
− k3ẑ3 −Ω(ω)ξ̂3 + [03×1 I3]̂̇µd(·) + β−1S(δ)z2

)
,

(57)

where Ĵ := diag(̂j) comes from the estimator in Section 5.2 and replaces Ξ−1
4 in (44).

Note that the deduction of ̂̇µd consists of taking the time derivative of ξ̂2, produc-

ing
˙̂
ξ2 =

[
03×7 I3 06×6

]
PζC

⊤
ζ R

−1
ζ x̃ in virtue of (9). For the construction of the

estimator, T̂ and τ̂ are used to replace T and τ in (46), which results in Âξ. It is
then used to replace Aξ in (8) that describes the estimator for ξ. The estimator for η
remains the same as that in Section (5.2). In the sequel, we present a diagram in Fig.
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2 for the closed-loop interconnected system consisting of the plant, the controller, and
the estimators, whose stability property is stated as follows.

Theorem 6.1. Under Assumption 1, choose δ such that δ3 6= 0. Given a reference
trajectory pd : R≥0 → R

3 of at least class C3 with bounded time derivatives ṗd, p̈d,
and

...
pd, consider the interconnected system consisting of the plant (21) driven by the

control laws (56) and (57) and the estimator in Section 6. Suppose Assumption 2 holds

with T and τ replaced by T̂ and τ̂ , then for every initial condition in R
3×SO(3)×R

6,
there exists some sufficiently small initial estimation error such that the solution to
(21) exists; v, ω, T̂ , and τ̂ are bounded on R≥0; t 7→ ẑ(t) is uniformly ultimately
bounded by 2λ−1

3 (K)α‖δ‖.

Proof. Please refer to Appendix D.

Figure 2. Diagram of the closed-loop system.

Remark 4. Notice that the conclusion in Theorem 6.1 holds locally, in the sense
that the initial estimation error should be sufficiently small in order to guarantee a
sufficiently large domain of attraction. In practice, however, convergence of the pa-
rameter estimator is independent from that of the backstepping errors. Then if the
estimator is allowed to be turned on before the controller, there (so long as UCO is
satisfied) exists some time after which the estimation errors are sufficiently small and
ultimately boundedness can be achieved for any initial conditions. In other words, if
there is a good initial estimate of the unknown parameters, then the initial estimates
can be chosen such that ǫ1 is arbitrarily small and hence the interconnected system
will always stay within the region where (D8) is satisfied. Furthermore, one can turn
on both the controller and the estimator at the same time, wait for the estimator to
converge (so long as UCO is satisfied and no finite time escape occurs) so that there
will be a time after which the interconnected system will stay within the region where
(D8) is satisfied.

At this stage, we present the flowchart which illustrates the implementation pro-
cedures of our proposed control scheme, see Fig. 3, which serves as a guideline for
subsequent simulations and experiments.
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Confirm satisfaction of Assumption 2

for all simulation runs using the

algorithm in Appendix E

Run experiments

Select controller parameters and

estimator parameters

 

Controller parameters: 

Estimator parameters: 

Figure 3. Implementation procedures of the proposed control scheme.

7. Simulation Results

In order to verify the performance of the proposed control laws, this section presents
simulation results of the interconnected system consisting of the (21) driven by the
control laws (56) and (57), the estimator for ξ in Section 5.1, and the estimator for
η in Section 5.2, using MATLAB/Simulink. Through the following simulations, we
attempt to highlight the importance of Assumption 2, the capability of robustness
against Gaussian noises, and different levels of stability the controller and/or the
estimator achieves.

The terminologies within subsequent subsection titles are interpreted in the follow-
ing way: by deterministic we mean there is no random noise in the interconnected
system; by open-loop we mean the parameter estimator is running in open-loop with
the nominal controller as is the case in Section 5; by stochastic, we mean there is cer-
tain random noise in the interconnected system; by closed-loop, we mean the controller
is fed with estimates coming from the parameter estimator as is the case in Section 6.

In Table 1, we summarize the parameters shared by all subsequent simulations.
Moreover, unless redeclared, the following parameters are used by default. The initial
values of the plant are: p(0) = [0 0 0]⊤, v(0) = [0 0 0]⊤, R(0) = I3, ω(0) = [0 0 0]⊤.

Initial values of the estimator are: v̂(0) = v(0), ω̂(0) = ω(0), ξ̂1(0) = 2ξ1, ξ̂2(0) =

−1.5ξ2, ξ̂3(0) = 0.5ξ3, ξ̂4(0) = 2ξ4, Pζ(0) = diag([10−31⊤3 1⊤3 0.51⊤4 501⊤3 5·1051⊤3 ]
⊤)

, m̂(0) = 0.5m, pm(0) = qm, ĵ1(0) = 0.5j1, pj1(0) = qj1 , ĵ2(0) = 0.5j2, pj2(0) = qj2 ,

ĵ3(0) = 0.5j3, pj3(0) = qj3.

