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Abstract— This paper addresses the problem of estimating
the state of a nonlinear system from measurements that are
perturbed by a random source of noise. The Extended Kalman
Filter is a type of all-purpose filter that tries to solve this
problem by dealing with a linearized version of the system. A
new methodology proposed in [1], named Unscented Kalman
Filter, is presented. It uses the so-called unscented transforma-
tion to better describe the stochastic evolution of the state of
the system. The aim of this paper is to compare and discuss the
performance of each filter when applied to state estimation of
a simplified model of the DELMAC autonomous surface craft.

I. INTRODUCTION

A fundamental problem in control is that of estimating
the state of a general nonlinear system. The knowledge of
the state of the system is important by itself but it may also
be of great interest to a controller that seeks to stabilize the
system.

For linear systems that are observable and perturbed by
additive zero-mean Gaussian white-noise, the problem has
an optimal solution: the Kalman Filter (KF) [2]. The KF
is optimal in a minimum mean squared sense and has a
recursive form making it easy to implement. A straight-
forward extension for the nonlinear case is the Extended
Kalman Filter (EKF). The EKF propagates the statistics that
describe the state of the system (mean and covariance) by
considering a linearized version of the original nonlinear
system so that the standard KF equations can be applied.
One consequence of this approach is that both stability and
optimality guarantees of the optimal filter are lost.

In [1], a new approach is proposed to generalize the
KF to nonlinear systems which consist of using the so-
called unscented transformation to propagate the mean and
covariance of the state of the system in a different manner.
The authors claim that this new filter, named Unscented
Kalman Filter (UKF), has an expected performance superior
to that of the EKF. Since the original paper was published,
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further developments and improvements have been made, as
summarized in [3] and [4].

More formally, consider a discrete-time nonlinear system
or plant, described by

xk+1 = f(xk,uk, ξk)

zk = g(xk,θk)

where xk is the system’s state at time tk, denoted for the
sake of compactness as k, uk is the input applied to the
system, ξk is the process noise associated to disturbances,
zk is the measured output of the system, and θk represents
measurement or observation noise. The initial state of the
system is assumed to be described by

x0 ∼ N (x̄0,Σ0)

where x̄0 = E{x0} and Σ0 = E{(x0 − x̄0)(x0 − x̄0)>}.
The optimal solution of the estimation problem in the

minimum mean squared error sense can not be described
by a finite number of parameters. However, under some
simplifying assumptions (namely, that the distribution of xk
is Gaussian at time k), only the mean and covariance need to
be propagated and this propagation is given by the recursive
equations

x̂k+1|k+1 = (prediction of xk+1)

+ Hk+1[zk+1 − (prediction of zk+1)]

Pk+1|k+1 = Pk+1|k −Hk+1Pz̃k+1
H>k+1

where x̂k|k and Pk|k are the mean and covariance of xk,
Pk+1|k is the prediction of the covariance of xk+1, Pz̃k

is the covariance of z̃k = zk − ẑk with ẑk denoting the
predicted value of zk, and Hk is the filter gain. The optimal
terms in the recursion are given by

x̂k+1|k = E{f(x̂k|k,uk, ξk)}
ẑk+1 = E{h(x̂k+1|k,θk)}

Hk = Pxkzk
P−1z̃k

where x̂k+1|k and ẑk+1 are the predictions of xk+1 and
zk+1, respectively, and Pxkzk

is cross-covariance of xk and
zk. For the linear case, the KF computes all these terms
exactly. As we will see, the EKF and the UKF use different
methods to find an approximate solution.

