
Tightly Coupled Ultrashort Baseline and Inertial
Navigation System for Underwater Vehicles: An
Experimental Validation

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

M. Morgado
Department of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal
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This paper presents a new ultrashort baseline (USBL) tightly coupled integration technique to enhance error
estimation in low-cost strapdown inertial navigation systems (INSs), with application to underwater vehicles.
In the proposed strategy, the acoustic array spatial information is directly exploited in an extended Kalman
filter (EKF) implemented in a direct feedback structure. Instead of using the USBL position fixes or computed
range and elevation/bearing angles to correct the INS error drifts, as in classical loosely coupled strategies, the
novel tightly coupled strategy directly embeds in the EKF the round-trip-time and time-difference-of-arrival
of the acoustic signals arriving at the onboard receivers. The enhanced performance of the proposed filtering
technique is evidenced both through extensive numerical simulations and with experimental data obtained in
field tests at sea. The tightly coupled filter is also shown to be able to operate closer to theoretical performance
lower bounds, such as the posterior Cramér-Rao lower bound, using Monte-Carlo simulations. This paper
details the design and description of an USBL/INS prototype to be used as a low-cost navigation system,
including the acoustic processing and positioning system, fully developed in-house. The developed system
validates the usage of the proposed technique with real data in real world operation scenarios, and its enhanced
performance compared to classical strategies is evaluated experimentally (median improvement level of 15%
in typical operating conditions). Improved and faster convergence to nominal trajectories from multiple initial
conditions, as well as enhanced accelerometer and rate gyros estimation capabilities, are also demonstrated
experimentally for the new tightly coupled filter. C© 2012 Wiley Periodicals, Inc.

1. INTRODUCTION

Worldwide, there has been an increasing interest in the use
of underwater vehicles to expand the ability to accurately
survey large ocean areas. Routine operations such as envi-
ronmental monitoring, surveillance, underwater inspection
of estuaries, harbors and pipelines, and geological and bi-
ological surveys—see Pascoal et al. (2000)—are tasks com-
monly performed at present either by remotely operated
vehicles (ROVs) or by autonomous underwater vehicles
(AUVs). The use of these robotic platforms requires low-
cost, compact, high-performance, robust navigation sys-
tems that can accurately estimate the vehicle’s position
and attitude. In fact, the design and implementation of
Direct correspondence to: M. Morgado, e-mail: marcomorgado@
isr.ist.utl.pt

navigation systems stands out as one of the most critical
steps toward the successful operation of autonomous ve-
hicles and marine robotic vehicles. The ability to perform
the aforementioned procedures at increasing depths, often
life-threatening or impossible for humans, makes marine
robotic vehicles stand out as one of the strongest areas of
investigation and efforts by the robotics scientific commu-
nity (Bowen et al., 2009; Jalving et al., 2003; Lurton and
Millard, 1994; Napolitano et al., 2005). For other interesting
and detailed surveys on underwater vehicle navigation and
its relevance, see Whitcomb (2000) and more recently Kin-
sey et al. (2006). This paper presents a new tightly coupled
integration technique to enhance error estimation in strap-
down inertial navigation systems (INSs) for underwater ve-
hicles, in which the acoustic array spatial information is di-
rectly exploited in the navigation system algorithm, while
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Figure 1. Typical mission scenario—an underwater vehicle, equipped with an INS and an inverted USBL array, interrogates a
nearby transponder and listens for its acoustic responses to obtain transponder relative position measurements.

focusing on low-cost and affordable high-performance nav-
igation platforms.

INSs provide a self-contained passive means for three-
dimensional positioning in the open ocean with excel-
lent short-term accuracy. However, unbounded position-
ing errors induced by the uncompensated rate gyro and
accelerometer errors degrade INS accuracy over time. This
performance degradation and the limitations inherent in
low-cost INSs, attributed to open-loop unbounded esti-
mation errors, uncompensated sensor noise, and bias ef-
fects, are often tackled by merging additional information
sources with nonlinear filtering techniques. Among a di-
verse set of techniques (Bar-Shalom et al., 2001; Crassidis,
2006), an extended Kalman filter (EKF) in a direct-feedback
configuration (Brown and Hwang, 1997; Vasconcelos et al.,
2011) is commonly adopted to estimate and compensate for
the accumulation of the INS integration errors. Within the
multitude of available aiding devices, such as inclinome-
ters, magnetic compasses, Doppler velocity loggers (DVLs),
depth pressure sensors, laser range finders, etc., the global
positioning system (GPS) is a very popular choice and a
commonly adopted solution in aerial and land-based ap-
plications (Grewal et al., 2007; Sukkarieh et al., 1999). The
opacity (i.e., high attenuation) of the ocean environment
to most electromagnetic signals makes acoustic propaga-
tion the preferable method to obtain practical range mea-
surements. Other practical navigation methodologies that
do not use acoustics typically involve surfacing the vehicle
regularly to obtain intermittent GPS corrections (Yun et al.,
1999). Available underwater acoustic positioning systems
(Milne, 1983; Vickery, 1998)—such as long baseline (LBL)
systems, which entail cumbersome and time-consuming in-
stallation and calibration procedures; hull-mounted short
baseline (SBL) systems, which have to be rigidly mounted
to a vessel hull and are affected by the natural bending
of the hull; and finally ultrashort baseline (USBL) systems,
which provide factory-calibrated and fast deployable sys-
tems that are suited for low-cost navigation systems—stand
often as the primary choice for underwater positioning
(Jaffré et al., 2005; Kinsey and Whitcomb, 2004; Lee et al.,
2004; Miller et al., 2010; Smith and Kronen, 1997).

This paper addresses the synthesis and design of mod-
ern navigation systems with application to underwater ve-
hicles, focusing on small arrays of acoustic receivers as the
main sensor suite installed onboard the underwater vehi-
cle, in particular with what is known as an USBL acous-
tic positioning system (Milne, 1983). The considered mis-
sion scenarios are illustrated in Figure 1, which displays
an underwater vehicle that is equipped with an INS and
an USBL array in an inverted USBL configuration (Vick-
ery, 1998) that interrogates a single nearby transponder lo-
cated in a known position of the vehicle’s mission area, en-
gaging in interrogations over considerable distances rang-
ing typically from a few meters to several kilometers. This
interrogation scheme to obtain the round-trip-time (RTT)
of travel of the acoustic waves allows for the use of low-
cost clocks onboard the vehicle to obtain driftless range
measurements. Recent advances in underwater navigation
relying on synchronous one-way travel times of acous-
tic waves, available from costly higher precision oscilla-
tors, were presented by Eustice et al. (2011). In addition to
paving the way for future fully autonomous systems that
do not require surface mission support vessels, inverted
USBL configurations allow for the sound velocity to be con-
sidered constant while operating in the same underwater
layer as the transponders (for instance, bottom operation
while interrogating a bottom placed transponder). These
kinds of inverted configurations also allow for other un-
derwater autonomous routine operations, such as under-
water interventions as well as homing and docking to un-
derwater stations (Jaffré et al., 2005; Sanz et al., 2010). An
overview of USBL/INS tightly coupled technology entry
points into underwater navigation is presented in Figure 2,
where the solution presented herein is built upon state-of-
the-art inverted USBL loosely coupled solutions and intro-
duces enhanced performance through full tightly coupled
INS/USBL configurations. The claimed performance en-
hancement of the novel tightly coupled solution is demon-
strated in comparison with the state-of-the-art loosely cou-
pled USBL, which also estimates the INS inertial sensors
biases, whereas classical and substandard solutions are not
considered.
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Figure 2. Overview of coupling technologies on USBL/INS sensor fusion—classical structures, in which the USBL array tracks un-
derwater vehicles while mounted on surface vessels, need to relay the positioning information through cables or acoustic modems.
Classical and substandard INS solutions typically do not estimate the inertial sensor biases resulting in very poor performance,
while state-of-the-art technology offers improved navigation capabilities by moving the USBL array onboard the underwater vehi-
cle (inverted USBL) and estimating rate gyros and accelerometer biases. The solution presented herein builds upon state-of-the-art
inverted USBL loosely coupled solutions and introduces enhanced performance through full tightly coupled USBL and INS con-
figurations.

1.1. Motivation

Typical USBL/INS integration techniques, usually referred
to as loosely coupled (Grewal et al., 2007), rely on solv-
ing positioning and sensor fusion problems separately,
not taking into account the acoustic array geometry in
the navigation system. The new proposed tightly coupled
USBL/INS integration strategy directly exploits the acous-
tic array spatial information, resorting to an EKF in a direct-
feedback configuration. A loosely coupled system is com-
monly known in the literature (Grewal et al., 2007) as a
modular system in which each module is able to operate
on its own and can be easily decoupled from the others.

A typical example of a loosely coupled system is a
GPS positioning device providing world coordinate posi-
tion fixes, whereas an INS provides open-loop integration
of the inertial sensors, and the information fusion is per-
formed a posteriori. In this framework, the INS does not
have any prior knowledge on what kind of position fix al-
gorithm is being applied to the pseudoranges measured to
each orbiting satellite, nor is the GPS aware of to which en-
tity it is providing information. In a tightly coupled con-
figuration, both entities are aware of each other’s existence
and cooperate, in some sense, to provide enhanced per-
formance to the end-user. In a tightly coupled system, the
GPS system directly provides the measured satellite pseudo
ranges to the INS algorithm, whereas the INS algorithm es-
timates, among other inertial system errors, the user clock
bias and drift, propagation delays, errors derived from at-
mospheric effects, and other associated GPS errors (Grewal
et al., 2007). Tightly coupled approaches for the GPS/INS
navigation problem for aerial and land vehicles have been

addressed previously in the literature (Knight, 1997; Yi and
Grejner-Brzezinska, 2006). Nevertheless, to the best of our
knowledge, this paper and the work presented herein rep-
resents the first time that a tightly coupled strategy has
been applied to underwater navigation using small arrays
of acoustic receivers such as an USBL positioning system.

1.2. Paper Organization

The paper is organized as follows: The core USBL acous-
tic positioning sensor is first described in Section 2, and the
main aspects of the navigation system and the proposed
architecture are presented in Section 3. The EKF-based in-
ertial error model is introduced in Section 3.1, and both
the new tightly coupled and classical loosely coupled in-
tegration strategies are detailed in Section 3.2 while imple-
mentation and discretization details are briefly outlined in
Section 3.3. Section 4 provides an analysis based on nu-
merical simulation results and a comparison to theoretical
performance lower bounds, namely the posterior Cramér-
Rao lower bound (PCRLB). The prototype system design
is presented in Section 5 and the experimental evaluation
and validation of the proposed technique is reported in
Section 6. Finally, Section 7 presents some concluding re-
marks and comments on future directions of research.

2. ULTRASHORT BASELINE POSITIONING SYSTEM

This section introduces the main sensor suite adopted
in this work. The USBL sensor consists of a small and
compact array of acoustic transducers that allows for the
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computation of a transponder position in the vehicle coor-
dinate frame, based on the travel time of acoustic signals
emitted by the transponder (Milne, 1983). This travel time is
obtained from the RTT of travel of acoustic signals from the
pinger installed on the vehicle to the transponder placed at
a known position and back to the receivers on the USBL ar-
ray. Taking into account the quantization performed by the
acoustic system, and assuming that the transponder per-
forms a similar acoustic processing, the RTT to each of the
receivers on the USBL array is given by

tRTT i = [t̄p + εt ]Ts
+ t̄d + [t̄r i + εc + εd i]Ts

,

where t̄p is the nominal travel time from the pinger on the
vehicle to the transponder, t̄r i is the nominal travel time
from the transponder to the ith acoustic receiver, [·]Ts

rep-
resents the acoustic sampling quantization

[x]Ts
= Ts round(x/Ts), x ∈ R,

where Ts is the acoustic sampling period (and consequently
the maximal available time-resolution), and round(·) is
the standard mathematical round-to-nearest-integer opera-
tor. The terms εt and εc represent, respectively, the noise
at the transponder and at the receivers (common to all
receivers—it includes transponder-receiver relative motion
time-scaling effects and errors in sound propagation veloc-
ity), and εd i captures additional differential error sources,
much smaller than the common mode errors. The response
delay time t̄d is considered to be known, so it can be re-
moved upon reception of the signals.