7.1. Deterministic open-loop fixed-point tracking

In this simulation, we select the reference position pd(t) = [0 0 0]⊤ for every t ∈ R≥0,
external disturbances b = [0 0 0]⊤, the measurement noise covariance matrix Rζ =
10−2I6, and the process noise covariance matrix Qζ = diag([10−31⊤3 1⊤3 0.51⊤4 501⊤3 5·
1051⊤3 ]

⊤).
We compare the estimator performance under different levels of ”richness” of signals,

which lead to satisfaction or violation of Assumption 2. To this end, we adopt the
example in (49)-(52) that violates Assumption 2, namely the function γ in (36) to
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Table 1. Parameters for the Simulation

Parameter Value Parameter Value

m 0.2 rm 1

j 10−3[6 4 1]⊤ qm 1

g 9.8 rj1 104

k1 2 qj1 10−2

k2 3 rj2 104

k3 4 qj2 10−2

β 2 rj3 104

µD [0 δ⊤]⊤ qj3 10−2

be γ(t) = 0 for every t ∈ R≥0 and δ = [0 0 0.1]⊤. After that, we generate ”rich”
signals by setting the function γ in (36) to be γ(t) = 30 sin t for every t ∈ R≥0 and
δ = [0.15 − 0.05 0.1]⊤.

As seen in Fig. 4a, all of the estimation error norms remain constant after the
initial transients. This is due to the fact that the signals are not ”rich” enough to
satisfy Assumption 2, which is rigorously analyzed for (49)-(52). Hence the failure in
fulfillment of UCO can lead to a non-convergent estimator. On the contrary, all of the
estimation error norms in Fig. 4a exponentially converge to zero, which is due to the
fact that we are generating ”richer” signals.

t[s]
0 10 20 30 40 50 60

10−3

10−2

10−1

10−9

10−6

10−3

100

103

|m̃|

|̃j1|

|̃j2|

|̃j3|

|ξ̃1|

‖ξ̃2‖

‖ξ̃3‖

‖ξ̃4‖

(a) Time evolution of the estimation error norms
when γ(t) = 0 for every t ∈ R≥0 and δ = [0 0 0.1]⊤.

t[s]
0 10 20 30 40 50 60

10−15

10−10

10−5

10−10

100

|m̃|

|̃j1|

|̃j2|

|̃j3|

|ξ̃1|

‖ξ̃2‖

‖ξ̃3‖

‖ξ̃4‖

(b) Time evolution of the estimation error norms
when γ(t) = 30 sin t for every t ∈ R≥0 and δ =

[0.15 − 0.05 0.1]⊤.

Figure 4. Comparison between time evolutions of the estimation error norms for the deterministic open-loop
fixed-point tracking under different levels of richness in signals (in log scale).

Since the nominal controller is running in open-loop with the estimator, the sta-
bility property in Lemma 4.2 holds and is independent from the choices of γ or δ,
which is witnessed in Fig. 5. Note that in both cases, ‖z2‖ and ‖ẑ3‖ approaches zero
asymptotically. In Fig. 4a , ‖z1‖ asymptotically converges to 0.05 = δ3

k1

as proved in

19



(49) when k1 6= k2, and ‖z1‖ remains within the theoretical bound 2k−1
1 ‖δ‖ = 0.1

guaranteed in Lemma 4.2.

t[s]
0 10 20 30 40 50 60
0

0.05

0.1

0

0.05

0.1

‖z2‖

‖ẑ3‖

‖z1‖

(a) Time evolution of the backstepping error norms
when γ(t) = 0 for every t ∈ R≥0 and δ = [0 0 0.1]⊤.
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0

1

2

3
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0.05

0.1

‖z2‖

‖ẑ3‖

‖z1‖

(b) Time evolution of the backstepping error norms
when γ(t) = 30 sin t for every t ∈ R≥0 and δ =

[0.15 − 0.05 0.1]⊤.

Figure 5. Comparison between time evolutions of the backstepping error norms for the deterministic open-
loop fixed-point tracking under different levels of richness in signals.

To check Assumption 2 for the simulation when γ(t) = 0 for every t ∈ R≥0 and

δ = [0 0 0.1]⊤, we invoke the program presented in Appendix E, which returns no
feasible ∆t > 0 that satisfies the Assumption, no matter how small ǫ > 0 may be.
This is due to the fact that the specific choice c with c1 = 0, c2 = c4 = 03×1 leads to
violation of Assumption 2. This fact is rigorously analyzed for (49)-(52) and can also
be extracted from the program by noticing that c ∈ Null

(∫ τ
t Aζ(σ)dσ

)
for any t ≥ t0

and τ ≥ t.

7.2. Stochastic open-loop fixed-point tracking

In this simulation, we select the reference position pd(t) = [0 0 0]⊤ for every t ∈ R≥0,
external disturbances b = [0 0 0]⊤, the function γ in (36) to be γ(t) = 30 sin t for
every t ∈ R≥0, and δ = [0.15 − 0.05 0.1]⊤. We add to the system (6) white Gaussian
noises. Specifically, we consider open-loop estimation of the following plant dynamics
corrupted by white Gaussian noises:

ṗ(t) = R(t)v(t),

Ṙ(t) = R(t)S(ω(t)),

v̇(t) = −S(ω(t))v(t) + gR⊤(t)e3 +m−1R⊤(t)b−m−1T (t)e3 + np,v(t),

ω̇(t) = −J−1S(ω(t))Jω(t) + J−1τ (t) + np,ω(t),

(58)

where the process noise np(t) = [n⊤
p,v(t) n

⊤
p,ω(t)]

⊤ ∈ R
6 is zero-mean Gaussian pro-

cesses with covariance E[np(t)n
⊤
p (t)] = diag([10−31⊤3 1⊤3 ]

⊤). Similarly, the measured
output is corrupted by white Gaussian noises:

y(t) =

[
v(t) + nm,v(t)
ω(t) + nm,ω(t),

]
(59)

where the measurement noise nm(t) = [n⊤
m,v(t) n

⊤
m,ω(t)]

⊤ ∈ R
6 is zero-mean Gaussian

processes with covariance E[nm(t)n⊤
m(t)] = 10−2I6. Note that the process noise np(t)
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and the measurement noise nm(t) are chosen to be uncorrelated.
We compare the estimator performance under different noise covariance matrices.