Although both the EKF and the UKF can handle the
general nonlinear case where the noises have arbitrary dis-
tributions, for the sake of simplicity, in this paper we will
only consider systems with process and measurement noise
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that are additive and independent zero-mean Gaussian white-
noise sequences. That is, the system can be written as

xk+1 = f(xk,uk) + Lkξk

zk = g(xk) + Dkθk

and the noise signals satisfy

E{ξk} = 0

E{θk} = 0

}
for k = 0, 1, 2, . . .

cov[ξi; ξj ] = Ξδij

cov[θi;θj ] = Θδij

cov[ξi;θj ] = 0

 for all i, j

We will denote this as ξk ∼ N (0,Ξ) and θk ∼ N (0,Θ).
The paper is organized as follows. In Section II, we

summarize the EKF structure. In Section III, we describe the
unscented transformation and its role in development of the
UKF. Most of the theoretical content of Sections II and III is
adapted from [4], with a few simplifications and adaptations
in the notation. For comparison purposes, in Section IV an
illustrative example based on a simplified model of a real
vehicle is introduced. Simulation results using both filters
are presented and differences in performance are discussed.
Finally, some concluding remarks are given in Section V.

II. THE EXTENDED KALMAN FILTER

In this case, the predictions are approximated as

x̂k+1|k = f(x̂k|k,uk)

ẑk+1 = g(x̂k+1|k)

which is the same as assuming that the expected value
operator E{·} commutes with both f and g. To propagate the
covariance, the EKF resort to the linearization of the system
about the current estimated state

xk+1 ≈ Âkxk + Lkξk

zk+1 ≈ Ĉkxk + Dkθk

where

Âk =
∂f

∂x

∣∣∣∣
x=x̂k
u=uk

Ĉk =
∂g

∂x

∣∣∣∣
x=x̂k
u=uk

Note that these matrices must be computed at every time step.
It is then a matter of applying the KF covariance propagation
scheme to obtain the EKF equations.

Initialization: x̂0|0 = x̄0,P0|0 = Σ0

Main cycle: for k = 0, 1, 2, . . .

1) Predict step:

x̂k+1|k = f(x̂k|k,uk)

Pk+1|k = ÂkPk|kÂ
>
k + LkΞL>k

2) Measurement update step:

ẑk+1 = g(x̂k+1|k)

Hk+1 = Pk+1|kĈ
>
k

[
ĈkPk+1|kĈ

>
k + DkΘD>k

]−1
x̂k+1|k+1 = x̂k+1|k + Hk+1(zk+1 − ẑk+1)

Pk+1|k+1 =
[
I−Hk+1Ĉk

]
Pk+1|k

The need to compute Jacobians may be troublesome
and computationally intensive for some nonlinear functions.
Next, we present an alternative algorithm that although its
main focus is on predicting the mean and covariance more
accurately, its implementation is more straightforward.

III. THE UNSCENTED KALMAN FILTER

A. The unscented transformation
The unscented transformation (UT) is a method for cal-

culating the statistics of a random variable which undergoes
a nonlinear transformation. Consider propagating a random
variable x (of dimension L) through a nonlinear function
z = f(x). Assume x has mean x̄ and covariance Px.
To calculate the statistics of z, we start by generating a
set of points, called sigma points, whose sample mean and
covariance match those of x. The nonlinear function f(·) is
then applied to each of these sigma points that yields a set
of transformed points. The predicted mean and covariance
of z are then computed from these transformed points.
At first sight, this may resemble a Monte Carlo method.
However, the sample points are not drawn at random: they
are deterministically chosen so that they capture specific
information about the distribution.

Formally, the UT consist of the following steps.

1) Form the set of 2L+ 1 sigma points from the columns of
the L× L matrix

√
(L+ λ)Px, as follows

X0 = x̄

Xi = x̄+
(√

(L+ λ)Px

)
i
, i = 1, . . . , L

Xi = x̄−
(√

(L+ λ)Px

)
i−L, i = L+ 1, . . . , 2L

where (X)i denotes the ith column of matrix X, and
compute the associated weights

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/{2(L+ λ)}, i = 1, . . . , 2L

2) Transform each of the sigma points as

Zi = f(Xi), i = 0, . . . , 2L

3) Mean and covariance estimates for z are computed as

z̄ =

2L∑
i=0

W
(m)
i Zi

Pz =

2L∑
i=0

W
(c)
i (Zi − z̄) (Zi − z̄)