The measurements of transponder-receivers travel
times are commonly obtained by dividing the RTT by 2,
as suggested in Milne (1983). It is then reasonable to con-
sider, under the vehicle stationary assumption during the
interrogation/reply cycle (valid for short interrogation dis-
tances and slow vehicle speed such as those considered in
this work) and neglecting the small time difference induced
by the position of the onboard acoustic trigger/pinger rela-
tive to the receiving array, that the travel times between the
transponder and the receivers can be computed by remov-
ing the known reply delay on the transponder and half of
the average measured RTT,

tr i = tRTT i − t̄D − 〈tRTT〉/2,

where 〈tRTT〉 is the average of the RTT given by 〈tRTT〉 =∑nr

i=1 tRTT i . Thus, for the sake of simplicity, the range mea-
surements between the transponder and the receivers in-
stalled onboard the vehicle (as measured by the USBL de-
vice) ρi are assumed to be

ρir = vptr i + ηc + ηd i,

where vp is the underwater sound speed, assumed to be
known and constant for confined mission scenarios, ηc rep-
resents the measurement noise induced by the common er-
ror to all receivers, and the term ηd i represents the differ-
ential noise induced by the additional error sources and the

Figure 3. USBL system reference frames—the body-fixed co-
ordinate frame is rigidly attached to the vehicle, while the
Earth-fixed reference frame is attached to a fixed point on the
mission area. The centroid of the onboard receivers serves as
the reference point for the USBL reference frame. The north,
east, and down axes in the Earth-fixed reference frame {E} are
represented, respectively, by the letters n, e, and d.

acoustic quantization performed by the USBL system. As
depicted in Figure 3, the position of the transponder in the
vehicle coordinate frame is given by

r = RT (s − p), (1)

where the matrix R ∈ SO(3) is the shorthand notation for
the body {B} to Earth {E} coordinate frames rotation ma-
trix E

BR, the operator (·)T represents the matrix transpose
[thus RT ∈ SO(3) represents the inverse rotation matrix
from {E} to {B}], r ∈ R

3 is the position of the transponder
in {B} , s ∈ R

3 is the position of the transponder in Earth-
fixed coordinates, and p ∈ R

3 is the position of the vehicle
in Earth-fixed coordinates. Let {U} denote the coordinate
frame attached to the USBL receiving array, which is cen-
tered at the centroid of the receivers such that

nr∑
i=1

U bi = 0,

where U bi ∈ R
3 denotes the position of the receiver in the

USBL coordinate frame {U} , and nr is the number of in-
stalled receivers on the array. The distances between the
transponder and the receivers installed onboard the vehi-
cle (as measured by the USBL device) can be written as

ρi = ‖U bi − U r‖, (2)

where U r ∈ R
3 is the position of the transponder in {U} .

The installation of the USBL array on the vehicle can be
described by a transformation defined in the special Eu-
clidean group SE(3) that relates vectors in {U} to vectors
in {B} . Let U x be a vector in {U} , B

U R be the installation
rotation matrix between {U} and {B} , and BpU be the in-
stallation position offset between {U} and {B} . The repre-
sentation of U x in {B} is given by

Bx = BpU + B
U RU x,
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Figure 4. Navigation system block diagram—a direct-feedback loop in which an EKF dynamically estimates the INS errors and
inertial sensors biases, with the aid of external sensors. The work presented in this paper focuses mostly on the measurement
residual computation block and on the EKF observation models, to provide software-based improvements from the additional
TDOA information, available from the tightly coupled USBL positioning system.

which allows us to write

U x = B
U RT (Bx − BpU ). (3)

Applying the frame transformation from Eq. (3), the
distances between the transponder and the receivers in
Eq. (2) can be simply written in the {B} reference frame as

ρi = ∥∥B
U RT (bi − BpU ) − B

U RT (r − BpU )
∥∥

= ∥∥B
U RT (bi − r)

∥∥ = ‖bi − r‖, (4)

where bi ∈ R
3 denotes the position of the receiver in {B} .

Finally, using Eq. (1) in Eq. (4) yields

ρi = ‖s − p − Rbi‖. (5)

3. USBL-AIDED INERTIAL NAVIGATION SYSTEM

This section details the USBL-aided inertial navigation ar-
chitecture adopted in this work and presents the novel
tightly coupled USBL sensor fusion technique in Sec-
tion 3.2.2. The specific USBL sensor-based INS-aiding tech-
niques are presented in Section 3.2, and implementation de-
tails are provided in Section 3.3. The overall architecture is
briefly outlined here before introducing the EKF modeled
inertial error dynamics in Section 3.1. Appendix D provides
additional details on the internal structure of the INS algo-
rithm used herein.

The INS is the backbone algorithm that performs atti-
tude, velocity, and position numerical integration from rate
gyro and accelerometer triads data, rigidly mounted on the
vehicle structure (strap-down configuration). The nonideal

inertial sensor effects, due to noise and bias, are dynami-
cally compensated by the EKF to enhance the navigation
system’s performance and robustness. Position, velocity, at-
titude, and bias compensation errors are estimated by in-
troducing the aiding sensors data in the EKF, and are thus
compensated in the INS according to the direct-feedback
(Brown and Hwang, 1997) configuration shown in Figure 4.
The INS numerical integration algorithms adopted in this
work are based on the work detailed in Savage (1998a) and
Savage (1998b). Applications within the scope of this work
are characterized by confined mission scenarios and limited
operational time, allowing for a simplification of the frame
set to Earth and body frames and the use of an invariant
gravity model without loss of precision.

3.1. EKF Modeled Inertial Error Dynamics

In a stand-alone INS, bias and inertial sensor error com-
pensation is usually performed based on extensive offline
calibration procedures and data. The usage of filtering
techniques in navigation systems allows for the dynamic
estimation of inertial sensor nonidealities, bounding the
INS errors. From the myriad of existing filtering techniques,
such as particle filters and the unscented Kalman filter
(UKF), among others, the EKF is used in this work to es-
timate and compensate for the INS errors. The inertial er-
ror dynamics, based on perturbational rigid body kinemat-
ics, were brought to full detail by Britting (1971) and are
applied to local navigation by modeling the position, ve-
locity, attitude, and bias compensation errors dynamics,
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Figure 5. Overview of the sensor information being provided by the USBL to the INS in each of the two alternative sensor-fusion
filtering techniques—the loosely coupled version of the filter provides a position fix computed from the measured range and
direction of the transponder (computed as described in Appendix A), whereas the new tightly coupled technique directly exploits
the spatial information from the array, and provides the measured ranges from all receivers and all possible combinations of RDOA
measurements.

respectively,

δṗ = δv,

δv̇ = −Rδba − (Rar )×δλ + Rna,

δλ̇ = −Rδbω + Rnω,

˙δba = −nba
,

˙δbω = −nbω
, (6)

where the position and velocity linear errors are defined,
respectively, by

δp = p̂ − p, δv = v̂ − v, (7)

the matrix R ∈ SO(3) is the shorthand notation for the body
{B} to Earth {E} coordinate frame rotation matrix E

BR, and
the attitude error rotation vector δλ is defined by R(δλ) �
R̂RT and bears a first-order approximation,

R(δλ) � I3 + [δλ×] ⇒ [δλ×] � R̂RT − I3, (8)

of the direction cosine matrix (DCM) form [see Appendix
D for details on the usage of the DCM formulation in the
INS, and in particular Eq. (D1)]. In particular, the pro-
posed filter underlying the error model (6) includes the
sensor’s noise characteristics directly in the covariance ma-
trices of the EKF and allows for attitude estimation using
an unconstrained, locally linear, and nonsingular attitude
parametrization. Once computed, the EKF error estimates
are fed into the INS error correction routines as depicted in
Figure 4. The attitude estimate, R̂−

k , is compensated using
the rotation error matrix R(δλ) definition, which yields

R̂+
k = RT

k (δλ̂k)R̂−
k ,

where RT
k (δλ̂k) is parametrized by the rotation vector δλ̂k

[according to Eq. (D1) in Appendix D]. The remaining state
variables are linearly compensated using

p̂+
k = p̂−

k − δp̂k, v̂+
k = v̂−

k − δv̂k,

b̂+
a k = b̂−

a k − δb̂a k, b̂+
ω k = b̂−

ω k − δb̂ω k.

After the error correction procedure is completed, the EKF
error estimates are reset. Therefore, linearization assump-
tions are kept valid and the attitude error rotation vector
is stored in the R̂+

k matrix, preventing attitude error esti-
mates to fall in singular configurations. At the start of the
next computation cycle (t = tk+1), the INS attitude and ve-
locity/position updates are performed on the corrected es-
timates (λ̂+

k , v̂+
k , p̂+

k ).

3.2. USBL Sensor-based INS Aiding

To tackle INS error buildup, the EKF relies on observa-
tions from external aiding sensors to accurately estimate
the INS errors and correct them by relying on the direct
feedback mechanism presented herein. This section intro-
duces an external aiding technique based on the ranges and
range-difference-of-arrival (RDOA) measured by a USBL,
installed in an inverted configuration onboard the AUV
(Vickery, 1998). A more detailed overview of the informa-
tion flow, of both the state-of-the-art loosely coupled aiding
technique and the novel tightly coupled filter, can be seen
in the sequel in Figure 5.

Journal of Field Robotics DOI 10.1002/rob
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3.2.1. Loosely Coupled USBL/INS

The transponder position fix, as measured by the USBL and
described in Appendix A, can be described in body-fixed
coordinates by

Brr = RT (s − p) + nr, (9)

where s is the transponder’s position in an Earth-fixed co-
ordinate frame, p is the position of the body-fixed frame
origin in the Earth-fixed frame, and nr represents the rel-
ative position measurement noise, characterized by taking
into account the acoustic sensor noises and the USBL posi-
tioning system. The estimate of the relative position of the
transponder in the body-fixed frame can be computed us-
ing the INS a priori estimates R̂ and p̂ as follows:

B r̂ = R̂T (s − p̂).

Using the position error definition (7) and replacing the ro-
tation matrix R by the attitude error δλ approximation (8),
manipulation of Eq. (9) yields

Brr = B r̂ + R̂T δp + (R̂T δλ)×B r̂ + R̂T (δλ)×δp + nr. (10)

Thus, ignoring the second-order error term δλ × δp and us-
ing the properties of the cross product and skew-symmetric
matrices in Eq. (10) yields

Brr = B r̂ + R̂T δp − (B r̂)×R̂T δλ + nr.

The measurement residual used as observation in the
EKF is given by the comparison between the measured
transponder position fix and the estimated transponder po-
sition, leading to

δzr = Brr − B r̂ = R̂T δp − (B r̂)×R̂T δλ + nr. (11)

Finally, in order to correctly describe nr, a stochastic
linearization is performed on Eq. (11) (see Appendix B for
additional details on the stochastic linearization performed
on the residual position measurement).

3.2.2. Tightly Coupled USBL/INS

Classical loosely coupled strategies rely on position fixes
computed prior to the filtering state, based on the same
set of nonlinear range and RDOA measurements from the
USBL subsystem. In such traditional approaches, the po-
sitions of the receivers onboard are not explicitly known
by the filtering architecture. This section describes the
proposed tightly coupled technique used to aid the INS
with the USBL sensor information. The tightly coupled
USBL/INS integration strategy directly exploits the acous-
tic array spatial information to calculate the distances from
the transponders to each receiver on the USBL array, and it
feeds this information directly into the EKF.