The estimator performance is evaluated based on the signal-to-noise ratio defined as

SNR =
∥∥∥PζC

⊤
ζ R

−1
ζ

∥∥∥ , (60)

which is essentially the maximum singular value of the gain Kζ in (8), see (May-
beck, 1979, Chapter 5.11) for details. For sake of simplicity in presentation, we de-
fine Rζ = 10−2I6 as the baseline measurement noise covariance matrix and Qζ =

diag([10−31⊤3 1⊤3 0.51⊤4 501⊤3 5 ·1051⊤3 ]
⊤) as the baseline process noise covariance ma-

trix.
In Table 2, the mean values of the SNR in steady state for different combinations

of the covariance matrices are presented. Under the same Qζ , a smaller Rζ leads to
a larger mean SNR. Under the same Rζ , a larger Qζ leads to a larger mean SNR.
These phenomena meet our expectation in the sense that the noises will be greater
attenuated if we have more trust about the certainty of the measurement.

Table 2. Attenuation of noises in steady state under different covariance matrices

Rζ 0.01Rζ 0.1Rζ 0.1Rζ Rζ 10Rζ 10Rζ 100Rζ

Qζ 0.1Qζ 0.1Qζ Qζ Qζ Qζ 10Qζ 10Qζ

mean SNR(·103) 30.43 7.47 29.00 9.27 2.91 9.24 2.89

To check Assumption 2 for this simulation, we invoke the program presented
in Appendix E, recursively on the lower limit of the integral (48), namely t ∈
{0, 0.1, 0.2, . . . , 50}. The program return ∆t = 1.55 and ǫ = 0.001 that satisfy the
Assumption.

We remark here that though the notion of UCO in this paper is introduced for
deterministic settings, the very same definition here is used for stochastic settings as
well, see (Kamen & Su, 1999, Chapter 6.3). The same remark works for Section 7.4.
Therefore, we are allowed to check Assumption 2 without worrying the stochastic
nature of these simulations.

7.3. Deterministic closed-loop fixed-point tracking

In this simulation, we select the reference position pd(t) = [0 0 0]⊤ for every t ∈ R≥0,
external disturbances b = [0 0 0]⊤, the function γ in (36) to be γ(t) = 30 sin t for
every t ∈ R≥0, and δ = [0.15 − 0.05 0.1]⊤. For sake of simplicity in presentation,
we define Rζ = 10−2I6 as the baseline measurement noise covariance matrix and

Qζ = diag([10−31⊤3 1⊤3 0.51⊤4 501⊤3 5 · 1051⊤3 ]
⊤) as the baseline process noise covari-

ance matrix.
Under different combinations of Rζ and Qζ, we compare convergence rates of the

estimates by presenting the decay of the associated Lyapunov functions V e
1 : R≥0 ×

R
16 → R and V e

2 : R≥0 × R
4 → R defined by

V e
1 (t, ζ̃) = ζ̃

⊤
P−1

ζ (t)ζ̃ (61)
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for the parameter estimator for ξ, and

V e
2 (t, η̃) = p−1

m (t)m̃2 +

3∑

i=1

p−1
ji

(t)j̃2i (62)

for the parameter estimator for η.
As witnessed in Fig. 6a and Fig. 6b, a smaller Rζ implies faster convergence rate

of the Lyapunov function V e
1 , while a larger Qζ implies faster convergence rate of the

Lyapunov function V e
1 . However, this relationship is not that clear for the convergence

rate of the Lyapunov function V e
2 . These phenomena can be analyzed by considering

the time derivative of the Lyapunov functions, namely:

V̇ e
1 (t, ζ̃) = −ζ̃

⊤
(P−1

ζ (t)QζPζ(t) +C⊤
ζ R

−1
ζ Cζ)ζ̃, (63)

hence a smaller Rζ or a larger Qζ can speed up the convergence; and

V̇ e
2 (t, η̃) =− m̃2(p−2

m (t)qm + ξ̂21(t)r
−1
m )− 2r−1

m ξ̂1(t)ξ̃1(t)mm̃

−

3∑

i=1

(
j̃2i (p

−2
ji

(t)qji + (e⊤i ξ̂4(t))
2r−1

ji
) + 2r−1

ji
(e⊤i ξ̂4(t))(e

⊤
i ξ̃4(t))jij̃i

)
,
(64)

hence V̇ e
2 is dominated by the second order term when η̃ is large, but is dominated by

the first order term when it becomes smaller. Therefore, the convergence rates of V e
2

are indistinguishable during the initial transients, but is more affected afterwards.
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Figure 6. Comparison between time evolutions of the Lyapunov functions V e
1

and V e
2

in (61) and (62) for
the deterministic closed-loop fixed-point tracking under different noise covariance matrices (in log scale).

It is also interesting to see the time evolution of the backstepping error norm ‖z1‖ for
the simulations above. A smaller Rζ or a larger Qζ contributes to shorter transients
of the backstepping error norm ‖z1‖, which is due to a faster parameter adaption
as shown above. Despite initial errors, z1 stays within a ball around zero of radius
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about 0.08 m after the initial transient for about 5 seconds. It is clear that the steady
state error of is smaller than the theoretical infimum of the ultimate bound, namely
infθ3∈(0,1) θ

−1
3 λ−1

3 (K)α‖δ‖ = 1.596, that appears in the proof of Theorem 6.1.
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(a) Time evolution of the backstepping error norm
‖z1‖ under different Rζ with fixed Qζ = Qζ .
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Figure 7. Comparison between time evolutions of the backstepping error norm ‖z1‖ for the deterministic
closed-loop fixed-point tracking under different noise covariance matrices.

