
Robust outliers detection and classification for
USBL underwater positioning systems ?

M. Morgado, P. Oliveira, and C. Silvestre

Institute for Systems and Robotics, Instituto Superior Técnico,
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Abstract: This paper presents a data classification algorithm able to detect corrupted measurements
as outliers, with application to underwater ultra-short baseline (USBL) acoustic positioning systems.
The devised framework is based on causal median filters that are readily implementable, and a set of
theoretical analysis tools that allows for the design of the filter parameters is also presented. The design
takes into account very specific implementation details of USBL acoustic positioning systems and also
inherent non-ideal characteristics that include long period data outages. The outlier classifier is evaluated
both in simulation and with experimental data from a prototype USBL acoustic positioning system fully
developed in-house.
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1. INTRODUCTION

Measurement outliers are naturally present in the output of ev-
ery sensor package available on the market nowadays. The cor-
rect identification of these spurious perturbations often stands
out as one of the important steps to the correct usage and
successful integration of the aforementioned sensor packages
into larger systems that are the building blocks of any robotic
platform. This paper addresses the design and experimental
validation of an outlier detector and classifier for underwater
positioning systems.

Out of several systems like robotic arm manipulators, thrusters,
rudders and fins, the key role played by the navigation and
positioning system on-board the marine robotic vehicle and
its associated accuracy, dramatically influences the capability
of the vehicles to perform several precision-demanding tasks
— see Pascoal et al. [2000] and Kinsey et al. [2006]. The
development of the aforementioned navigation and positioning
systems still has to bear in mind key features, such as low-cost,
compactness, high performance, versatility and robustness. In
underwater applications, the global positioning system (GPS) is
clearly not a sustainable solution for time enduring dives, due
to the strong attenuation of electromagnetic signals, and avail-
able underwater acoustic positioning systems like long baseline
(LBL), short baseline (SBL), and ultra-short baseline (USBL)
(see Milne [1983] and Vickery [1998]), stand often as the
primary choice for underwater positioning — see Lurton and
Millard [1994], Vaganay et al. [1998], Larsen [2000], Kinsey
and Whitcomb [2004] and Miller et al. [2010]. Although LBL
based solutions offer more information and accuracy with sev-
eral receivers deployed on the seabed and baselines in the order
of kilometres, its high cost, deployment and calibration time-
consuming procedures become prohibitive for low-cost opera-
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tions. Hull-mounted SBL positioning systems, in large oceanic
vessels, have to actively compensate for baseline changes due
to natural bending of the hull, degrading its performance.

The fast deployment, less complex hardware of small and com-
pact arrays of receivers and increasing performance of modern
factory-calibrated USBL positioning devices makes it suitable
for faster intervention missions Napolitano et al. [2005]. In
generic operating conditions, a conductivity, temperature and
depth (CTD) profile is normally required to account for the
underwater sound velocity variations. Inverted USBL Vickery
[1998] configurations, besides paving the way to future fully
autonomous systems without the need to have surface mission
support vessels, allows for the sound velocity to be considered
constant while operating in the same underwater layer as the
transponders (for instance, bottom operation while interrogat-
ing bottom placed transponders). The inverted USBL configu-
ration is illustrated in Fig. 1.

Due to several undesired aspects of the underwater sound prop-
agation channel such as acoustic reverberation, layered under-
water sound speed profiles, and mostly due to multipath phe-
nomena, these type of acoustic positioning systems are highly
susceptible to measurement outliers which need to be correctly
identified. Otherwise these position measurement outliers can
have a severe impact on systems that use them, degrading their
performance downstream, as illustrated in Fig. 2, and worst
case leading control and navigation systems to instability. This
paper addresses the design of an outlier detector and classifier
for a USBL positioning system and validates this classifier
using experimental data obtained at sea with a USBL prototype
fully developed in-house Morgado et al. [2010].