Using the position and attitude error definitions (7)
and (8), respectively, yields for the range measurement of
receiver i in Eq. (5)

ρi = ‖s − p̂ + δp − R̂bi + (δλ)×R̂bi‖. (12)

Using the properties of the cross product and skew-
symmetric matrices in Eq. (12) yields

ρi = ‖s − p̂ + δp − R̂bi − (R̂bi)×δλ‖. (13)

To improve performance, the EKF is directly fed with range
measurements between the transponder and all receivers
onboard, and also the RDOA between all receivers. Alter-
natively, the filter may be driven by one range observation
and a set of independent RDOA measurements. The same
set of observations that are used by the USBL subsystem
to compute transponder position fixes are instead directly
provided to the tightly coupled filter. Thus, the filter has
direct knowledge of the receivers’ positions on the local
array and direct access to the raw range and RDOA mea-
surements. Ultimately, this direct connection allows the fil-
ter to extract better raw and unmodified information from
the acoustic measurements instead of relying on modified
or transformed data from the USBL positioning schemes.

3.2.3. Additional Vector Observation

This section introduces an additional vector observation to
improve the overall observability properties of the naviga-
tion system. The physical coupling between attitude and
velocity errors, evidenced in Eq. (6), also enables the use
of the USBL position fixes to partially estimate attitude er-
rors. However, as this physical attachment is invariant in
the body-fixed coordinate frame, the attitude error is not
fully observable solely from the rate gyros, accelerometers,
and USBL measurements.

As convincingly argued in Goshen-Meskin and Bar-
Itzhack (1992) for observability analysis purposes, a GPS-
only aided INS with bias estimation can be approximated
by a concatenation of piecewise time-invariant systems,
and, under that assumption, full observability is met by
performing specific manoeuvres along the desired trajec-
tory. Based on the observability theorem (Rugh, 1996), and
as discussed in Morgado et al. (2006), a local weak observ-
ability analysis of the system reveals that either stopped or
along a straight line path, full observability is only achieved
using at least three transponders (on a nonsingular geom-
etry) or two transponders and a magnetometer. Moreover,
along curves, two transponders or one transponder and a
magnetometer are sufficient to achieve full observability.
Interestingly enough, specific in-flight alignment manoeu-
vres, such as transitions between straight paths to curves,
excite the nonobservable directions of the system, turn-
ing the filter to full observability, as discussed in Goshen-
Meskin and Bar-Itzhack (1992). Practical observability in
real-world mission scenarios is nonetheless often achiev-
able given that external environmental disturbances (for
instance, underwater currents and the vehicle’s own con-
trol action to counteract disturbances) excite some unob-
servable directions. However, each specific manoeuvre of-
ten includes a subset of unobservable states, and hence

Journal of Field Robotics DOI 10.1002/rob



Morgado et al.: An Experimental Validation • 149

additional aiding sensors are of interest to improve full
state estimation. Recent work by Koifman and Bar-Itzhack
(1999) and Vasconcelos et al. (2011) has been directed
toward the inclusion of vehicle dynamic information to
strengthen the system observability.

Thus, the required extra attitude measurement can be
drawn from observations of Earth-fixed reference vectors,
with onboard sensors that measure the same quantity, in
body-fixed coordinates, as follows:

Bxr = RT Ex + nx,

where Ex is the nominal reference vector in Earth-fixed co-
ordinates, assumed known and locally constant, and nx is
the vector measurement noise. The vector-aiding measure-
ment residual is computed by comparing this vector obser-
vation to the same estimated quantity given the INS a priori
attitude estimate R̂ as

Bzc = Bxr − R̂T Ex = R̂T (R̂RT − I)Ex + nx (14)

in body-fixed coordinates, or in Earth-fixed coordinates as
Ezc = R̂Bxr − Ex = (R̂RT − I)Ex + R̂nx . (15)

Using the attitude error approximation (8) and the proper-
ties of the cross product in Eqs. (14) and (15) yields

Bzc = −R̂T (Ex)×δλ + nx (16)

in body-fixed coordinates, or in Earth-fixed coordinates as
Ezc = −(Ex)×δλ + R̂nx . (17)

The vector observation model in Eq. (16) or in Eq. (17)
can be particularized to any suitable vector sensor, such
as gyroscopic inclinometers and magnetometers. Other ex-
amples of vector observations can be found in the low-
frequency content of bias-compensated triads of a fiber op-
tic rate gyroscope (FOG) that are able to measure Earth’s
rotation vector, and in image- or sonar-based algorithms
that extract vector features from the environment. Magne-
tometers are typically used in the literature as heading sen-
sors providing only one angle measurement, whereas us-
ing a triad of magnetometers allows for the exploitation of
all information available from Earth’s magnetic field—i.e.
two angles when the local magnetic model includes both
the magnetic declination and inclination. Thus, a triad of
magnetometers is adopted in this work as a vector obser-
vation sensor providing measurements of the Earth’s mag-
netic field in body-fixed coordinates,

Bmr = RT Em + nx,

where Em is the nominal local magnetic field vector in
Earth-fixed coordinates, assumed known and locally con-
stant, and nm is the magnetometer measurement noise. The
magnetometers are considered to be calibrated and com-
pensated for bias, scale factors, and nonorthogonality of
the input axis prior to each mission, using, for instance,
attitude-independent batch processing methods (Alonso

and Shuster, 2002). Applying the observation models in
Eqs. (16) and (17) to the magnetometers triad yields

Bzc = −R̂T (Em)×δλ + nm (18)

in body-fixed coordinates, or in Earth-fixed coordinates as

Ezc = −(Em)×δλ + R̂nm. (19)

3.3. Implementation

This section presents the implementation details of the
proposed filters in a stochastic filtering setup, particularly
suited to be implemented in an EKF in a direct-feedback
structure as presented herein. A comparison of the informa-
tion flow of both the state-of-the-art loosely coupled aiding
technique and the novel tightly coupled filter can be seen
in Figure 5.

Without loss of generality, let any continuous-time
state space model be described as{

ẋc = Fc(xc)xc + Gc(xc)nxc
+ uc,

zc = Hc(xc)xc + nzc
,

where xc is the state vector, Fc is the state dynamics matrix,
nxc

is the state noise, Gc is the matrix that links the state
noise to the state evolution, uc is a vector that represents
the known deterministic inputs, and zc represents the vec-
tor measurements that relate to the state vector through the
matrix Hc and is disturbed by the observation noise vector
nzc

. The state and measurement noises are considered to
be zero-mean, uncorrelated, additive white Gaussian noise
(AWGN) processes, and with covariance matrices Qc and
Rc such that

E
{
nxc

(t)nxc
(τ )T

} = Qc(t)δ(t − τ ),

E
{
nzc

(t)nzc
(τ )T

} = Rc(t)δ(t − τ ). (20)

Specifying for the navigation system at hand, the state vec-
tor to be estimated consists of the inertial errors in position,
velocity, and attitude, and it also includes the inertial sensor
biases offsets as described in Section 3.1,

xc = δxins = [
δpT δvT δλT δba

T δbω
T
]

T ∈ R
15,

and the state model of the first-order INS error Eqs. (6)
given by

ẋc = δẋins = Fins(x̂)δxins + Gins(x̂)nins,

where nins = [
np

T na
T nω

T nba
T nbω

T
]

T ∈ R
15, np ∼ N

(0, �p) is a fictitious white-noise process associated with
the position integration error. This fictitious noise serves to
account for unmodeled dynamics in the filters, and it also
acts as a tuning knob on the filter, allowing for the tuning
of the frequency response of the filter from the inputs
to the position estimate. The matrices Fins ∈ R

15×15 and
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Gins ∈ R
15×15 are given by

Fins(x̂) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I3 0 0 0

0 0 −(R̂ar)× −R̂ 0

0 0 0 0 −R̂
0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Gins(x̂) = diag(I3, R̂, R̂,−I3, −I3),

where diag(·, . . . , ·) represents a block diagonal matrix. The
state noise covariance matrix is given by

Qins = diag(�p, �a, �ω, �ba , �bω
) ∈ R

15×15.

3.3.1. Magnetometer Vector Aiding

Although the measurement residuals (18) and (19) describe
the same attitude information, the linearized measurement
matrix for Eq. (19) is constant and the components of δλ can
be related directly with those of Em. The observation ma-
trix for the magnetometer vector observation is then given
by

Hc mag = [
0 0 −(Em)× 03×9

] ∈ R
3×15.

The measurement noise covariance matrix comes as

Rc mag = R̂�mR̂T ∈ R
3×3,

where �m is the covariance matrix of the white Gaussian
magnetometer noise nm ∼ N (0,�m).

3.3.2. Loosely Coupled USBL

The loosely coupled filter uses the USBL position fixes,
computed using the planar-wave approximation as de-
scribed in Appendix A, which are fed to the EKF to correct
the inertial errors in the INS and estimate the inertial sen-
sor biases. The EKF computes the measurement residuals
using Eq. (11), where a stochastic linearization is performed
to correctly describe the positioning error nr. Thus, the set
of measurements provided to the loosely coupled filter is
given by

zc USBL = δzr = Brr − B r̂.

Taking into account Eq. (11), the measurement Jacobian
Hc USBL ∈ R

3×15 is given by

Hc USBL = [
R̂T 03×3 −(B r̂)×R̂T 03×3 03×3

]
.

Based on a stochastic linearization of the USBL position fix,
described in Appendix B, the covariance matrix of the ob-
servation noise is given by

Rc USBL =
⎡
⎣Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

⎤
⎦ ,

where the matrix elements Vkj with k = x, y, z and j =
x, y, z are given by

Vkj = E{(g(ρ, dk) − E{g(ρ, dk)})}{(g(ρ, dj ) − E{g(ρ, dj )})}
= d̄k d̄jE{(ρ − ρ̄)2} + d̄kρ̄E{(ρ − ρ̄)(dj − d̄j )}

+ d̄j ρ̄E{(ρ − ρ̄)(dk − d̄k)}
+ ρ̄2E{(dk − d̄k)(dj − d̄j )}.

3.3.3. Tightly Coupled USBL

The tightly coupled USBL provides measurements of the
ranges between the transponder and the onboard receivers,
which are described using the INS estimates by Eq. (13).
The EKF is also fed with the set of RDOA between the re-
ceivers with a higher precision. Thus, the set of measure-
ments provided to the filter is given by the residuals

zc USBL = [
ρ1 · · · ρnm

ρ1 − ρ2 ρ2 − ρ3 · · · ρnr−1 − ρnr

]
T ,

where nm is the number of stand-alone measured ranges,
either one or the full set of nr measurements (nm ≤ nr ), and
the observation Jacobian is given by

Hc USBL

= [
Hu,1

T · · · Hu,nm

T Hu,1
T − Hu,2

T · · · Hu,nr−1
T − Hu,nr

T
]

T ,

where each component Hu,i ∈ R
1×15 is given by

Hu,i

=
[

(s − p̂ − R̂bi)T

‖s − p̂ − R̂bi‖
01×3

−(s − p̂ − R̂bi)T R̂(bi)×R̂T

‖s − p̂ − R̂bi‖
01×3 01×3

]
,

which is only well-defined for ρ̂i = ‖s − p̂ − R̂bi‖ > 0. The
measurement covariance matrix is defined as

Rc USBL =
[
σ 2

c 1nm×nm + σ 2
d Inm RT

cross

Rcross 2σ 2
d Inc

,

]
,

where nc is the number of combinations used for the set
of RDOA measurements, with nc ≤ C

nr

2 = nr (nr−1)/2. The
higher precision at which the RDOA are measured com-
pared to the actual ranges is expressed in the fact that
σ 2

c 
 σ 2
d . The covariance matrix Rcross is given by

Rcross =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
d −σ 2

d 0 0 · · · 0

σ 2
d 0 −σ 2

d 0 · · · 0
...