To check Assumption 2 for this simulation, we invoke the program presented
in Appendix E, recursively on the lower limit of the integral (48), namely t ∈
{0, 0.1, 0.2, . . . , 50}. The program return ∆t = 1.65 and ǫ = 0.001 that satisfy the
Assumption.

7.4. Stochastic closed-loop lemniscate tracking

In this simulation, we select the function γ in (36) to be γ(t) = 30 sin t for every
t ∈ R≥0, δ = [0.15 −0.05 0.1]⊤, the external disturbances b = [−0.3 0.2 −0.1]⊤. The
reference trajectory is a tilted lemniscate defined as

pd(t) = Rx(φ)




ℓd sinψ(t) cosψ(t)

(cosψ(t))2 + 1
ℓd sinψ(t)

(sinψ(t))2 + 1
−ℓd




(65)

for every t ∈ R≥0, where

ψ̇(t) =
vd(t)

ℓd

√
sin2(t) + 1 (66)

with vd(t) ∈ R≥0 defining the desired linear speed at each instant, and

Rx(φ) =



1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)


 . (67)

We set φ = −10◦, ℓd = 1.2, and vd(t) = 0.8 for every t ∈ R≥0. We add to the system (6)
white Gaussian noises. Specifically, we consider open-loop estimation of the following
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plant dynamics corrupted by white Gaussian noises:

ṗ(t) = R(t)v(t),

Ṙ(t) = R(t)S(ω(t)),

v̇(t) = −S(ω(t))v(t) + gR⊤(t)e3 +R(t)⊤ξ2(t)− ξ1(t)T (t)e3 + np,v(t),

ω̇(t) = Ω(ω(t))ξ3(t) +U(τ (t))ξ4(t) + np,ω(t),

ξ̇(t) = np,ξ(t),

(68)

where the process noise np(t) = [n⊤
p,v(t) n

⊤
p,ω(t) n

⊤
p,ξ(t)]

⊤ ∈ R
16 is zero-mean Gaussian

processes with covariance E[np(t)n
⊤
p (t)] = npI16. Similarly, the measured output is

corrupted by white Gaussian noises:

y(t) =

[
v(t) + nm,v(t)
ω(t) + nm,ω(t),

]
(69)

where the measurement noise nm(t) = [n⊤
m,v(t) n

⊤
m,ω(t)]

⊤ ∈ R
6 is zero-mean Gaus-

sian processes with covariance E[nm(t)n⊤
m(t)] = 10−2I6. Note that the process noise

np(t) and the measurement noise nm(t) are chosen to be uncorrelated. Moreover, we
select the measurement noise covariance matrix Rζ = 10−2I6 and the process noise co-
variance matrix Qζ = diag([101⊤13 1031⊤3 ]

⊤). This represents the practical case where
one is often quite certain about the statistics of the measurement noise but uncertain
about the statistics of the process noise. We select Pζ(0) = Qζ .

We compare time evolutions of the backstepping error ‖z1‖ under different process
noises whose magnitudes are controlled by np. As witnessed in Fig. 8a, with a larger
magnitude of the process noise, the steady-state backstepping error tends to increase.
However, the transients performance under different np is nearly indistinguishable.
This is due to the fact that we are fixing Pζ(0), Rζ , and Qζ, hence the convergence
rates are nearly the same in view of (63) and consequently the time evolutions during
the transients are nearly the same. For different np, the resulting mean signal-to-noise
ratio in steady-state turns out to be around 400, see (60). We remark here the stability
or boundedness of the backstepping errors is not analyzed for the stochastic setting.
The purpose of this simulation is to show practical feasibility of our method and
provide a foundation for further experimental verification.

Regarding the parameter estimator performance, we present the time evolutions of
V e
1 in (61) under different process noises whose magnitudes are controlled by np. As

witnessed in Fig. 8b, with a smaller magnitude of the process noise, the Lyapunov
function tends to decrease further to zero. It can be theoretically proved that, in
the stochastic setting like in the case here, the parameter estimator is asymptotically
unbiased, see (Kamen & Su, 1999, Theorem 6.2). Hence the Lyapunov function should
have been approaching to zero as time goes to infinity. However, this is not the situation
presented in Fig. 8b as V e

1 stops decreasing and begins oscillating, which is especially
obvious when np = 100. This phenomenon may comes from the fact that the noises
we generate in simulations are not exactly uncorrelated white Gaussian processes.

To check Assumption 2 for this simulation, we invoke the program presented
in Appendix E, recursively on the lower limit of the integral (48), namely t ∈
{0, 0.1, 0.2, . . . , 50}. The program return ∆t = 1.05 and ǫ = 0.001 that satisfy the
Assumption.
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punov function V e

1
in (61) for the stochastic closed-loop lemniscate tracking under process noises of different

magnitudes.