1.1 Paper organization

The paper is organized as follows: Section 2.1 provides a review
on the concepts of causal median filters that the outlier detector
and classifier builds upon. Section 2.2 details the application
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Fig. 1. Inverted USBL configuration as opposed to a typical
installation floating on the sea surface - the prototype sys-
tem developed in-house is also illustrated in the schematic
attached to an underwater robotic in the inverted configu-
ration and to the bow of an autonomous surface craft in the
typical USBL configuration.
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Fig. 2. Outliers from the acoustic positioning systems might
have a severe degradation of the navigation system accu-
racy if not properly identified. In the worst case scenario
it might even lead to instability of control systems that use
this information downstream.

of the median-based causal outlier detector and classifier to the
USBL case. Some simulation results are analysed in Section
3 and Section 4 validates the usage of the devised classifier
with real experimental data obtained at sea with the USBL
prototype. Finally, Section 5 provides some concluding remarks
and comments on future work to be developed within this
subject.

2. ONLINE OUTLIER DETECTION ALGORITHMS

The detection and identification of possible outliers in the
acoustic positioning measurements is of the utmost impor-
tance as already pointed out due to the fact that, if not cor-
rectly flagged, these spurious outliers might severely degrade
the navigation systems performance that use this information,
which information can also be critical to vital control systems
on-board the underwater robotic vehicle. Albeit other more
integrated solutions could be devised, that include designing
navigation Kalman filters robust to outliers (see Ting et al.
[2007a] and Gandhi and Mili [2010]), the idea of using instead a
standalone outlier detector and classifier, that is coupled to the
output of the acoustic positioning device, stems from the fact
that not all navigation algorithms fit the framework of robust
Kalman filters as presented in Ting et al. [2007a] and in Gandhi
and Mili [2010]. It is often desirable to have an outlier classifier
detached from the dynamic filtering framework, thus allowing
for several algorithms to be implemented independent of the
outlier detection stage. Moreover, this setup allows for the
USBL to provide position measurements with outliers correctly
classified to a multitude of systems on-board.

The causal median on-line outlier classifier adopted in this
work, is presented in this section and is based on the work
presented in Menold P.H. and Allgower [1999]. Section 2.1 pro-
vides an overview of the most important concepts of the causal
median filter presented in Menold P.H. and Allgower [1999]
and Section 2.2 explains the steps taken to adapt the causal
median filter framework to the USBL outlier identification and
classification problem. See Ting et al. [2007b] for a recent
and alternative approach on the design of outlier detectors and
classifiers using a Bayesian approach.

2.1 The causal median filter

Most of the material presented in this section was carefully
introduced in Menold P.H. and Allgower [1999] and it is
introduced here to give the reader an overview of the theoretical
basis for the design of the outlier classifier. Thus this section
summarizes the most important concepts for the design of the
outlier classifier. Consider the current observation xk at time
instant k and a data window Wk of fixed-width N

Wk = [xk−N+1 · · · xk−1 xk] ∈ RN .

If the values in Wk are sorted in descending or ascending order
to obtain the sorted window Rk

Rk = sort(Wk)

the median x†k is easily obtained as the mid-point of Rk as

x†k =
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The distance from the current data point xk to the median value
x†k of the window Wk is given by

dk = |x†k − xk|. (1)

The data cleaning filter first identifies outliers by testing this
distance dk against a specified threshold Tk ≥ 0 (which might
depend on the data inside the window), and if the distance
dk exceeds the threshold Tk, then the current data point xk is
classified as an outlier. If the data point xk is deemed an outlier,
then it may be replaced by a prediction x∗k to obtain a filtered
sequence fk given by

fk =

{
xk if dk ≤ Tk,
x∗k if dk > Tk.

or simply flagged to be an outlier so that systems that use this
data downstream may now that it’s not a reliable sample. The
authors in Menold P.H. and Allgower [1999] mention several
replacement strategies, which include, for instance, replacing
the outliers by the current median value x∗k := x†k or by the last
valid value inside of the window Wk. If the outlier replacement
actually takes place in the filtering framework, such setup is
normally called a data cleaning filter. On the other hand, if the
outliers are simply identified and marked, the setup is called an
outlier classifier.