0 · · · 0 σ 2
d 0 −σ 2

d

0 · · · 0 0 σ 2
d −σ 2

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.3.4. Discretization

The implementation of the state-space model in a discrete-
time setting is easily obtained resorting to the classical zero-
order hold discretization method described in Gelb (1974),
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in which the inputs are regarded as constant during sam-
ple times of the discrete filter. The system state is given by
the INS error model xc = δxins, and the remaining quan-
tities are set by nxc = nins, Fc(x̂) = Fins(x̂), Gc(x̂) = Gins(x̂).
The state covariance in Eq. (20) is given by Qc = Qins. The
discrete state transition matrix is approximated by

�k(tk+1, tk) ≈ eFk (tk+1−tk ),

where Fk = Fc|t=tk (x̂+
k ) is evaluated at the updated state es-

timate x̂+
k , and e(·) represents the matrix exponential. The

measurements are provided to the filter by stacking the
observations from the magnetometer and the USBL when
each is available. The processing of the EKF allows for ei-
ther a batch-processing of the observations from several
asynchronous sensors or from stacking the observations
in the same measurement vector and adjusting the corre-
sponding measurement covariance matrices. The state esti-
mate is updated using the standard EKF state update equa-
tion

x̂+
k = x̂−

k + Kk

(
zk − h

(
x̂−
k

))
,

where Kk is the Kalman matrix gain, x̂+
k is the updated state

estimate, x̂−
k is the prior state estimate, zk are the aiding sen-

sor observations, and h
(
x−
k

)
is the set of predicted obser-

vations, evaluated at the prior state estimate. The Kalman
gain and remaining quantities are calculated using the stan-
dard EKF update and propagation equations (Gelb, 1974),

Kk = (
P−

k HT

k + Ck

)(
HkP−

k HT
k + Rk + HkCk + Ck

T HT

k

)−1
,

P+
k = (I − KHk)P−

k − KkCT

k ,

P−
k+1 = φkP+

k φT
k + Qk,

where P−
k is the prior state estimation error covariance ma-

trix, P+
k is the posterior corrected state estimation error co-

variance matrix, and Hk is the Jacobian matrix of the non-
linear observation equation h

(
x−
k

)
evaluated at the prior

state estimate as presented in the previous sections. The
matrices Rk and Qk are the discrete equivalents of, respec-
tively, the observations and state noise covariance matrices
from sample time tk to tk+1. Under the zero-order hold ap-
proximation, Rk and Qk are given by (Gelb, 1974)

Qk �
[
GkQc|t=tk GT

k

]
Ts,

Rk � Rc|t=tk /Ts,

where Gk = Gc|t=tk , and Ts = (tk+1 − tk) is the filter sample
time. As described in Section 3.1, the estimated INS errors
are passed on to the error-correction routines in the INS al-
gorithm and reset in the EKF maintaining valid all previous
linearisation assumptions.

4. NUMERICAL SIMULATION RESULTS AND
PERFORMANCE EVALUATION

The overall navigation system performance was assessed
in simulation using extensive Monte-Carlo simulations in
which the filtering setup and all the sensors are exposed to
different initial conditions and noise sequences. Prior to de-
tailing the numerical simulation tests and characteristics, a
brief overview of the theoretical bounds used in this work
to assess the performance of the proposed techniques is
presented below.

Theoretical performance bounds have long been pur-
sued as an important design tool that helps gauge the at-
tainable performance by any estimator based on preset
conditions of process observations and noise. This kind of
bound also provides an assessment of whether imposed
performance specifications are feasible. A commonly used
lower bound for time-invariant statistical models is the
Cramér-Rao lower bound, which provides a lower bound
on the estimation error of any estimator of an unknown
constant parameter of that particular statistical model. An
analogous bound for random parameters for nonlinear,
nonstationary system models, referred to as the Bayesian
Cramér-Rao lower bound (BCRB), was first derived in Van
Trees (1966) and carefully reviewed in Van Trees (1968) and
Van Trees and Bell (2007). A discrete-time version, known
as posterior Cramér-Rao lower bound (PCRLB), was intro-
duced in Van Trees (1968) and has proven to be a valuable
analysis tool to assess the performance of discrete-time dy-
namical estimators. It is also suitable for nonlinear, non-
stationary dynamical systems, as is the case of the work
presented herein, and it was recently used for point and
extended target tracking (Zhong et al., 2010). The solution
proposed in Van Trees (1968) did not allow, however, for an
efficient computation of the bound, and a recursive method
for an efficient computation of the PCRLB for the discrete-
time case was presented in Tichavskỳ et al. (1998). Readers
not familiar with the theory beyond the PCRB should fol-
low the review presented in Tichavskỳ et al. (1998) and ref-
erences therein. An overview of the PCRLB applied to this
work is provided in Appendix C.

The USBL receiving array has a baseline of approxi-
mately 30 cm and is composed of four receivers that are in-
stalled in the positions given by b1 = [ 0.2 −0.15 0 ]T m, b2 =
[ 0.2 0.15 0 ]T m, b3 = [ 0.4 0 0.15 ]T m, and b4 = [ 0.4 0 −0.15 ]T

m, with respect to the body-fixed coordinate frame {B} ,
where the inertial measurement unit (IMU) is also in-
stalled in a strap-down configuration. A schematic rep-
resentation of the USBL array can be found in Figure 5,
in Section 3, and the actual array can be seen in the se-
quel in Figure 11(b), in Section 5. The INS provides open-
loop integrated estimates of the platform position, veloc-
ity, and attitude with a frequency of 50 Hz, and the triad
of accelerometers is inspired by a realistic, commercially
available sensor package, the Crossbow® CXL02TG3 tri-
axial accelerometer, considered to provide specific force

Journal of Field Robotics DOI 10.1002/rob



152 • Journal of Field Robotics—2013

Figure 6. Vehicle trajectory.

measurements corrupted by additive uncorrelated, biased
white Gaussian noise, with a standard deviation of 0.6 mg
(that is, 5.886 × 10−3 m/s2 for a gravity constant of g ≈
9.81 m/s2). The rate gyros are also inspired by a realis-
tic sensor package, the Silicon Sensing CRS03 triaxial rate
gyro, and are thus considered to be disturbed by additive,
uncorrelated, biased white Gaussian noise, with a standard
deviation of 0.05 deg/s. A magnetometer is also used in
the proposed solution, as described in Section 3.2.3, and in-
spired by the commercially available Crossbow® CXM113
triaxial magnetometer, which is assumed to be calibrated
for bias, scale factors, and nonorthogonality of the input
axis, but is disturbed by AWGN with zero-mean and stan-
dard deviation of 60 μG. The range measurements between
the transponder and the reference receiver (receiver 1) are
considered to be disturbed by additive, zero-mean white
Gaussian noise, with 0.3 m standard deviation, while the
RDOA between receiver 1 and the other three receivers
is considered to be measured with an accuracy of 6 mm.
The transponder is located in local inertial coordinates at
s = [ 0 100 0 ]T m. The vehicle describes the trajectory de-
picted in Figure 6, and the inertial sensor biases were mod-
eled in simulation as unknown constants different from
zero, although in the filters the corresponding state vari-
ables are tuned to be slowly time varying. In practice, the
inertial sensor biases are actually slowly time varying with
unknown time constants, as will be seen in the experimen-
tal results analysis in Section 6.

To correctly compute the PCRLB for the specific nav-
igation systems in the analysis herein, the numerical inte-
gration algorithms are executed in a direct-feedback setting
without the EKF in the loop for several Monte-Carlo real-
izations of the inertial sensors AWGN disturbances. In each
integration step, the errors that arise from the inertial algo-

rithms are recorded for posterior evaluation of the PCRLB
and reset in the correction routines. Using this setup, the
evaluated PCRLB assesses the attainable performance of
any estimator that is placed in the direct-feedback loop. The
bound was computed with several points, in particular for

M={10, 20, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000},
(21)

with n = 12 elements and for each value i < n in the set,
compared against the bound computed with 1,000 points
(the last value of M). Thus, the plot in Figure 7 compares
the norm of the error of computing the bound with the first
n − 1 points of the set M in (21) compared to the bound
computed with 1,000 points (the last value of M). As illus-
trated in Figure 7, the bound computation error changes
significantly when computed with 100 points relatively to
10 or 20 points. The error to the bound computed with
1,000 points does not change significantly when computed
with either 800 or 900 points, leading to the conclusion
that computing the bound with 900 points is similar to
computing with 800, which indicates that a tight bound
has been found. The lower bound computed herein, i.e.,
the PCRLB, represents the best-case scenario of the attain-
able performance by any estimator given the trajectory of
the vehicle and the available sensors. This relation is well
established by the theory behind the PCRLB, briefly de-
scribed in Appendix C. Instead of having two separate
bounds for each USBL observation model—the loosely cou-
pled and the tightly coupled—a single bound that uses the
full nonlinear range equations between the vehicle and the
transponder is considered in the sequel. The reasoning be-
hind the usage of this single bound to gauge the attain-
able performance of both strategies lies in the fact that the
loosely coupled filter uses the same acoustic hydrophones
as the tightly coupled solution to compute the position of
the transponder. Ultimately, the loosely coupled transpon-
der positioning computation applies a transformation to
the underlying raw acoustic data, which is in part respon-
sible for the difference of performance between the two
strategies, which is what this study seeks to assess.

The loosely coupled and the tightly coupled fusion
techniques were compared to the PCRLB resorting to N =
100 Monte-Carlo runs in which all the sensors are subject
to different noise sequences and the filtering setup is ex-
posed to different initial conditions drawn from a normal
Gaussian distribution with zero mean and standard devi-
ations given by 5 m in position error, 0.5 m/s in velocity
error, 1 deg in attitude error; 0.0785 m/s2 in accelerometer
bias misalignment, and 10/3 deg/s in rate gyro bias mis-
alignment. The mean position error from the Monte-Carlo
evaluation of both strategies is compared in Figure 8(a)
where it can be confirmed that both strategies are unbiased
estimators for position. The performance enhancement of
the tightly coupled strategy is evident from the root-mean-
square (RMS) position estimation error comparison in
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Figure 7. Posterior Cramér-Rao bound Monte-Carlo evaluation with several evaluation points. The plot compares the norm of
the error of computing the bound with the first n − 1 points of the set M in Eq. (21) compared to the bound computed with 1,000
points (the last point of M). The bound computation error changes significantly when computed with 100 points relative to 10 or
20 points. The error to the bound computed with 1,000 points does not change significantly when computed with either 800 or 900
points, leading to the conclusion that computing the bound with 900 points is similar to computing with 800, which indicates that
a tight bound has been found.

Figure 8. Position mean and root-mean-square (RMS) estimation error for tightly coupled vs. loosely coupled comparison with
N = 100 Monte-Carlo runs. The performance enhancement in the position estimation accuracy of the tightly coupled strategy is
evident from the comparison with the loosely coupled one, where the tightly coupled EKF is shown to operate near the PCRLB as
opposed to the loosely coupled EKF.

Figure 8(b). The tightly coupled EKF is shown to clearly
operate near the PCRLB as opposed to the loosely coupled
solution, with improved estimation accuracy.

The enhancement in position estimation performance
is further evidenced through the analysis of the norm of
the position error in Figure 9. The remaining quantities (ve-

locity, attitude and inertial sensor biases) are also shown
to bear clear improvements with the novel tightly coupled
fusion technique when compared to the loosely coupled fu-
sion classical strategy. Assuming the ergodicity hypothesis,
the steady-state estimation error for the remaining quanti-
ties is summarized in Table I for the velocity and attitude
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Figure 9. Root-mean-square (RMS) of the norm of the position
estimation error for tightly coupled vs. loosely coupled com-
parison with N = 100 Monte-Carlo runs. Notice the sawtooth
pattern that is caused by the difference in update rates between
the acoustic corrections at 1 Hz and the open-loop INS numer-
ical integration routines at 50 Hz.