8. Experimental Setup

Once the overall closed loop system including the interconnected system of the pro-
posed parameter estimator and controller has been simulated and its performance
assessed, the rapid prototyping and testing setup at the SCORE laboratory Sen-
sor based Cooperative Robotics Research (SCORE) laboratory, at the Department
of Electrical and Computer Engineering of the Faculty of Science and Technology,
University of Macau. http://score.fst.umac.mo/ (2018), University of Macau, was
used to experimentally validate our algorithm. Experiments were conducted in a
MATLAB/Simulink environment that integrated an optical motion capture system
Vicon Motion Systems Ltd. https://www.vicon.com/ (2018), and radio commu-
nication with the quadcopter. The quadcopter used for the experiments is a ra-
dio controlled BLADE 200QX. The vehicle has a flying weight of 0.217 kg (batter-
ies, radio receiver, and motion capture markers included) and an inertia matrix of
10−4diag([6.5 6.5 13]) kg m2. It has four brushless motors which drive four propellers
located at the end of each arm.

The experimental quadcopter lacks on-board sensors and the state of the quad-
copter must be estimated resorting to external sensors. To this end, we placed six
motion capture markers on the quadcopter. Meanwhile, the indoor motion capture
system VICON is able to locate and measure the positions of the markers accurately,
from which the position and orientation of the vehicle are obtained. VICON is a high
performance system that is able to operate with sub-millimeter accuracy at up to
120 Hz. The performance of VICON is such that the linear velocity can be well esti-
mated from the position measurements by a simple backwards Euler difference, with
relatively low noise level. These measurements are then used to compute command
signals, namely thrust and angular velocity, that control the motion of the quadcopter.

A graphical representation of the overall architecture is shown in Fig. 9. We used
three computer systems, one running the Vicon motion tracking software; a second one
consisted of the controller and the estimator which generates the command signals to
be sent to the third computer through Ethernet; the third one receives the command
signals and sends them through serial port to the RF module at time intervals of
45ms. This is mainly to avoid jitter in the transmission of the serial port signals to
the RF module when running all the systems in the same computer which can lead to
erratic communication with the quadcopter.
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Figure 9. Quadcopter integrated measurement and command architecture.

9. Experimental Results

We performed two types of experiments in order to test the performance of the pro-
posed controller. The first type has the same control task as in Section 7 to track a
lemniscate trajectory. The second type aims to test adaptivity of the controller during
hovering by adding extra weight to the quadcopter.

9.1. Tracking of a lemniscate trajectory

The lemniscate remains the same as that of Section 7. Figure 10 displays the reference
trajectory and the actual position of the quadcopter, in which we can see that the
vehicle is able to track the reference trajectory closely despite the initial position
error. Time evolution of each backstepping error is shown in Fig. 11. Besides the
decreasing tendency of the position error, both velocity errors are witnessed to decease
in norm and then stay within some neighborhood around zero. The calculated root
mean square of ‖z1‖, ‖z2‖, and ‖ẑ3‖ in steady state are 0.06 m, 0.21 m s−1, and 6.95
s−1, respectively. Reasons for these relative large (compared to the theoretical ultimate
bound) steady state errors are manifold. On one hand, there are unmodeled dynamics
of the quadcopter model, e.g., inner control loop that is assumed to operate sufficiently
fast. On the other hand, the command signal sent to the quadcopter is obtained using
the integral of the computed torque along time.

Figures 12a, 12b, 12c, and 12d show the performance of the estimator for ξ. The
estimate errors |ξ̃1|, ‖ξ̃3‖, and ‖ξ̃4‖ tend to zero as time increases. Since we do not

have direct measure of ξ2, ‖ξ̂2‖ gives an estimate for the external force disturbances

with a magnitude of roughly 0.06N. The oscillation pattern of ‖ξ̂2‖ could be highly
correlated with our choice of reference trajectory, which is periodic in time with period
2π. Figures 13a and 13b show the performance of the estimator for η. It is clear that
m̂ and ĵ approach their actual values as time increases.

Actuation signals T̂ and τ̂ are shown in Fig. 14, in which there is a surge for both
signal during the initial transients due to of the estimated parameters.
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Figure 11. Time evolution of backstepping error norms.

9.2. Adding weight while hovering

The hovering point is chosen as pd(t) = [0 0 − 0.8]. While the quadcopter stayed
closely to the fixed point, we attached an extra weight of 0.045 kg on top at around
35.2 seconds. This instant is marked with a gray line in subsequent figures.
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It can be seen from Fig. 15 that the position error suffers an increase in magnitude
(around 0.05 m) when the extra weight is attached, but soon decreases and stays
therein. The velocity errors are less influenced by this extra weight and are therefore
not presented. Before adding the extra weight, the calculated root mean square of
‖z1‖, ‖z2‖, and ‖ẑ3‖ in steady state are 0.04 m, 0.18 m s−1, and 6.60 s−1, respectively.
After adding the extra weight, their root mean square are 0.04 m, 0.18 m s−1, and
6.55 s−1, respectively.
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Figure 15. Time evolution of position error norm.

Comparing to other estimates, ξ̂1 and m̂ undergoes more obvious change when the
extra weight is added, as seen in Fig. 16 and Fig. 17. Before and after adding the
extra weight, the amount of change in ξ̂1 corresponds to a mass change of around
1

4.35 −
1

5.32 ≈ 0.042 kg while the change in m̂ is around 0.231− 0.188 ≈ 0.043 kg. Both
quantities reflect the adaptive feature of the proposed controller that reacts against
the extra weight of 0.045 kg.
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Figure 16. Time evolution of the estimate ξ̂1.

The thrust force signal is shown in Fig. 18, in which it increases in magnitude to
bear the extra weight.