In the scope of this work we are not particularly interested in
data cleaning filters since these tend to change the input data.
We want to be able to provide raw acoustic USBL measure-
ments to a myriad of systems and navigation filters on-board but
with some sense of safety by flagging inappropriate data that
might lead these navigation and control systems to instability.



Navigation systems on-board the considered robotic platforms
are typically based on dynamical systems that resemble the
kinematics of rigid bodies and are able to provide open-loop
numerical integration of other sensors such as accelerometers
and rate gyros Morgado et al. [2008] when acoustic positioning
systems data is not available or their measurements are sus-
pected to be outliers. Moreover the effect of replacing outlier
data points using the aforementioned strategies might introduce
delays on the sequence and additional distortions on the noise
characteristics of the signals that are difficult to model on the
design of control algorithms and navigation filters. Thus, these
replacement strategies should be used with appropriate care.

Threshold selection The threshold selection strategy adopted
in this work and presented in Menold P.H. and Allgower [1999]
is actually a combination of two strategies — the median
absolute deviation (MAD) scale based threshold and a fixed
lower bound for the threshold — and is given by

Tk = max (cSk, Tmin) (2)
where Tmin is the lower bound for the threshold, Sk is an
estimate for the MAD, and for some constant c ∈ R+, chosen
independent of the data in the window Wk. The MAD scale
estimate is defined as the median absolute deviation of the data
points in the window Wk from the median x†k, and is simply
given by the median of the distances between all the data points
in the window Wk and the median x†k

Dk = [dk−N+1 · · · dk−1 dk] ∈ RN (3)
where dk−i with i = {0, 1, . . . , N − 1} is defined similarly to
(1)

dk−i = |x†k − xk−i|, ∀i = {0, 1, . . . , N − 1}.
Thus, the MAD scale estimate Sk is given by the median
of Dk from (3). This un-normalized MAD scale estimate is
often normalized Menold P.H. and Allgower [1999] to S̃k =
Sk/0.6745 ≈ 1.4826Sk to make it an unbiased estimate of
the standard deviation for Gaussian data Huber and Ronchetti
[1981]. The choice of the scale parameter c in (2) will be
addressed in Section 2.1.2.

The idea behind the dual strategy combination lies on the
practical limitation with the MAD scale estimate being Sk = 0
for sequences that have, in a window of width N , at least
(N − 1)/2 + 1 values (if N is odd, or N/2 + 1 if N is
even), identical to the current data point xk. If a lower bound
Tmin was not adopted, the threshold would be Tk = 0 in such
cases regardless of parameter c. Thus Tmin should be chosen
taking into account the measurement noise level of the input
signal and other parameters such as quantization and sensor
resolution. Using this threshold selection rule, changes in the
input sequence up to Tmin are invariant, and as such it should
not be chosen too large.

MAD scale parameter c The results presented in this section
provide a theoretical background on the design choice of the
parameter c in (2). Most importantly they also provide lower
bounds for c for certain type of sequences to be invariant
under the MAD data cleaning filter. The following theorem
establishes a lower bound for c under monotonic sequences that
satisfy a growth rate restriction.
Theorem 1. ([Menold P.H. and Allgower, 1999, Theorem 5.1]).
Any monotonic sequence {xk} satisfying the growth rate re-
striction

|xi+2 − xi+1| ≤ m|xi+1 − xi|,
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Fig. 3. Growth rate analysis of monotonic sequences and choice
of the constant value c ≥ 1 +mH with H = (N−1)/4.

for some m ∈ [0, 1] and ∀i ∈ N , is invariant under the data
cleaning filter of width N = 4H + 1 provided c ≥ 1 +mH .

Proof: See the proof of Theorem 5.1 in Menold P.H. and
Allgower [1999].

An illustrative example of a monotonic decreasing sequence
and the corresponding lower bound for c under three different
window sizes is presented in Fig. 3. From this example it comes
that as a rule of thumb, the parameter c should be larger than 2
for this type of sequences, that is c ≥ 2.