>



4) The cross-covariance of x and z is estimated as

Pxz =

2L∑
i=0

W
(c)
i (Xi − x̄) (Zi − z̄)

>

The UT has several tuning parameters:
• λ = α2(L+ κ)− L is a scaling parameter;
• α determines the spread of the sigma points around x̄

and is usually between 1 and 10−4;
• κ is a secondary scaling parameter which is usually set

to 0 or 3− L; and,
• β is used to incorporate prior knowledge of the distribu-

tion of x (for Gaussian distributions, β = 2 is optimal).
The only computationally intensive operation in the UT

is the computation of a matrix square root in Step 1. This
operation can be efficiently executed by using a Cholesky
decomposition.

Note that we can represent the unscented transformation
as a function with the following syntax

[z̄,Pz,Pxz] = UT{f(·), x̄,Px}

B. UKF equations

The UKF is a discrete-time filtering algorithm that uses
the UT for computing approximate solutions to the state-
estimation problem. The UT used twice: once in the predict
step and again in the measurement update step in order to
propagate the mean and covariance through functions f(·)
and g(·), respectively. The initialization is the same as the
one performed by the EKF.

Initialization: x̂0|0 = x̄0,P0|0 = Σ0

Main cycle: for k = 0, 1, 2, . . .

1) Predict step:

[x̂k+1|k,Pk+1|k] = UT{f(·, ·), x̂k|k,Pk|k}
Pk+1|k = Pk+1|k + LkΞL>k

2) Measurement update step:

[ẑk+1,Pz̃,Pxz] = UT{g(·), x̂k+1|k,Pk+1|k}
Pz̃ = Pz̃ + DkΘD>k

Hk+1 = PxzP−1z̃

x̂k+1|k+1 = x̂k+1|k + Hk+1(zk+1 − ẑk+1)

Pk+1|k+1 = Pk+1|k −Hk+1Pz̃Hk+1

The UKF uses the maps f and g directly and is therefore
derivative-free which makes it easier to implement. Like the
EKF, there is also a continuous version of the UKF filter.
See [5] for details.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the DELMAC autonomous surface craft (ASC),
represented in the Fig. 1, moving along straight lines. A
simplified model that describes its movement is given by
the nonlinear differential equation

mẍ(t) + a1ẋ(t)|ẋ(t)|+ a2ẋ
3(t) = b(u(t) + w(t))

Fig. 1. The DELMAC autonomous surface craft.

where m is the mass of the vehicle, x(t) and ẋ(t) denote
the position and velocity of the vehicle, respectively, u(t)
represents the force generated by the propulsion system, a1,
a2, and b are drag force and propulsion coefficients. The term
w(t) represents an external disturbance, which is caused by
waves, that affects the propulsion system.

A. Plant model

Let x1(t) = x(t) and x2(t) = ẋ(t). Then, the ASC
dynamics can be written as

ẋ1 = x2

ẋ2 = −a1
m
x2|x2| −

a2
m
x32 +

b

m
(u+ w)

The waves are described by their power spectral density

Φww(ω) =
100ω2

81ω4 + 18ω2 + 1

This kind of disturbance can be generated by applying zero-
mean Gaussian white-noise to a LTI system described by the
transfer function

H(s) =
10s

9s2 + 6s+ 1

or equivalently, by a state-space representation of it such as

ẋw1 = xw2

ẋw2 = −1

9
xw1 −

2

3
xw2 +

1

9
ξw

w = 10xw2

where xw(0) ∼ N (0,Σw0) with

Σw0 =

[
0 0
0 1

81

]
and ξw(t) ∼ N (0, 1).