Table I. Steady-state velocity and attitude estimation error for
tightly coupled vs. loosely coupled comparison with N = 100
Monte-Carlo runs.

Velocity error Attitude error
‖δv‖ (ms−1) ‖δλ‖ (rad)

Filter coupling Average RMS Average RMS

Loosely coupled 6.6e − 02 0.180 1.4e − 03 5.7e − 05
Tightly coupled 3.4e − 02 0.045 7.5e − 04 4.3e − 05

Table II. Steady-state inertial sensors bias estimation error for
tightly coupled vs. loosely coupled comparison with N = 100
Monte-Carlo runs.

R.G. Bias Accel. Bias
‖δbω‖ (rad s−1) ‖δba‖ (ms−2)

Filter coupling Average RMS Average RMS

Loosely coupled 4.5e − 05 2.2e − 08 1.2e − 03 1.3e − 04
Tightly coupled 2.7e − 05 1.9e − 08 9.1e − 04 1.4e − 04

estimation errors, and in Table II for the inertial sensor bi-
ases estimation errors.

The performance enhancement of the novel tightly
coupled technique to directly merge the range and RDOA
observations of an USBL acoustic positioning system into
the direct-feedback EKF (see Figure 4 in Section 3) is
evident from the numerical simulation results presented
herein.

5. EXPERIMENTAL SYSTEM DESIGN

The marine habitat naturally poses a huge challenge for
systems development mainly due to its harsh environ-
ment, in which marine robotic vehicles have to withstand
high pressures. Several capable and high-performance
navigation systems are readily available on the mar-
ket, such as the PHINSTM underwater INS, the com-

bined USBL+INS+GPS surface tracking system GAPSTM,
and the long-range USBL tracking device POSIDONIATM,
all from IXSEA®indexcommercially available products.
LinkQuest® also provides lower-performance and lower-
cost USBL systems that can also be submerged. Commer-
cially available solutions, however, do not often allow di-
rect access to the travel times of the acoustic waves on the
array receivers. Moreover, commercial inertial navigation
systems often have their outputs downgraded due to ex-
port regulations. The combination of these facts, and the
prohibitively high cost of current commercial solutions, sti-
fle the design of low-cost marine robotic vehicles.

This section is directed toward the development of
a high-performance, low-cost navigation research system
that meets the need of providing direct access to the
time-of-arrival (TOA) of the acoustic waves on the array
receivers, bearing the valuable knowledge inherent to the
assembly and design of such a system. An architecture for
the open prototype is proposed, the acoustic array design
is discussed, the inertial sensor package is presented, sup-
porting acoustic signals to be used are briefly enumerated,
and implementation issues are detailed. As a by-product,
the system also includes the design of a transponder that
replies to the interrogations sent out by the integrated
USBL/INS system. An interesting and similar inverted
USBL design was presented in Jaffré et al. (2005); how-
ever, this design does not include the tightly coupled fea-
tures presented herein as it requires external attitude mea-
surements for global navigation capabilities. An alternative
navigation system design can be found in Yun et al. (1999),
in which the vehicle navigates underwater using an INS
and surfaces sporadically to get GPS position fixes and cor-
rect the errors of the INS. A summary of the design pre-
sented herein was previously presented by Morgado et al.
(2010).

The proposed USBL/INS hardware and software ar-
chitecture consists mainly of two major stand-alone sys-
tems: the first is the ensemble between the acoustic array
and the inertial unit, providing acoustic signal acquisition
and processing. The latter is a transponder that scouts for
signals sent by the USBL array and replies after a previ-
ously stipulated elapsed time in order for the array to com-
pute RTT to the transponder. In this section, all proposed
systems and signal processing techniques are presented.

5.1. USBL/INS System Overview

The integrated USBL/INS hardware is housed in an alu-
minum pressure tube capable of withstanding pressures
up to 600 m (tested in a water pressure chamber). The
USBL array is built using Bosch-Rexroth® aluminum rods
and connections, which allow for a highly configurable ar-
ray structure for optimal design during the evaluation and
testing phases. The array is composed of four preampli-
fied HTI® -96-MIN (4) hydrophones placed in a nonplanar
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Figure 10. Integrated USBL/INS system diagram.

configuration (which allows for a three-dimensional
transponder localization) and is coupled to the aluminum
pressure tube using a specially designed coupling device
carved from Delrin highly resistant polymer plastic. The
pinger that interrogates the transponder is an ITC® 1042
and is also attached to the array coupling device.

Installed inside the system tube, a D.SignT® digital
signal processor (DSP) (D.SignT, 2010) package provides
the main processing power of the system that i) performs
acoustic signal detection using high-speed fast Fourier
transforms (FFTs), ii) generates interrogation signals to the
transponder using pulse width modulation (PWM), iii) pro-
vides system data logging, and iv) includes an Ethernet
interface to a console computer (which is used only for
system configuration, system status checks, and data up-
load/download). The power is provided by a 3,700 mAh
11.1 V lithium polymer (LiPo) battery and a bank of direct-
current to direct-current (DC-DC) converters, allowing for
an estimated over 4 h system autonomy if used as a stand-
alone system. When coupled to an underwater robotic ve-
hicle, power can be supplied from the vehicle’s own power
and the Ethernet interface becomes available for data com-
munications with the vehicle’s control systems. The main
system blocks are depicted in Figure 10. The processor is
a Texas Instruments® C6713 floating point DSP and the
acoustic signal acquisition is performed by a D.SignT®

ADDA16 card which provides four 16-bit resolution syn-
chronous acquisition channels, each with a sampling rate
of 250 kHz. This acquisition card is connected to four au-
tomatic gain controlled (AGC) signal amplifiers, whose
gain can either be set in automatic mode or overridden by
an analogue voltage control, from a digital-to-analog con-
verter (DAC) also available on the DSP module. The receiv-
ing amplifiers are fine-tuned to operate on the band of 20–
30 kHz.

To interrogate the transponder, the DSP card gen-
erates PWM (with an update rate of 250 kHz and a
resolution of 1/200 steps of PWM) through a complex pro-
grammable logic device (CPLD) that drives the transmis-

sion power amplifier and an underwater acoustic trans-
ducer. The power amplifier and acoustic transducer sys-
tem are also fine-tuned to transmit maximum energy on the
band of 20–30 kHz. A 16-bit card (also designed in-house)
with a Phillips® XAS3 microcontroller and a bank of 12 syn-
chronous 24-bit high-performance Sigma-Delta analog-to-
digital converters (ADCs) provide the sampling capabili-
ties of the IMU. From this ADCs bank, nine of the channels
sample the triads of accelerometers and rate gyros that con-
stitute the IMU and the magnetometers, whereas two other
channels provide supply voltage and accelerometer casing
temperature sampling for best performance achievement.
Sampling rates of up to 150 Hz can be selected, without loss
of performance. A RS-232 serial link, with a baud rate of
115,200 bps, is the interface between the DSP module and
the microcontroller.

The IMU and magnetometer are pictured in Figure
11, where the triad of single-axis rate gyros can be seen
on the left of the aluminum frame, and the accelerome-
ter’s triad is housed inside the black casing. This aluminum
frame also supports the flux-gate magnetometer triad card
above the accelerometer casing, as depicted in Figure 11.
This sensor suite was previously tested and validated in
other operational systems. The calibration of the IMU is
also performed in-house using a high-performance inertial
calibration table. The unit depicted in Figure 11(a) uses a
Crossbow® CXL02TG3 triaxial accelerometer, three Silicon
Sensing® CRS03 rate gyros, and the Crossbow® CXM113
triaxial flux-gate magnetometer.

At a high level, the system works as follows: the mi-
crocontroller collects data from the IMU and sends them to
the DSP via the RS-232 serial link. The RS-232 interface on
the DSP receives the data and stores them in memory using
direct memory access (DMA) controllers without interrupt-
ing the core processor, which is doing time-critical acous-
tic signal processing. The DSP processes these data when
possible at noncritical time-points. At prespecified instants
of time (e.g., once a second), the DSP sends out a ping to
the transponder and turns on the receiving subsystem to
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Figure 11. Prototype system: IMU, acoustic array and core processing systems.

listen for the responses. After several pinging events and re-
sponses, and based on several factors such as vehicle max-
imum speed underwater sound speed, and others, the DSP
is able to start closing the listening time-windows to im-
prove multipath rejection. If responses from the transpon-
der eventually get lost, the DSP rolls back to a fully open
time search window until it gets a lock again. The proto-
type under development is depicted in Figure 11(b), where
the acoustic array and IMU core processing systems can be
seen attached to one of the covers of the pressure-housing
aluminum tube.

The signal detection subsystem operates using a two-
level scheme: the first, called raw-detection, is time-critical
and uses fast computations on the input signal to com-
ply with the speed at which the signal is updated at
the inputs. This phase completes the processing of one
predefined signal channel while storing all the data for
all channels in memory. This raw-detection scheme oper-
ates using matched-filters of the expected signal based FFTs
and overlap-add convolution mechanisms, as illustrated in
Figure 12. Upon a correct detection of the signal in one
channel, the signal is guaranteed by the detection scheme
to be fully available on all channels; then, the listening sub-
system is turned off and a fine-detection scheme is per-
formed on all channels to obtain the TOA of the signal at
each hydrophone.

5.2. Transponder System Overview

The transponder system is simply a subset of the previously
described integrated USBL/INS system in Section 5.1. This

system has to listen for ping requests sent by the USBL/INS
system and respond to them with a predefined signal after a
predefined interval of time. For this purpose, the transpon-
der only requires a receiving channel and does not need the
IMU and the microcontroller to interface with it.

Thus, the transponder system inherits from the previ-
ously described system the following blocks: the DSP with
the acoustic acquisition card and the PWM generator, one
AGC amplifier, the emission power amplifier, the battery
and bank of DC-DC converters, and one acoustic trans-
ducer that serves as a receiving hydrophone and as a trans-
mitting transducer. Additional electronics are also added
for coupling the transmitting and receiving circuits to the
same acoustic transducer in order to avoid the appearance
of high transmission voltages at the receiving ADCs when
responding to the ping requests.

5.3. Acoustic Signaling Techniques Overview

The design of any underwater acoustic ranging system re-
quires a measurement of the time-of-flight (TOF) of a signal.
As for any coherent detection problem, an accurate TOF es-
timate may be obtained by passing the input signal through
a matched-filter whose impulse response is a time-reversed
replica of the expected signal (Tolstoy, 1993). Under ideal
conditions, the filter output is related to the autocorrela-
tion function of the received signal. Acoustic signals have
been used for precise underwater range measurement by
TOF of acoustic waves in recent decades (Milne, 1983). His-
torically, due to the simplicity of the hardware involved,
sinusoidal pulses were the primary choice for underwater

Figure 12. Raw detection scheme.
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Figure 13. Experimental system mounted on a support vessel—The USBL/INS system tube and acoustic array are submerged
under approximately 2 m of water. The platform is allowed to swivel, attached to the end of an aluminum rod to avoid structural
stress, damages, and unwanted vibrations, even though a series of cables are restricting the movement of the submerged system.

range measurements. Recent advances and the availabil-
ity of low-cost, high-speed DSP hardware and software,
amplifiers, and wide band acoustic transducers have al-
lowed for the use of more advanced signaling techniques,
such as chirp tone bursts and spread-spectrum signals
(Austin, 1994; Bingham et al., 2007).