The next set of results provide a basis to the lower bounding of
the parameter c for two other distinct types of sequences defined
in the following.
Definition 1. ([Menold P.H. and Allgower, 1999, Definition 5.1]).
A sequence of Type I satisfies the following conditions

xk−2H = x†k, 0 < c1 ≤ c2 <∞,
c1(2H − i) ≤ xk−i − x†k ≤ c2(2H − i) ∀i ≤ 2H,

c1(2H − i) ≥ xk−i − x†k ≥ c2(2H − i) ∀i > 2H,

for all k and where x†k is the median of the window of width
N = 4H + 1.
Definition 2. ([Menold P.H. and Allgower, 1999, Definition 5.2]).
A sequence of Type II satisfies the following conditions

xk−2H = x†k, 0 > c1 ≥ c2 >∞,
c1(2H − i) ≥ xk−i − x†k ≥ c2(2H − i) ∀i ≤ 2H,

c1(2H − i) ≤ xk−i − x†k ≤ c2(2H − i) ∀i > 2H,

for all k and where x†k is the median of the window of width
N = 4H + 1.

The following theorem provides a lower bound for the param-
eter c under this type of sector bounded sequences defined in
Definitions 1 and 2.
Theorem 2. ([Menold P.H. and Allgower, 1999, Theorem 5.2]).
Any sequence {xk} of type I or II is invariant under the MAD-
based data cleaning filter of width N = 4H + 1 with c ≥
2c2/c1.

Proof: See the proof of Theorem 5.2 in Menold P.H. and
Allgower [1999].
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Fig. 4. Analysis for Type I sequences and a window size of
N = 4H+1 = 9 (H = 2). It comes from Theorem 2, that
for this sequence to be invariant under the causal median
data cleaning filter we must have c ≥ 2c2/c1.

Remark 1. The sequences of Type II in Definition 2 are the
decreasing analogous to the increasing Type I sequences in
Definition 1.

The sequences of Type I are well illustrated in Fig. 4 together
with the bounds c1 and c2. In the illustrative example of Fig. 4
comes that c1 = 0.7 and c2 = 2, and according to Theorem 2,
the sequence is invariant under the MAD-based data cleaning
filter of width N = 9 and c ≥ 2c2/c1 = 2 ∗ 2/0.7, that is, with
c ≥ 5.7143.

In practice, the choice of the parameter c can be accomplished
with the aid of the results presented in this section. For this
purpose one could analyse sub-sequences of the nominal se-
quence and apply both Theorems 1 and 2 to compute a set of
lower bounds for c, and then choose the largest lower bound that
satisfies the invariance for the full sequence. On the other hand,
it is recognizable that this procedure might be cumbersome,
and probably the simplest way to choose a reasonable value
for c is to examine and try out some values on training sets
of the contaminated sequences. It is important to emphasize
that c should also not be set too large, otherwise the outlier
identification function will cease to be effective.

Window size N The window size is also a very important
parameter in the design of the outlier classifier, and it should be
chosen to avoid observations from high dynamic range systems
to be incorrectly considered outliers. Both the median x†k and
the MAD scale estimate Sk become less connected to local
variations as N becomes too large and the analysis of a new
measurement xk less effective. On the other hand, N should
also not be set too small in order to accommodate a reasonable
amount of defective data patches. Data patches may occur for
instance when a sensor saturates its output or errors in the
measurements happen. For a window size ofN = 4H+1, both
the median x†k and the MAD scale estimate Sk are completely
set to the value of a patch of 2H + 1 samples. For instance, for
N = 9, 5 patched outliers would undermine the effectiveness
of the classifier.