For comparison, a separate experiment was done with a controller using static mass
and inertia parameters, proposed in Xie, Yu, Cabecinhas, Cunha, and Silvestre (2021).
Both the hovering point and the mass of the extra weight keep unchanged, resulting
in the time evolution of the position error norm presented in Fig. 19. It is clear that
the position error increases in magnitude when the extra weight is attached at around
23.5 seconds and goes from the old steady state with a calculated root mean square
of 0.05 m to a new steady state with a calculated root mean square of 0.11 m. This
demonstrates the effectiveness of the parameter estimator proposed in this paper,
which contributes to adaptivity of our controller.
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10. Conclusion

This paper presented a solution to the problem of trajectory tracking for quadcopter
subject to parametric uncertainties and disturbances. A Kalman-Bucy filter based
parameter estimator is designed on top of a backstepping controller to recover the
unknown parameters, including the mass, the external force disturbances, and the
moment of inertia. Under certain observability condition, we prove exponential stabil-
ity of the estimator and uniform ultimate boundedness of the interconnected system
consisting of the plant, the parameter estimator, and the backstepping controller.
Through extensive simulations and experiments, we verified: (a) exponential stabil-
ity of the open-loop parameter estimator in deterministic setting; (b) global practical
stability of the open-loop nominal controller in deterministic setting; (c) practical sta-
bility of the interconnected system in deterministic setting; (d) asymptotic unbiased
property and robustness of the open-loop/closed-loop parameter estimator in stochas-
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tic setting; (e) adjustment of the estimation convergence rate through tuning the noise
covariance matrices; (f) the versatility and usefulness of the program we developed to
check the uniform complete observability condition; (g) robustness of the proposed
control scheme against added mass that results in payload change in flight tasks. The
future works extending the results in this paper are the following: studying a generic
matrix rather than a diagonal one that represents the moment of inertia; investigat-
ing the role of γ in satisfaction or violation of the uniform complete observability
condition; deriving conditions for stability of the interconnected system in stochastic
settings; designing control laws for regulation of the yaw dynamics.
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Appendix A. Proof of Lemma 2.2

Proof. To obtain the desired conclusion, it would suffice to ensure that the estimation
error ζ̃ in (9) converges globally exponentially to the origin. This is true if the pair
(Aζ ,Cζ) is UCO, in light of (Jazwinski, 1970, Theorem 7.4) and (Bucy & Joseph, 1968,
Theorem 5.4). Then, we just need to show that (Aζ ,Cζ) is UCO. The arguments in
the sequel resemble those of (Batista et al., 2011, Theorem 4). Given the structure of
Φ in (7), we obtain

W(t, t+∆t) =

∫ t+∆t

t
Φ⊤(τ, t)C⊤

ζ R
−1
ζ CζΦ(τ, t)dτ

=

∫ t+∆t

t
[In

∫ τ

t
Aξ(σ)dσ]

⊤R−1
ζ [In

∫ τ

t
Aξ(σ)dσ]dτ.

(A1)

Then the quadratic form d⊤W(t, t + ∆t)d in Definition 2.1 with a unit vector d ∈
R
n+m is computed as

d⊤W(t, t+∆t)d =

∫ t+∆t

t

∥∥∥R−1/2
ζ

[
In

∫ τ
t Aξ(σ)dσ

]
d
∥∥∥
2
dτ. (A2)

Since W(t, t + ∆t) is a definite integral of continuous bounded functions of time, for
every chosen ∆t ∈ R>0, there exists a χ ∈ R>0 that satisfies the right-hand side of
(11) for every t ≥ t0 and every unit vector d ∈ R

n+m. Consider a partition of an
arbitrary unit vector d = [d⊤

1 d⊤
2 ]

⊤ with d1 ∈ R
n and d2 ∈ R

m. If d1 6= 0n×1, then

∥∥∥R−1/2
ζ

[
In

∫ t
t Aξ(σ)dσ

]
d
∥∥∥ =

∥∥∥R−1/2
ζ d1

∥∥∥ > 0 (A3)

for every t ≥ t0. An application of (Batista et al., 2011, Proposition 2) leads to the
existence of χ1,∆t1 ∈ R>0 satisfying

d⊤W(t, t +∆t1)d ≥ χ1 (A4)

for every t ≥ t0 and for every unit vector d. If d1 = 0n×1, then (A2) can be rewritten
as

d⊤W(t, t +∆t)d =

∫ t+∆t

t

∥∥∥∥R
−1/2
ζ

∫ τ

t
Aξ(σ)d2dσ

∥∥∥∥
2

dτ, (A5)

whose integrand is positive due to the inequality (12) by letting d2 = c. Applying
(Batista et al., 2011, Proposition 2) again gives χ2 ∈ R>0 and ∆t2 ∈ (0, τ ] that satisfy

d⊤W(t, t +∆t2)d ≥ χ2 (A6)
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for every t ≥ t0. Choosing χ large enough such that χ−1 ≤ min{χ1, χ2}, we conclude
that (Aζ ,Cζ) is UCO holds true, which implies global exponential convergence of the

estimate ζ̂ of the Kalman-Bucy filter (8) to the state ζ of the system (6).