Lets assume that onboard the ASC there are two sensors:
one measuring x1 and another measuring x2. The first sensor
is modeled as

z1 = x1 + θ1



where θ1(t) ∼ N (0, σ2
1), and the second one as

z2 = x2 + θ2

where θ2 ∼ N (θ̄2, σ
2
2) with θ̄2 = 0.001m/s. Since θ2 is

not zero mean, we must write it as the output of the linear
system

ẋs = 0 θ2 = xs + σ2ξs

where xs(0) = θ̄2 and ξs ∼ N (0, 1).
The parameters a1, a2, and b of the ASC are assumed un-

known and must be estimated by the filter. For this purpose,
we introduce three new state variables x3, x4, and x5 that
represent the parameters a1, a2, and b, respectively. That is,
ẋ3(t) = ẋ4(t) = ẋ5(t) = 0, x3(0) = a1, x4(0) = a2, and
x5(0) = b.

Merging plant, waves, and sensors models into one single
system with state variable

x =
[
x1 x2 x3 x4 x5 xw1 xw2 xs

]>
we get the dynamics

ẋ =



x2
− 1
m

(
x3x2|x2|+ x4x

3
2 + x5(u+ 10xw2)

)
0
0
0
xw2

− 1
9xw1 − 2

3xw2 + 1
9ξw

0


with output function

z =

[
x1 + σ1ξs1

x2 + xs + σ2ξs2

]
where ξw(t) ∼ N (0, 1) and ξs(t) ∼ N (0, I2).

Since the state is to be estimated resorting to discrete-
time versions of the introduced filters, the model must
be discretized. To this end, the original continuous-time
(extended) plant

ẋ(t) = f(x(t), u(t), ξw(t))

z(t) = g(x(t), ξs(t))

is discretized using a step size (or sampling period) of h
seconds,

x((k + 1)h) = x(kh) + hf(x(kh), u(kh), ξw(kh))

From here on, we will write xk for x(kh). Applying this
discretization procedure to our system, we get

xk+1 = xk + hf(xk, uk, ξw,k)

with output function

zk =

[
x1,k + σ1

h ξs1,k
x2,k + xs,k + σ2

h ξs2,k

]
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Fig. 2. Control input applied to the system.

The matrices needed by the EKF, which are obtained by
linearization, are

Âk = I8 + h
∂f

∂x

∣∣∣∣x=x̂k
u=uk
ξw=0

Lk = h
[
0 0 0 0 0 0 1

9 0
]>

Ĉk =

[
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1

]
Dk =

1

h

[
σ1 0
0 σ2

]
,Ξ = 1,Θ = I2

where ∂f
∂x is shown at the top of next page.

B. Simulation results

The sampling period was set to h = 2s. The control input
u(t) applied to the system is shown in Fig. 2. The initial
state of the system was randomly generated according to
x(0) ∼ N (x̄0,Σ0) where

x̄0 =
[
0 2 x̂3(0) x̂4(0) x̂5(0) 0 0 θ̄2

]>
and

Σ0 = diag(20, 5, 10, 5, 5, 0,
1

81
, 0)

We ran simulations for 4 different configurations of parame-
ters and sensor covariances. The parameters and their initial
estimates belong to one of the two following sets

P1 = {a1 = 25, a2 = 0, b = 1;

x̂3(0) = −5, x̂4(0) = 0, x̂5(0) = 10}
P2 = {a1 = 25, a2 = 2, b = 1;

x̂3(0) = −5, x̂4(0) = −5, x̂5(0) = 10}
while the sensor covariances belong to one of the two
following sets

S1 = {σ2
1 = 1m2, σ2

2 = 0.04(m/s)2}
S2 = {σ2

1 = 10m2, σ2
2 = 0.4(m/s)2}

For each configuration, 10 independent simulations of dura-
tion 1000s were carried out and the results were averaged.



∂f

∂x
=



0 1 0 0 0 0 0 0

0 − 1
m (2x3|x2|+ 3x4x

2
2) − 1

mx2|x2| − 1
mx

3
2

1
m (u+ 10xw2) 0 10

mx5 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 − 1
9 − 2

3 0

0 0 0 0 0 0 0 0


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Fig. 3. Evolution of E{x2} for configuration (P2, S2).
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Fig. 4. Evolution of E{x3} for configuration (P2, S2).