2.2 Adaptation to the USBL system

The USBL positioning system provides measurements of the
position of a transponder with respect to the reference frame of
the robotic vehicle, that is, a p ∈ R3. In order to adapt the out-
lier detection scheme to the USBL system, the algorithm out-
lined in Section 2.1 has to be extended to the three-dimensional
case. The extension is fairly simple in which the window size is

Algorithm 1. Acoustic outlier classification algorithm
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Abstract—This paper presents a data classification algorithm
able to detect corrupted measurements as outliers, with ap-
plication to underwater ultra-short baseline (USBL) acoustic
positioning systems. The devised framework is based on causal
median filters that are readily implementable, and a set of
theoretical analysis tools that allows for the design of the filter
parameters is also presented. The design takes into account
very specific implementation details of USBL acoustic positioning
systems and also inherent non-ideal characteristics that include
long period data outages. The outlier classifier is evaluated both
in simulation and with experimental data from a prototype USBL
acoustic positioning system fully developed in-house.

median absolute deviation (MAD)
Algorithm ClassifyData(p, t)
(⇤ detect outliers and classify USBL positioning data ⇤)
Input: p - current position measurement
Input: t - current measurement time
Output: class - classification level of current measurement
(⇤ persistent Wp positions window size 3⇥N init. to 0 ⇤)
(⇤ persistent tv last valid measured time tag init. to 0 ⇤)
1. if t� tv > R
2. then remove from Wp elements older than tv
3. else insert the new data point in the window
4. Wv  select only valid elements from Wp

5. mk  compute the row-wise median of Wv

6. dk  compute the distances |Wv �mk|
(⇤ Compute the MAD scale estimate ⇤)
7. Sk  compute the row-wise median of dk

(⇤ Normalize the MAD scale estimate ⇤)
8. S̃k  1.4826Sk

(⇤ Threshold selection ⇤)
9. T  max(cS̃k, Tmin)
(⇤ Test the data point against the threshold ⇤)
10. if |pk �mk| > T
11. then class = outlier
12. remove data point from the window Wp

13. else class = valid
14. update last valid time tag to current tv  t
15. if number of valid data points in Wp > 2/3N
16. then class = good

This work was supported by project FCT [PEst-OE/EEI/LA0009/2011],
by project FCT PTDC/EEA-CRO/111197/2009 - MAST/AM, and by the EU
Project TRIDENT (Contract No. 248497).

also extended to Wk ∈ R3×N and the evaluation is performed
separately for each of the three Cartesian coordinates.

The next improvement to be incorporated is the introduction
of a classifier flag instead of performing outliers replacement,
deriving what was named an outlier classifier in Section 2.1.
A four level classification scheme is adopted that allows to
introduce robustness to the classification process and the usage
in downstream systems that require the classified data. The four
levels can be summarized in Table 1.

Table 1. USBL Data classification levels and flags

Level Flag Description
0 invalid unrealisable solutions due to physical constraints of

the USBL array: exceed the maximal allowed time
delay between any two receivers on-board

1 valid pass the physical limitations validation test but are yet
unknown regarding its good or outlier

2 outlier valid solution but clearly flagged as an outlier that
violates the distance to the median of the window of
valid samples

3 good indicates that at least 2/3 of the samples on the detec-
tion window were classified as valid

Another feature that is needed due to the fact that underwater
acoustics are highly susceptible to jamming and periods with-
out actual measurements, is a time-elapsed window reset that
removes observations from the window if their time tags are
older than R seconds from the current system time. Finally,
the global classification flag for each of the N -triplet values
is assessed as follows: if any of its three values violates the
threshold distance rule then the entire triplet is set as an outlier.
The final algorithm is outlined in Algorithm 1.
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Fig. 5. Classification analysis in simulation results, withN = 9
and c = 6 — some outliers are wrongfully classified as
good values which is undesirable. The value for Tmin

was adjusted to accommodate disturbances on nominal
sequences up to 3σ of the additive white Gaussian noise
disturbance.

The adaptation steps of the algorithm can be briefly summa-
rized as follows:

• Extension to three dimensions
• Introduction of a classifier flag instead of performing

outliers replacement
• Creation of a four-level classification scheme: invalid,

outlier, valid, and good
• Introduction of an elapsed-time R window reset.