Appendix B. Proof of Lemma 2.5

By (16), we have the following statements:

∃T1 > 0∀t ≥ T1, σ1(t) = Σ1, (B1)

∃T2 > 0∀t ≥ T2, σ̃2(t) ≤ θ2Σ2, (B2)

∀ǫ > 0∃T3 > 0∀t ≥ T3, σ3(t) ≤ ǫ, (B3)

where θi ∈ (0, 1) for each i ∈ {1, 2, 3} and σ̃2 : R≥0 → R defined by σ̃2(t) = σ2(t)−Σ2.
Hence, (15) can be rewritten as

U(x, t) =−

(
1−

3∑

i=1

θi

)
Σ2 ‖x‖

2

− (θ1Σ2 ‖x‖ − Σ1) ‖x‖ − (θ2Σ2 + σ̃2(t)) ‖x‖
2 − (θ3Σ2 − σ3 ‖x‖) ‖x‖

3

(B4)

for every t ≥ T1. Select T = max{T1, T2, T3} > 0, c =
(
1−

∑3
i=1 θi

)
Σ2 > 0, a =

Σ1θ
−1
1 Σ−1

2 > 0, b = θ3Σ2ǫ
−1 > 0, we have that

U(x, t) ≤ −c ‖x‖2 (B5)

for every t ≥ T and for every x such that a ≤ ‖x‖ ≤ b. Note that ǫ can be made
sufficiently small to satisfy a < b.

Appendix C. Proof of Lemma 4.2

Proof. We summarize the error dynamics driven by control laws defined in (38) and
(44) as

ż1(z1, z2, t) =− k1z1 +R(t)(z2 + δ),

ż2(z, t) =− k2z2 + S(δ)z3 + S(z2)ω,

ż3(z2, z3) =− k3z3 + β−1S(δ)z2,

(C1)

where z := [z⊤1 z⊤2 z⊤3 ]
⊤ and ω can be written in terms of z, R, p̈d, and t in virtue of

(39). We first study the system above by examining the Lyapunov candidate function
given in (42), rewritten as

V3(z) :=
1

2
αz⊤1 z1 +

1

2
z⊤2 z2 +

1

2
βz⊤3 z3 (C2)
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for every z ∈ R
9, where α ∈ (0, 4k1k2), with its time derivative along the solution to

(C1), given in (45), rewritten as

V̇3(z, t) =− αk1z
⊤
1 z1 − k2z

⊤
2 z2 − βk3z

⊤
3 z3 + αz⊤1 R(t)(z2 + δ)

≤− λ3(K) ‖z‖2 + α ‖δ‖ ‖z‖

≤ − (1− θ)λ3(K) ‖z‖2 , ∀ ‖z‖ ≥ θ−1λ−1
3 (K)α ‖δ‖ ,

(C3)

where the matrix

K :=



αk1 −

1

2
α 0

−
1

2
α k2 0

0 0 βk3


 (C4)

is positive definite and θ ∈ (0, 1). By (Khalil, 2002, Theorem 4.18), the solution to
(C1) exists and is uniformly bounded for every t ∈ R≥0. Next, we study the (z2, z3)-
subsystem. Consider the Lyapunov candidate function

V4(z2, z3) :=
1

2
z⊤2 z2 +

1

2
βz⊤3 z3 (C5)

for every [z⊤2 z⊤3 ]
⊤ ∈ R

6, whose time derivative along the solution to the (z2, z3)-
subsystem in (C1) is

V̇4(z2, z3) = −k2z
⊤
2 z2 − βk3z

⊤
3 z3, (C6)

from which we conclude global exponential stability for the origin of the (z2, z3)-
subsystem in (C1) by (Khalil, 2002, Theorem 4.10). Finally, consider the Lyapunov
candidate function (27), whose time derivative along the solution to z1-subsystem in
(C1), driven by input z2, is

V̇1(z1, z2, t) = −αk1z
⊤
1 z1 + αz⊤1 R(t)(z2 + δ)

≤−
1

2
αk1 ‖z1‖

2 − α ‖z1‖ (
1

2
k1 ‖z1‖ − ‖z2‖ − ‖δ‖)

≤−
1

2
αk1 ‖z1‖

2 , ∀ ‖z1‖ ≥ 2k−1
1 (‖z2‖+ ‖δ‖).

(C7)

The stated conclusion on the uniform ultimate unboundedness of z1 follows from
(Khalil, 2002, Theorem 4.19), by noticing that z2(t) → 0 as t → ∞. By (29), (39),
(38), and (44), we conclude that v, ω, T , and τ are bounded on R≥0.
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Appendix D. Proof of Theorem 6.1

Proof. We summarize the error dynamics driven by control laws defined in (56) and
(57) as

ż1(z1, z2, t) =− k1z1 +R(t)(z2 + δ),

ż2(ẑ, t, ξ̃, η̃) =− k2z2 + S(δ)ẑ3 + S(z2)ω + f(z1, z2, t, ξ̃, η̃),

˙̂z3(ẑ, t, ξ̃, η̃,
˙̃
ξ) =− k3ẑ3 + β−1S(δ)z2 + g(ẑ, t, ξ̃, η̃,

˙̃
ξ),

(D1)

where ẑ := [z⊤1 z⊤2 ẑ⊤3 ]
⊤, and ω can be written in terms of ẑ, R, p̈d, ξ̂, and t. The

functions f and g are error terms induced by using estimates of parameters rather
than their actual values but satisfy

‖f(z1, z2, t, ξ̃, η̃)‖ ≤

1∑

i=0

ρf,i(ξ̃, η̃)‖ẑ‖
i, ‖g(ẑ, t, ξ̃, η̃,

˙̃
ξ)‖ ≤

2∑

j=0

ρg,j(ξ̃, η̃)‖ẑ‖
j (D2)

for every (ẑ, t, ξ̃, η̃,
˙̃
ξ) ∈ R

9 ×R≥0 ×R
10 ×R

4 ×R
10, where each function ρf,i and ρg,j

is non-negative with respect to its arguments. Now consider the Lyapunov candidate
function in the same form as (C2), defined as