Specially designed spread-spectrum modulated sig-
nals have interesting autocorrelation properties (Sarwate
and Pursley, 1980) allowing for a narrower output peak of
the matched-filter and improving the performance of the
detector. In practice, the output peak of the matched-filters
spreads in time, mainly due to unequalized distortions and
nonideal conditions, thus degrading the performance of
such detectors. In general, spread-spectrum signals have
several advantages when compared to conventional signal-
ing for underwater range estimation: they present a bet-
ter signal-to-noise ratio (SNR), robustness to ambient and
jamming noise, multiuser capabilities, improved detection
jitter, and the ability to better resolve multipath, which is
one of the biggest problems in underwater channel acous-
tic propagation. These specially designed signals are typi-
cally generated using either a frequency hopping spread-
spectrum sequence (FHSS) or direct spread-spectrum se-
quence (DSSS) codes. In the scope of the work presented
herein, the attention is focused on DSSS modulated signals.
Closely related work can be found in Austin (1994) and
Bingham et al. (2007).

The acoustic signaling techniques employed in the ex-
perimental setup were directly inherited from the contri-
butions presented by Morgado et al. (2011), where a novel
methodology for the design and implementation of trans-
mission pulse-shaping filters was proposed. The new de-
sign concept is based on closed-loop control strategies with
preview information, and it was shown to be able to im-
prove the detection of the transmitted signals by directly
modifying the transmission pulse-shaping filters. The per-
formance enhancement was evident from the presented

simulation results and was validated using real data from
experimental sea trials.

6. EXPERIMENTAL VALIDATION

Experimental trials were conducted at sea in Sesimbra,
Portugal, to assess the feasibility of the tightly coupled
USBL/INS system under development. In these tests, the
aluminum pressure tube with the attached array was se-
curely suspended on the side of a surface vessel, as de-
picted in Figure 13, at a depth of approximately 2 m, while
the transponder was installed on a kayak with the trans-
ducer, also submerged approximately 2 m deep. To ob-
tain valid evaluation datasets, both the acquisition and
the transmission of the acoustic signals were synchronized
with the GPS one-pulse-per-second (1-PPS) clock signal. A
total of five deployments of the navigation system, labeled
deployments #1, #2, #3, #4, and #5, are reported in this sec-
tion. All the deployments were recorded using real-time
kinematics (RTK) GPS receivers with a precision better than
4 cm.

To assess the navigation system capabilities on typical
vehicle manoeuvres, the support vessel with the USBL/INS
attached follows a lawn mower trajectory on deploy-
ment #1, as depicted in Figure 14(a), moving toward the
transponder, which was installed on a kayak and moored
to two buoys maintaining a steady position throughout
the entire trajectory. Several key parameters, such as the
nominal magnetic field vector and the local gravity vec-
tor, were evaluated prior to the mission using the coordi-
nates of a reference point near the operation area. From
this point forward, this reference point also serves as the
origin of the north-east-down (NED) coordinates posi-
tion representation on the local tangent plane (LTP) refer-
ence frame. Thus, using magnetic charts (Macmillan et al.,
2004), the local magnetic field vector is given by {E} m =
[ 0.2645 −0.0149 0.3464 ]T G, which means a declination angle of
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Figure 14. Support vessel trajectory on deployment #1 with
the USBL/INS filter estimates, USBL fixes, and transponder
position. The transponder position was calibrated with the
onboard RTK GPS prior to the beginning of the trajectory.
The loosely coupled and tightly coupled filter estimates are
also plotted together with the resulting USBL position fixes
in north-east-down (NED) coordinates represented on the lo-
cal tangent plane (LTP) reference frame. The performance en-
hancement is not immediately discernible in this figure—see
Figure 18(b) for a better illustration of the performance en-
hancement on this deployment.

approximately −3.22 deg and a dip angle of about 52.6 deg.
Using local gravity charts (Imagery and Agency, 2000), the
local gravity constant is given by g = 9.8002 m/s2. The
USBL receivers were placed on the array at the locations
given by

{C}b1 = [0.1790 −0.15 0]T m,

{C}b2 = [0.3885 0 −0.15]T m,

{C}b3 = [0.1790 0.15 0]T m,

{C}b4 = [0.3885 0 0.15]T m,

relative to a reference frame {C} located on the cover of the
aluminum housing cylinder. The origin of the {C} reference
frame is located 0.3 m from the body-fixed reference frame

along the x axis, that is, BpC = [ 0.3 0 0 ]T m. None of these
quantities was actually calibrated using specific calibration
procedures, but rather they were measured mechanically.
The underwater sound velocity was measured at the oper-
ation depth using a sound velocity profiler (SVP) and set at
a constant value of 1515 m/s.

The inertial sensor experimental noise characteristics
were evaluated using benchmark datasets obtained with
the platform stationary after the internal temperature of the
accelerometers was stabilized. The accelerometer and rate
gyro noise variances were found to be very close to those
provided in each respective technical data sheet, whereas
the magnetometer noise needed to be adjusted from the
magnitude of 60 μG indicated on the data sheet to a more
experimentally suitable 0.6 mG (evaluated with the plat-
form stationary for several minutes before starting the tra-
jectory). In fact, the temperature of the accelerometers is a
critical factor in the stability of the overall system estimates
as the accelerometer biases are known to vary with tem-
perature. Bearing in mind the low-cost and complexity of
these types of units, no steps toward temperature compen-
sation of the accelerometers were taken whatsoever. The fil-
ter structure must tackle this issue by modeling the biases
as slowly time-varying to accommodate such variations.
The magnetometers were calibrated prior to the mission us-
ing a batch-processing method known as the TWOSTEP al-
gorithm (Alonso and Shuster, 2002).

The acquired USBL data for the trajectory in deploy-
ment #1 are represented in the USBL reference frame {U}
in Figure 15. Immediately after the system start-up, acoustic
outliers are evident, suggesting the need to have an efficient
causal outlier detection scheme, as the EKF is highly sensi-
tive to outliers present in the input data. Although other so-
lutions could be devised in place of the EKF, such as outlier-
robust Kalman filters (Gandhi and Mili, 2010), the solution
implemented in this work was based on prefiltering the
acoustic data with an explicit outlier detection causal fil-
ter prior to feeding the ranging and RDOA information to
the EKF. The filter used in this work is the median abso-
lute deviation (MAD) outlier detection and rejection filter
(Menold et al., 1999), a causal filter based on the median
of a running window with nine (9) acoustic samples. This
filter does not change the input data nor does it introduce
phase, only acting as an active valid/outlier data classifier.
The behavior of the outlier classifier is shown to correctly
identify the outliers present in Figure 15.

To experimentally evaluate the time-difference-of-
arrival (TDOA) noise on the USBL acoustic system, the
measured TDOA raw data were smoothed using a sym-
metrical running average window with a width equiva-
lent to five (5) acoustic samples, and they were then com-
pared to the actual raw data. The difference of arrival in
terms of taps or samples, where one tap is equivalent to
an acoustic sample time of 4 μs = (250 kHz)−1, is pre-
sented in Figure 16. Ignoring the obvious outliers in the
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Figure 15. USBL processed position fixes on deployment #1—
440 fixes represented from a total of 451 detected receptions
(97.56% validated). The remaining detected acoustic receptions
violated physical constraints of the receiving array such as the
maximum delay taps between any two hydrophones. A total of
14 outliers (3.2%) were correctly classified as outliers. The vali-
dation data are obtained from a smoothed estimate of the IMU
tilt angles and calibrated magnetometer heading, i.e., without
removal of accelerometer biases, thus the validation data are
biased by a tilt error from the accelerometer biases and serve
only to evaluate the alignment of the sensor frames and dy-
namic behavior of the sensor data.

beginning of the comparison, the standard deviation be-
tween the smoothed and raw data is actually less than
one tap, which was considered in the numerical simulation
results presented in this work. Although not represented
here, the range between the two stations was found to be
less than 0.2 m during the entire trajectory.

To avoid the initial gap in acoustic data around the
100 s mark, the navigation phase is set to start at t = 130
s, allowing the filter to properly align and converge with-
out acoustic data outages. The behavior of the system un-
der USBL data outage will be discussed and analyzed next.
The filters are initialized with the mean values of the GPS
recorded position from the five seconds prior to the begin-
ning of the navigation phase. The velocity estimate and all
the inertial sensor bias estimates are set to zero. The filters
estimates and USBL position fixes in NED coordinates in
the local tangent plane (LTP) reference frame are also rep-
resented in Figure 14, where the performance enhancement
is not immediately discerned. A thorough analysis is re-
quired to further assess the performance and compare both
strategies experimentally. In fact, as the platform was swiv-
elling below the supporting vessel, there were no ground
truth data readily available in the LTP reference frame. To
evaluate the overall performance of the navigation filters, a
performance comparison will be provided using the USBL

smoothed raw data as ground truth in the reference frame
of the USBL by converting the estimated position in the
LTP reference frame to the USBL reference frame, and also
by using the integrated platform attitude estimates. The
attitude estimates from both the loosely coupled and the
tightly coupled filters are shown to be very similar in Fig-
ure 17.

The performance of both filters is thus evaluated in
USBL coordinates, which reflects an overall assessment
from both the estimated position and the attitude. This al-
lows the results to be further compared with smoothed data
from the USBL raw position fixes, which are unaffected
by the platform tilt estimation errors (potentially inherited
from estimation errors of the accelerometer biases). Both
filter position estimates converted to the USBL reference
frame are plotted in Figure 18(a). Smoothing out the raw
USBL position fixes with symmetric running average filters
(with a width equivalent to five acoustic samples) allows
for the error comparison in Figure 18(b). The same evalua-
tion methodology is applied to deployment #2 reported in
Figure 18(d) and to deployments #3, #4, and #5 reported
in Figure 19. Although the performance improvement in
deployments #1 and #4 is not as clearly evidenced by the
simulation results as the other deployments, the tightly
coupled filter is shown to perform slightly better than the
loosely coupled version. Nonetheless, the performance im-
provement is more evident from the comparison for de-
ployment #2 in Figure 18(d), for deployment #3 in Figure
19(b), and for deployment #5 in Figure 19(f), and also from
the overall position RMS estimation error comparison sum-
marized in Table III. Computing the improvement level of
the tightly coupled filter in the five deployments reported
in Table III yields the median improvement level of approx-
imately 15% of the tightly coupled filter against the loosely
coupled version.

Ultimately, the performance of the overall system is
closely related to the capabilities of such a system to es-
timate the inertial sensor biases. In fact, one of the ways
of providing evidence of the performance enhancement
of the proposed tightly coupled strategy is by showing
the overall improvement of its bias estimation by forcing
an outage of the USBL measurements and observing how
both filters cope with the absence of data for long peri-
ods. Thus, a USBL outage was forced for 30 s, in the in-
terval [340, 370] s, and the resulting filter output in posi-
tion is plotted in Figure 20, where the tightly coupled filter
is shown to diverge significantly less than the loosely cou-
pled filter. The difference in accelerometer bias estimation
between both strategies is not as easily discernible by direct
comparison as when comparing the behavior during acous-
tic data outages. Nonetheless, the estimates of the rate gy-
ros and accelerometer biases are shown in Figure 21, which
demonstrates their slowly time varying behavior.

Improved rate gyros bias estimates are also demon-
strated through an open-loop INS numerical integration
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Figure 16. Experimental evaluation of USBL noise on deployment #1 in number of taps in TDOA computation—The evaluation
data represent the error in the TDOA computation in number of taps (where one tap corresponds to an acoustic sample time) when
comparing the raw TDOA data to a 5-s window running-average filter. The computed 1σ standard deviation for each TDOA is
calculated ignoring outliers.