The evolution of the excepted values of the states x2, x3,
x4, and x5 for configuration (P2,S2) are show in Figs.3–6.
The evolution of the expected value of the error squared is
plotted in Fig. 7.

To compare the two filters, we computed the root-mean-
squared (RMS) state error values as

(x̃)RMS =

√√√√ 1

N

N−1∑
k=0

E{x̃2k}
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Fig. 5. Evolution of E{x4} for configuration (P2, S2).
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Fig. 6. Evolution of E{x5} for configuration (P2, S2).

for the scalar case and

(x̃)RMS =

√√√√ 1

N

N−1∑
k=0

E{x̃>k x̃k}

for the vector case. We did this for each state variable and
then for the full state. The values obtained are given in Table
I.

C. Discussion

By looking at Fig. 3, it is impossible to see a clear
difference between the two filters, as both expected values
seem to overlap as time progresses. When it comes to
estimating the parameters, both filters have similar evolutions



TABLE I

RMS VALUES OF BOTH FILTERS FOR DIFFERENT PARAMETER AND SENSOR CONFIGURATIONS.

Parameters Sensors Filter
RMS values

x̃1 x̃2 x̃3 x̃4 x̃5 x̃w1 x̃w2 x̃

P1

S1
EKF 4.092 0.187 7.556 — 0.739 4.390 1.319 9.769

UKF 4.095 0.187 7.528 — 0.739 4.386 1.318 9.747

S2
EKF 5.079 0.449 9.763 — 0.952 3.169 1.028 11.547

UKF 5.064 0.449 9.700 — 0.950 3.169 1.028 11.487

P2

S1
EKF 3.882 0.198 9.939 3.016 0.753 4.384 1.328 12.022

UKF 3.881 0.197 9.516 2.718 0.751 4.352 1.319 11.588

S2
EKF 5.146 0.499 11.345 5.222 1.067 3.333 1.059 14.003

UKF 5.029 0.497 10.610 4.450 1.045 3.278 1.050 13.071
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Fig. 7. Evolution of E{x̃>x̃} for both filters with parameters P2 under
both sensor characteristics.

and although both of them correctly estimate a1 (Fig. 4), the
estimates of parameters a2 (Fig. 5) and b (Fig. 6) are biased.

If we look at the evolution of the expected error squared
(Fig, 7), we see that both filters perform better with lower
noise covariances as expected, that is, lower RMS values are
achieved using sensor characteristics S1. We also start to see
some differences in the performance of both filters, has the
evolution of the squared error of the UKF is most of the
time below that of the EKF. Table I shows us that there is
an actual decrease of the RMS values when the UKF filter
is used. Although for some configurations the performance
of both filter is basically the same, in others there is a clear
overall improvement that does not seem to be evenly spread
by all state variables.

A clear gain in performance by the UKF seems to be
only visible in “very” nonlinear systems and under severe
noise regimes. Only when the term x32 is included in the
dynamics of the ASC (that is, when P2 is selected), does
the difference in performance between both filters stands
out. If the measurement equations or output functions were
also nonlinear, a more distinguishable change may have been
visible.

V. CONCLUSION

We addressed the problem of estimating the state of a
nonlinear system perturbed by additive sources of zero-
mean Gaussian white-noise. The Extended Kalman Filter
solves this problem by dealing with a linearized version of
the system and then applying the standard Kalman Filter
equations. A new filter called Unscented Kalman Filter
(UKF) is introduced, that uses the unscented transformation
to propagate the mean and covariance of the state in a
different manner. By resorting to a simplified model of a real
vehicle, a nonlinear system is derived and used to compare
the performance of both filters. It is shown that only when
more nonlinear terms are included or under severe noise
situations, does the gain in performance of the UKF stands
out.
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