V̂3(ẑ) :=
1

2
αz⊤1 z1 +

1

2
z⊤2 z2 +

1

2
βẑ⊤3 ẑ3 (D3)

for every ẑ ∈ R
9, where α ∈ (0, 4k1k2) plays the same role as in the proof of Lemma

4.2. Lengthy but straightforward computations show that the time derivative of (D3)
along the solution to (D1) satisfies

˙̂
V 3(ẑ, t) = −αk1z

⊤
1 z1 − k2z

⊤
2 z2 − βk3ẑ

⊤
3 ẑ3 + αz⊤1 R(t)(z2 + δ)

+ z⊤2 f(z1(t), z2(t), t, ξ̃(t), η̃(t)) + βẑ⊤3 g(ẑ(t), t, ξ̃(t), η̃(t),
˙̃
ξ(t))

≤ −σ2(t) ‖ẑ‖
2 + σ1(t) ‖ẑ‖+ σ3(t) ‖ẑ‖

3

(D4)

for every t ∈ R≥0. For simpler presentation of the functions σ1, σ2, and σ3, we introduce
the function

sC,n(x, y) :=
∑

i,j∈{1,2,...,n+1}

cijx
i−1yj−1 (D5)

to denote the 2n-th order bivariate polynomial in x ∈ R and y ∈ R with non-negative
coefficient cij ∈ R≥0 being the entry of C ∈ R

(n+1)×(n+1) on the i-th row and j-th
column, while c11 = 0. Using such notation, we present the following definitions (time
dependence is omitted):

σ1 := 3 sup{α‖δ‖, sC1,1(‖ξ̃‖, ‖η̃‖), sC2,3(‖ξ̃‖, ‖η̃‖)},

σ2 := λ3(K) + λ3(K̃),

σ3 := 6 sup
i∈{8,9,10,11,12,13}

sCi,1(‖ξ̃‖, ‖η̃‖),

(D6)
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where K is defined in (C4) and

K̃ :=




0 −κ12 −κ13
−κ12 κ2 −κ23
−κ13 −κ23 κ3


 (D7)

with κ2 := sC3,1(‖ξ̃‖, ‖η̃‖), κ3 := sC4,2(‖ξ̃‖, ‖η̃‖), κ12 := sC5,2(‖ξ̃‖, ‖η̃‖), κ13 :=

sC6,2(‖ξ̃‖, ‖η̃‖), and κ23 := sC7,2(‖ξ̃‖, ‖η̃‖). We remark here that, to obtain the ex-

pression of σ2, Lemma 2.3 is invoked in the deduction of (D4), namely λ3(K+ K̃) ≥

λ3(K) + λ3(K̃).
Since Assumption 2 holds, it follows from Lemma 2.2 that the estimators for ξ

and η are exponentially stable. By Lemma 2.4, the eigenvalues of a matrix depend
continuously on the entries of the matrix. Then it follows from continuity of K̃ that
λ3(K̃) is a continuous function of t. Since each entry of K̃ converges to 0 as time

approaches infinity, λ3(K̃) also converges to 0 as time approaches infinity. We are now
in the condition of Lemma 2.5 where Σ1 = α‖δ‖ and Σ2 = λ3(K), in view of (D6). A
careful deduction reveals the existence of T > 0 such that

˙̂
V 3(ẑ, t) ≤ −

(
1−

3∑

i=1

θi

)
λ3(K) ‖ẑ‖2 (D8)

for every t ≥ T and every ẑ such that θ−1
3 λ−1

3 (K)α‖δ‖ ≤ ‖ẑ‖ ≤ θ1λ3(K)ǫ−1, where
θi ∈ (0, 1) for each i ∈ {1, 2, 3} and ǫ > 0 is picked to be sufficiently small. It follows
from (Khalil, 2002, Theorem 4.18) that the solution to (D1) is uniformly ultimately
bounded by 2λ−1

3 (K)α‖δ‖.

Appendix E. Program for Checking the Premise of Lemma 2.2
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Algorithm 1 Algorithm for checking the premise of Lemma 2.2

Input: t 7→ Aξ(t) (extracted from simulations), MaxSam (maximum sampling time
for numerical solvers), tf (stopping time), AbsTol (absolute tolerance for numerical
solvers)

Initialization: t0 = 0, ǫ = 0.01, ∆t ≥ MaxSam
1: numerical integration Ai

ξ(t0,∆t) ≈
∫ τ
t Aξ(σ)dσ

2: solve for all c⋆ ∈ Null
(
Ai

ξ(t0,∆t)
)
on the unit sphere

3: for all c⋆ do
4: generate random sample c on the unit sphere near c⋆

5: while
∥∥∥Ai

ξ(t0,∆t)c
∥∥∥ ≤ ǫ and t0 +∆t ≤ tf do

6: increase ∆t
7: end while
8: return ∆t
9: end for

10: find ∆t, the maximum of all ∆t
11: repeat
12: above procedures by increasing t0 and record each ∆t
13: until t0 +∆t ≥ tf/2

14: find ∆t, the maximum of all ∆t

15: if ∆t ≤ tf/2 then

16: print fulfillment of the premise of Lemma 2.2 with ǫ and ∆t = ∆t
17: else
18: print violation of the premise of Lemma 2.2, try decreasing ǫ ≥ AbsTol
19: end if
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