Figure 17. Estimated attitude on deployment #1—as the plat-
form was swivelling below the support vessel, there were no
ground truth data readily available for attitude evaluation pur-
poses. Nonetheless, an overall performance comparison is per-
formed in the sequel.

assessment of the bias-compensated rate gyros measure-
ments in Figure 22. The estimated rate gyros biases from
both strategies are used to correct the rate gyros measure-
ments, which are then fed to the INS attitude numerical
integration schemes in an open loop for approximately
6.5 min, starting at 50 s into deployment #4. These open-
loop integration results are compared in Figure 22(b), re-
vealing a smaller drift for the novel tightly coupled tech-
nique, which ultimately demonstrates improved rate gyros
bias estimates and enhanced overall attitude estimation.

Another case that demonstrates enhanced perfor-
mance in practice is the faster and improved convergence
to the nominal trajectory from multiple initial conditions
on deployment #5, reported in Figure 23. An interesting ad-
vantage of the tightly coupled filtering technique can also
be found in the handling of outliers. Acoustic outliers are
typically caused by incorrect detection in specific combi-
nations of acoustic receivers, not necessarily in all possible
pairs of receivers. In such situations, the tightly coupled fil-
ter has the advantage of being able to use only a subset of
the TDOA measurements, as opposed to the loosely cou-
pled solution, in which an error in a single TDOA measure-
ment causes immediate outliers in the position fix. Such an

Journal of Field Robotics DOI 10.1002/rob



Morgado et al.: An Experimental Validation • 161

Figure 18. INS estimates on deployments #1 and #2 converted to the USBL reference frame—the position estimates of the
USBL/INS system are converted to the USBL reference frame using the estimated attitude. This allows for an overall perfor-
mance assessment by directly comparing the filter outputs to the acoustic positioning data. The error is obtained from comparing
the INS estimates converted to the USBL reference frame, with a 5-s window running-average filter smoothed USBL trajectory.

example from deployment #3 is illustrated in Figure 24, in
which the pair δ2−4 in the first two outliers, and pairs δ2−3
and δ3−4 in the first outlier, can still be used by the tightly
coupled filter to provide corrections to the INS, whereas the
loosely coupled filter is not able to use this information.

7. CONCLUSIONS

This paper presented a new USBL tightly coupled inte-
gration technique to enhance error estimation in low-cost

strap-down INSs with application to underwater vehicles.
In the proposed tightly coupled strategy, the acoustic ar-
ray spatial information is directly exploited, resorting to
the extended Kalman filter implemented in a direct feed-
back configuration. Classical loosely coupled techniques
use the position fix of transponders in known positions of
the mission area, computed from the range and bearing an-
gles of the waves arriving at the onboard acoustic array.
The planar wave approximation of the arriving acoustic
signals is often employed to compute the position fix. The
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Figure 19. INS estimates on deployments #3 to #5 converted to the USBL reference frame—the position estimates of the USBL/INS
system are converted to the USBL reference frame using the estimated attitude. This allows for an overall performance assessment
by directly comparing the filter outputs to the acoustic positioning data.
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Table III. Position RMS estimation error performance im-
provement overview on all deployments of the navigation fil-
ters. The median improvement level is around 15% for the
tightly coupled strategy.

Position RMS estimation error (m)

Deployment #1 #2 #3 #4 #5

Loosely coupled 1.3405 1.3175 2.3970 2.7052 2.0625
Tightly coupled 1.3314 1.0359 1.8871 2.4812 1.7482
Improvement level 0.7% 21.4% 21.3% 8.3% 15.3%

Figure 20. Inertial error evaluation during enforced USBL
sensor outage on deployment #1—in order to evaluate the be-
havior of the system during USBL sensor outages, the USBL
was shutdown for 30 s in the final straight path of the trajec-
tory.

proposed enhancement technique makes use of the full in-
formation available from the USBL device, such as the TOA
and TDOA or RDOA of the signals arriving at the different
hydrophones. The physical coupling between attitude and
velocity errors, evidenced in Eq. (6), also enables the use
of the USBL position fixes to partially estimate attitude er-
rors. However, as this physical attachment is invariant in
the body-fixed coordinate frame, the attitude error is not

fully observable solely from the rate gyros, accelerometers,
and USBL measurements. Thus, an additional source of at-
titude information was introduced, drawn from the obser-
vations of the Earth’s magnetic field, provided by an on-
board magnetometer.

The overall navigation system performance was as-
sessed in simulation using extensive Monte-Carlo simula-
tions in which the filtering setup was exposed to differ-
ent initial conditions and all the sensors to different noise
sequences. The performance enhancement of this novel
tightly coupled technique is evident from the numerical
simulation results presented in Section 4, which compare
the estimation performance of the new strategy to classical
merging strategies based on loosely-coupled techniques.
Moreover, the tightly coupled EKF was shown to be able to
operate near the PCRLB performance lower bound, which
was not attainable by the loosely coupled EKF. The pro-
posed tightly coupled technique was further validated in
an experimental setup with data acquired at sea in a to-
tal of five deployments. The inertial platform and acous-
tic positioning system that compose the USBL/INS system
were entirely designed and built in-house, allowing the fil-
tering architecture to have direct access to the RTT and
TDOA of the acoustic waves arriving at the hydrophones
on the USBL array, which is not typically provided by
commercially available systems. In addition to validating
the proposed technique, the experimental data obtained at
sea allowed for the performance enhancement to be evi-
denced through real data. Although the improvement in
two of the deployments was not as clear as was indicated
by the simulation results and the remaining deployments,
the improvement was consistent in the majority of the de-
ployments. The median improvement level in position was
demonstrated to be approximately 15%. Nonetheless, by
forcing USBL sensor outages during the operation of the
filters, the new tightly coupled technique was revealed to
be more effective in estimating the accelerometers biases,
which was reflected by the smaller position error drift dur-
ing the enforced acoustic data outage. The rate gyros biases
were also shown to be better estimated using the tightly
coupled strategy, by comparing the attitude estimates drift
error from open-loop integration of the bias-compensated

Figure 21. Inertial sensor biases estimates on deployment #1—the inertial sensor estimates are shown to converge to slowly time-
varying quantities. The tightly coupled (TC) estimates are overlaid over the loosely coupled (LC) biases estimates with the same
line pattern and half line thickness.
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Figure 22. Open-loop attitude integration assessment—the bias estimates from both filtering strategies are used to correct the rate
gyros measurements and numerically integrate using the INS attitude algorithms in an open loop for approximately 6.5 min, start-
ing at 50 s into deployment #4. The smaller attitude open-loop integration drift of the tightly coupled compensated measurements
demonstrates improved rate gyros bias estimates and overall enhanced attitude estimation performance.

Figure 23. Convergence from multiple initial position es-
timates of both strategies on deployment #5 in Earth-fixed
coordinates—the convergence of the tightly coupled filter is
compared to the loosely coupled filter from multiple initial po-
sitions, where it can be seen that the newly proposed technique
exhibits faster and improved convergence to the nominal tra-
jectory.

angular velocity measurements. Other improvements in-
clude enhanced convergence to the nominal trajectory from
multiple initial conditions, and the ability to use a subset of
TDOA measurements in the tightly coupled sensor space,

whereas the loosely coupled sensor space is unable to cor-
rect the INS due to detected position measurement outliers.
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APPENDIX A: USBL POSITION FIX COMPUTATION

The USBL system computes the range and direction of
the transponders using the planar approximation of the
acoustic waves as in the classical approach presented in
Yli-Hietanen et al. (1996).

Using the planar-wave approximation, illustrated in
Figure 25, it can be written for any RDOA,

ρi − ρj = −(bi − bj )T d.

In matrix form, for all possible RDOA measurements comes

Ad = −
,
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Figure 24. Measured time-difference-of-arrival (TDOA) on deployment #3—three incorrect measurements were detected by the
outlier detection algorithm designed in the Cartesian sensor-space of the loosely coupled solution. These outliers are caused by
incorrect detection in specific combinations of acoustic receivers, not necessarily in all possible pairs of receivers, as is the case of
pair δ2−4 in the first two outliers, and pairs δ2−3 and δ3−4 in the first outlier. In such situations, the tightly coupled filter has the
advantage of being able to use only a subset of the TDOA measurements, as opposed to the loosely coupled solution, in which an
error in a single TDOA measurement causes outliers in the position fix.

where

A =

⎡
⎢⎢⎢⎢⎢⎣

(b1 − b2)T

(b1 − b3)T

...
(bnr −2 − bnr )T

(bnr −1 − bnr )T

⎤
⎥⎥⎥⎥⎥⎦ , 
 =

⎡
⎢⎢⎢⎢⎢⎣

ρ1 − ρ2

ρ1 − ρ3

...
ρnr −2 − ρnr

ρnr −1 − ρnr

⎤
⎥⎥⎥⎥⎥⎦ .

To minimize the total estimation error

J = (Ad + 
)T W(Ad + 
),

where W is a weighting matrix, the unique solution for d is
given by the well known weighted least-squares solution,

d = −A#
W
, (A1)

where A#
W is the weighted pseudoinverse matrix of A given

by

A#
W = (AT WA)−1AT W,

and W is given by the inverse of the covariance matrix
of 
.

Figure 25. Planar wave approximation.

If, as assumed in this work, there is only access to in-
dependent measurements of a subset of 
, the direction
d is computed using only the subset of equations corre-
sponding to those measurements. Given that the origin
of the USBL frame {U} is located at the centroid of the
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receivers, the range of the transponder can be computed
by averaging the measured ranges from all receivers. The
relative position of a transponder expressed in {U} is then
computed by

rr = ρrdr , (A2)

and it can be described in body-fixed coordinates by

Brr = RT (s − p) + nr,

where s is the transponder’s position in the Earth-fixed co-
ordinate frame, p is the position of the body-fixed frame
origin in the Earth-fixed frame, and nr represents the rel-
ative position measurement noise, characterized by taking
into account the acoustic sensor noises and the USBL posi-
tioning system (A2).

APPENDIX B: USBL POSITION FIX STOCHASTIC
LINEARIZATION

The range measurements provided by the USBL system, as
described in Section 3.2, are given by

ρir = vptr i + ηc + ηd i ,

where vp is the underwater sound velocity, ηc represents
the measurement noise induced by the common error to all
receivers, and the term ηd i represents the differential noise
induced by the additional error sources and the acoustic
quantization performed by the USBL system, or equiva-
lently in matrix form,

ρr = vptr + ηc1nr ×1 + ηd,

where ηc is a scalar random variable considered to be
drawn from a zero mean Gaussian distribution, that is,
ηc ∼ N (0, σ 2

c ), and ηd is an nr × 1 vector random variable
drawn from a zero mean Gaussian distribution with ηd ∼

N (0nr ×1, σ
2
d Inr ). The random variables ηc and ηd are also as-

sumed to be uncorrelated, that is,

E{ηdηc} = 0,

where E{·} represents the expected value operator.
Thus, the covariance matrix for the measured ranges

ρr is easily given by

E{(ρr − E{ρr })(ρr − E{ρr })T } = σ 2
c 1nr ×nr + σ 2

d Inr .

The relationship between the RDOA observation vec-
tor 
 and the measured distances ρr is established as


 = Cρr ,

where C is a combination matrix that encodes the combi-
nations between the receivers to generate the RDOA vector

and is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0

1 0 −1 0 · · · 0
...

0 · · · 0 1 0 −1

0 · · · 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Taking into account the least-squares solution for the
transponder direction (A1), the transponder direction co-
variance is given by

E{(d − E{d})(d − E{d})T }
= A#

WC
(
σ 2

c 1nr ×nr + σ 2
d Inr

)
CT A# T

W .

The range from the transponder to the centroid of the
USBL array is computed from averaging the range mea-
surements of all receivers, and its covariance is given by

E{(ρ − E{ρ})2} = 1
n2

r

11×nr

(
σ 2

c 1nr ×nr + σ 2
d Inr

)
1T

1×nr
.

The covariance between the measured range ρr and the
direction dr becomes

E{(ρ − E{ρ})(d − E{d})T }

= − 1
nr

11×nr

(
σ 2

c 1nr ×nr + σ 2
d Inr

)
CT A# T

W .