3. SIMULATION ANALYSIS

The outlier classifier presented previously was first evaluated
in simulation to assess its feasibility and performance. The
nominal sequence to be tested was derived from the output of
a second order spring-mass-damper system on the presence of
small input step changes. Additive white Gaussian Noise was
added to the output with a standard deviation of σ = 0.03.
Ten percent of the values on the sequence were disturbed with
outliers in random positions, with amplitudes in the interval
±[0.25, 0.6], as illustrated in Fig. 5. To illustrate the window-
reset feature and recovery of the classifier, a data outage was
enforced without in the interval [0.70, 0.83].

The lower-bound for the threshold Tmin was adjusted to ac-
commodate disturbances on nominal, non-dynamically chang-
ing sequences up to 3σ of the additive white Gaussian noise
perturbation, whereas the MAD scale estimate multiplier was
initially set to c = 6 with a window size of N = 9. This
first approach led to the conclusion that some values were being
classified as false positive good values. It can be easily argued
that is highly preferable to have false identifications of outliers
on good values, rather than having outliers being classified
as good values. Thus the value for the MAD scale estimate
multiplier was adjusted to c = 5 and the classifier rerun on the
same data. The remastered results are presented in Fig. 6, where
it can be seen that there are no more false positives of good
values while maintaining the performance on the remainder of
the sequence. Lower-bounds for this c value can be found with
the aid of Theorems 1 and 2 on sub-sequences of this training
set, nonetheless it is always a good practice to adjust this value
bearing in mind the overall performance of the classifier on the
entire training set.

4. VALIDATION WITH REAL DATA

The devised outlier classifier was implemented and applied
to a real USBL positioning system, fully developed in-house
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Fig. 6. Classification analysis in simulation results, withN = 9
and c = 5 — the parameter c was adjusted on this training
set so that there are not false positive classifications as
good. Notice in the lower-left plot that when approxi-
mately (N +1)/2 outliers appear on the same window the
classifier ceases to be effective. The window-reset feature
is also shown to work correctly in the lower-right plot.

(a) USBL prototype system attached to the bow
of the support vessel.

(b) Transponder attached to
Nessie V.

Fig. 7. Experimental setup for the USBL positioning system
during tests in Roses, Spain in October 2011, under the
framework of the EU project TRIDENT.

Morgado et al. [2010] and its outlier detection capabilities and
performance are evaluated in this section. The USBL prototype
system is shown attached to the bow of a support vessel in
Fig. 7, which was tracking the transponder attached to the
Nessie V autonomous underwater vehicle — from Harriot Watt
University, Edinburgh, Scotland — in October 2011 in Roses,
Spain, within the framework of the EU project TRIDENT.

The parameters of the classifier were adjusted to: c = 6, a
window-size of N = 9 samples, time reset constant of R = 20
seconds, and a threshold lower-bound of Tmin = 6 meters. The
outlier detection capability of the system in real world operation
scenarios is evidenced in Fig. 8.

5. CONCLUSIONS

This paper presented an outlier detection and classifier algo-
rithm with application to underwater acoustic positioning sys-
tems. The devised framework is based on causal median filters
and a set of theoretical analysis tools that allows for the design
of the filter parameters was also presented. Specific details that
arise from the implementation of such an algorithm in real-
world operation conditions were taken into account and a set
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(b) Zoom from 290 to 512 seconds of operation.

Fig. 8. Experimental results for the USBL positioning system
during tests in Roses, Spain in October 2011.

of new features, such as a multi-level classification scheme
and a time-based moving window reset, was added to cope
with periods of acoustic data outage, which are quite typical
in underwater scenarios. Interestingly enough, given the nec-
essary window-size and computations, the outlier classifier is
easily implementable in low-cost and low-power consumption
digital signal processor (DSP) hardware. The outlier classifier
was finally evaluated both in simulation and with experimental
data from a prototype USBL acoustic positioning system fully
developed in-house. Interesting ideas on future directions of re-
search in this subject might include the validation of an adaptive
algorithm for the choice of certain parameters in the filter.
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