The position measurement (A2) can be separated into
its three Cartesian components as

rr = [
ρdx ρdy ρdz

]T
. (B1)

Let the scalar function g :
{
R

+; [0, 1]
} → R be given by

g(ρ, dk) = ρdk, k = {x, y, z} ,

which allows Eq. (B1) to be written as

rr = [
g(ρ, dx ) g(ρ, dy ) g(ρ, dz)

]T
. (B2)

Using a Taylor series expansion of Eq. (B2) around the
nominal values of ρ̄ and d̄k yields

g(ρ, dk) = g(ρ̄, d̄k) + ∇g(ρ̄, d̄k)
[

ρ − ρ̄

dk − d̄k

]

+1
2

[
ρ − ρ̄ dk − d̄k

]∇2g(ρ̄, d̄k)
[

ρ − ρ̄

dk − d̄k

]

+ h.o.t. (B3)

The gradient ∇g(ρ̄, d̄k) in Eq. (B3) is given by

∇g(ρ, dk)
∣∣∣ ρ=ρ̄

dk=d̄k

=
[

∂g(ρ, dk)
∂ρ

∂g(ρ, dk)
∂dk

]
= [

d̄k ρ̄
]
.
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The second-order derivative ∇2g(ρ̄, d̄k) is given by

∇2g(ρ, dk)
∣∣∣ ρ=ρ̄

dk=d̄k

=

⎡
⎢⎢⎢⎣

∂2g(ρ, dk)
∂2ρ

∂2g(ρ, dk)
∂ρ∂dk

∂2g(ρ, dk)
∂dk∂ρ

∂2g(ρ, dk)
∂2dk

⎤
⎥⎥⎥⎦ =

[
0 1
1 0

]
.

The higher-order terms (h.o.t.) in Eq. (B3) are all null
because all derivatives of g(ρ̄, d̄k) over the second order are
also null. Thus, the expected value of g(ρ, dk) is given by
(Papoulis, 1984)

E{g(ρ, dk)} =
∞∫

−∞

∞∫
−∞

g(ρ, dk)f (ρ, dk)∂ρ∂dk, (B4)

where f (ρ, dk) is the joint probability density function of ρ

and dk , which verifies (Papoulis, 1984)

∞∫
−∞

∞∫
−∞

f (ρ, dk)∂ρ∂dk = 1.

Combining Eqs. (B3) and (B4) yields

E{g(ρ, dk)} = ρ̄d̄k + E{(ρ − ρ̄)(dk − d̄k)}.
Thus, the expected value of the transponder relative

position is given by

E{r} =

⎡
⎢⎣

E{g(ρ, dx )}
E{g(ρ, dy )}
E{g(ρ, dz)}

⎤
⎥⎦ ,

and its covariance can be written as

E{(r − E{r})(r − E{r})T } =

⎡
⎢⎣

Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

⎤
⎥⎦ ,

where the matrix elements Vkj with k = x, y, z and j =
x, y, z are given by

Vkj = E{(g(ρ, dk) − E{g(ρ, dk)})}{(g(ρ, dj ) − E{g(ρ, dj )})}
= d̄k d̄jE{(ρ − ρ̄)2} + d̄k ρ̄E{(ρ − ρ̄)(dj − d̄j )}

+ d̄j ρ̄E{(ρ − ρ̄)(dk − d̄k)}
+ ρ̄2E{(dk − d̄k)(dj − d̄j )}.

APPENDIX C: PERFORMANCE BOUNDS

Consider the general form for the process and observation
models,

xk+1 = fk(xk, wk),

zk = hk(xk, vk), (C1)

where xk is the system state at sample time k, {zk} is the
set of available measurements, {wk} and {vk} are indepen-

dent white processes, and fk and hk are possibly nonlinear
nonstationary functions.

Let x̂k be any estimate of the true state vector of the
process given by Eqs. (C1). Since we are interested in the
class of unbiased estimators for the state vector, we have
the following inequality for the covariance of the estimation
error:

Pk = E{[x̂k − xk][x̂k − xk]T } ≥ J−1
k ,

where Jk is the posterior Fisher information matrix (FIM)
defined as

Jk = E
{ − ∇xk

∇T
xk

log p(xk, zk)
}
,

where p(xk, zk) is the joint probability density function of
the state vector and observations throughout the full ex-
tent of the trajectory of the underlying dynamical system.
Tichavskỳ et al. (1998) showed that the FIM Jk can be effi-
ciently computed using the following recursion:

Jk+1 = D22
k − D21

k

(
Jk + D11

k

)−1D12
k ,

where

D11
k = Ep(xk+1|zk+1)

{
−∇xk

∇T
xk

log p(xk+1|xk)
}

,

D12
k = Ep(xk+1|zk+1)

{
−∇xk

∇T
xk+1

log p(xk+1|xk)
}

=
[
D21

k

]T
,

D22
k = Ep(xk+1|zk+1)

{
−∇xk+1∇T

xk+1
log p(xk+1|xk)

}
+ Ep(xk+1|zk+1)

{
−∇xk+1∇T

xk+1
log p(zk+1|xk+1)

}
, (C2)

and the recursion is initialized with

J0 = E
{
−∇x0∇T

x0
log p(x0)

}
.

To compute the terms in Eqs. (C2), the expected value
operator Ep(xk+1|zk+1){· · · } needs to be evaluated. The com-
putational complexity of these expectations depends en-
tirely on the structure of the underlying process and ob-
servation models, and involves solving integral terms that,
in general, do not have closed-form solutions in the partic-
ular case of the estimators presented herein. As suggested
in Šimandl et al. (2001), the terms can be estimated using
Monte-Carlo simulations by replacing the expected values
with the sample mean of the realizations, e.g., the term D̂11

k

in Eqs. (C2) is computed as

D̂11
k = 1

M

M∑
j=1

−∇xk
∇T

xk
log p(xk+1|xk)

∣∣xk=xk (j ) ,

where {xk(j )}Nk=0 is the j th realization of the state trajectory,
j = 1, 2, . . . , M , and M is the number of Monte-Carlo real-
izations.

As expected, as M increases, the quality of the
Monte-Carlo estimates improves, however there is no
rule of thumb on selecting an M that guarantees that
the estimates will be satisfactory. One possible rule is to
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try several values for M and test if the new bound with
M2 realizations has changed significantly compared to the
bound with M1 < M2 realizations.

In the scope of the work presented herein, we restrict
the PCRLB evaluation to the discrete-time AWGN case for
which the process and observation models are given by

xk+1 = fk (xk) + wk,

zk = hk (xk) + vk,

where xk now represents the discretized errors of the navi-
gation systems at sample time k, {wk} is the process equiv-
alent AWGN, {vk} is the measurement equivalent AWGN,
{zk} is the set of available measurements that are related to
the state vector by the nonlinear nonstationary observation
function hk , and fk models the discretized navigation sys-
tem error model.

In this framework, the logarithmic terms of the PCRLB
recursion can be written as

log p(xk+1, xk) = c1 − 1
2

[xk+1 − fk (xk)]T Q−1
k

× [xk+1 − fk(xk)],

log p(zk+1, xk+1) = c2 − 1
2

[zk+1 − hk+1 (xk+1)]T R−1
k+1

× [zk+1 − hk+1(xk+1)],

where c1 and c2 are constants, Qk is the discrete equivalent
process AWGN covariance matrix, and Rk is the discrete
equivalent observation AWGN covariance matrix.

Thus, it can be easily derived for the terms (C2) that

D11
k = E

{
FT

k (xk)Q−1
k Fk(xk)

}
,

D12
k = −E

{
FT

k (xk)
}

Q−1
k ,

D22
k = Q−1

k + E
{

HT
k+1(xk+1)R−1

k+1Hk+1(xk+1)
}

,

where

Fk(xk) = [∇xk
fT
k

]T
,

Hk+1(xk+1) = [∇xk+1 hT
k+1

]T
are the Jacobian matrices of fk and hk+1, respectively, eval-
uated at their true values.

APPENDIX D: INTERNAL INS DETAILS

For highly manoeuvrable vehicles, the INS numerical in-
tegration must properly address the angular, velocity, and
position high-frequency motions, referred to as coning,
sculling, and scrolling, respectively, to avoid the buildup
of estimation errors. The INS multirate approach, based
on the work detailed in Savage (1998a; 1998b), computes
the dynamic angular rate/acceleration effects using high-
speed, low-order algorithms, whose output is periodically

fed to a moderate-speed algorithm that computes atti-
tude/velocity resorting to exact, closed-form equations.
Applications within the scope of this work are character-
ized by confined mission scenarios and limited operational
time, allowing for a simplification of the frame set to Earth
and body frames and the use of an invariant gravity model
without loss of precision.

The inputs provided to the inertial algorithms are the
integrated inertial sensor output increments

υ(τ ) =
τ∫

tk−1

ardt, α(τ ) =
τ∫

tk−1

ωrdt,

where ωr represents the rate gyro triad readings and ar rep-
resents the accelerometer readings, also known as the mea-
sured body specific force,

ar � BaSF = B v̇ + ω × Bv − Bg,

where Bg is the nominal local gravity vector in body coor-
dinates Bg = RT Eg, and Eg is the locally constant gravity
vector in Earth-fixed coordinates.

The inertial sensor readings are corrupted by zero
mean white noise n and random-walk bias, ḃ = nb, yield-
ing

ar = B v̇ + ω × Bv − Bg − δb̂a + na,

ωr = ω − δb̂ω + nω,

where δb̂ = b̂ − b denotes bias compensation error, b is the
nominal bias, b̂ is the estimated bias, and the subscripts a

and ω identify accelerometer and rate gyro quantities, re-
spectively.

The attitude moderate-speed algorithm (Savage,
1998b) computes body attitude in DCM form,

Bk−1
Bk

R(λk) = I3 + sin ‖λk‖
‖λk‖ (λk)× + 1 − cos ‖λk‖

‖λk‖2 (λk)2
×, (D1)

where the operator ‖ · ‖ is the usual l2-norm for vectors
such that ‖x‖ = (xT x)

1
2 , {Bk} is the body frame at time k,

and Bk−1
Bk

R(λk) is the rotation matrix from {Bk} to {Bk−1} co-
ordinate frames, parametrized by the rotation vector λk .
The rotation vector updates are based on the Bortz equa-
tion (Bortz, 1971), and are formulated as

λk = αk + βk

in order to denote angular integration and coning attitude
terms αk and βk , respectively. The attitude high-speed algo-
rithm computes βk as a summation of the high-frequency
angular rate vector changes using simple, recursive com-
putations (Savage, 1998a), providing high-accuracy results.

Using the equivalence between strap-down attitude
and velocity/position algorithms (Roscoe, 2001), the same
multirate approach is applied (Savage, 1998b) to compute
exact velocity updates at moderate speed,

vk = vk−1 + E
Bk−1

R
Bk−1 vSF k + 
vG/Cor k,

Journal of Field Robotics DOI 10.1002/rob



Morgado et al.: An Experimental Validation • 169

where 
Bk−1 vSF k is the velocity increment related to the
specific force, and 
vG/Cor k represents the velocity incre-
ment due to gravity and the Coriolis effect (Savage, 1998b).
The term 
Bk−1 vSF k also accounts for high-speed velocity
rotation and high-frequency dynamic variations due to an-
gular rate vector rotation, yielding


Bk−1 vSF k = υk + 
vrot k + 
vscul k,

where 
vrot k and 
vscul k are the rotation and sculling
velocity increments, respectively, computed by the high-
frequency algorithms. Interestingly enough, a standard
low-power consumption DSP-based hardware architecture
is sufficient for running the INS algorithms using maximal
computational accuracy at high execution rates. This allows
using maximal precision so that the computational accu-
racy of the INS output is only diminished by the inertial
sensor noise and biases effects.
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