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Abstract: This paper addresses the problem of nonlinear tracking filter design, to estimate the 
position and attitude of underwater vehicles from range and bearing measurements. Two 
different nonlinear kinematic models of the vehicle are presented and the behaviour of the 
respective tracking filters evaluated for different measurement noise levels. Bounds on the 
attainable performance for the nonlinear estimation problem are presented using the Cramér-
Rao Lower Bound and the Posterior Cramér-Rao Lower Bound, in static and dynamic 
scenarios, respectively. The proposed trackers are validated using measurements provided by a 
range and bearing sensor under realistic operation conditions, resorting to a set of Monte Carlo 
simulations. Their performance is then compared to the respective bounds. 
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1. INTRODUCTION 

 
During the last decade the number of operational 
Autonomous Underwater Vehicles (AUVs) and 
Remotely Operated Vehicles (ROVs) experienced a 
large increase in interest. The missions to be carried out 
by the underwater vehicles became also more complex 
and it is now common their use in environmental 
monitoring, geological and biological surveys, and 
underwater structures inspection (e.g. harbours and 
pipelines). To improve the success of those missions 
and for security purposes, the position of the underwater 
vehicle is important to be known at surface, e.g. by a 
support vessel. The solution to this problem can be 
casted in the design of a target tracker (Alcocer et al, 
2007). Interestingly, methodologies for the design of 
underwater trackers can profit from the mature field of 
knowledge in similar aerospace applications, see (Rong 
and Jilkov, 2003) and the references therein.  
 
The structure of the paper is the following: in section 2 
the Extended Kalman Filter (EKF) will be introduced 
and its structure outlined. The range and bearing sensor 
that will be used to provide measurements of the 
underwater target will be briefly discussed in section 3. 
In section 4, two dynamic models for tracking purposes 
in two dimensions are proposed: a circular motion 
dynamic model and a constant turn model with known 
turn rate. Next, for each model an Extended Kalman 
 
 1This work was partially supported by Fundação para a Ciência e a 
Tecnologia (ISR/IST plurianual funding)  through the POS 
Conhecimento Program that includes FEDER funds and by the project 
PDCT/MAR/55609/2004 - RUMOS of the FCT. 

Filter (EKF) is implemented to estimate the position of 
the target and the results obtained from a series of Monte 
Carlo simulation tests with representative trajectories 
will be summarized. Tools for the comparative study of 
nonlinear estimation solutions are introduced in section 
5. The performance of the designed EKFs Lower Bound 
and the Posterior Cramér-Rao Lower Bound, for the 
static and dynamic scenarios, for both nonlinear models 
are compared with the lower bounds just introduced, in 
section 6, and finally some conclusions are drawn in 
section 7. 
 

2. DISCRETE-TIME KALMAN FILTER 
 

The Kalman filter (KF) is the optimal estimator for linear 
systems disturbed by Gaussian noise, providing state 
estimates with least square error (Brown and Hwang, 
1997) (Gelb, 1974). In the case of nonlinear dynamic 
systems or in the presence of nonlinear sensor 
measurements of the system state, as is the case of range 
and bearing based tracking filters, other techniques must 
be thought. The most commonly used is the Extended 
Kalman Filter (EKF), a sub-optimal estimation method 
that generalises the KF for nonlinear systems, detailed 
next.  
 

Consider a nonlinear dynamic system described by 

 
( )

( )
k 1 k k

k k k

, k

, kh
+

= φ +

= +

⎧
⎨
⎩

x x w

z x v
 (1) 

where xk∈Rn is the system state at time k represented as 
a column vector, φ : Rn  Rn  is the nonlinear time-
varying function that describes the state dynamics, h: Rn 

 Rn  relates the available sensors measurements zk∈Rm  

917 
CONTROLO 2008 
8th Portuguese Conference on Automatic Control 
University of Trás-os-Montes and Alto Douro, Vila Real, Portugal 
July 21-23, 2008 
 



     

with the system state. The measurements are assumed to 
be disturbed by zero mean Gaussian white-noise 
wk∈Rn, and the system dynamics are also considered to 
be disturbed by zero mean Gaussian white-noise 
vk∈Rm. 
 

The EKF attempts to minimize the pseudo-covariance 
of the estimation error resorting to a recursive structure 
composed by two steps: the prediction step – where the 
state mean and the pseudo-covariance are computed 
given the system dynamics; and the update step – where 
the predicted state is corrected using the information 
available from the sensor measurements. The equations 
for each one of these steps are described below. 
 
Prediction step: In this step the predicted error state 
pseudo-covariance matrix 

kP−  and the state estimate
k

ˆ −x , 
are computed from 

 ( )k 1 k
ˆ ˆ , k−

+
= φx x  (2) 

 T

k 1 k kP PLin Lin

−

+
= φ φ + Q , (3) 

where the symmetric positive definite matrix Pk∈Rnxn  
represents the updated state pseudo-covariance matrix at 
time instant k, the symmetric positive semi-definite 
matrix Qk∈Rnxn is the covariance matrix of the 
Gaussian white process noise and Linφ  represents the 
state transition matrix linearized about the state 
estimate, i.e. 

 
k

k kˆx xLin =
φ = ∂φ ∂x . (4) 

Update step: The updated state estimate k 1
ˆ

+
x  and the 

updated error pseudo-covariance matrix k 1P
+

 at time 
k+1 are computed respectively as 

 ( )k 1 k 1 k k 1 k 1
ˆ ˆ x̂h− −

+ + + +
= + −⎡ ⎤⎣ ⎦x x K z  (5) 

 ( ) ( )T 1

k k k k 1 k kP P I S Ph h− − −

+
= − ∂ ∂ ∂ ∂⎡ ⎤⎣ ⎦x x . (6) 

The residual pseudo-covariance matrix at time k+1 is 
defined as 

[ ] ( ) ( )T

k 1 k 1 k 1 k k 1 k kS ; Pcov r r h h−

+ + + +
= = ∂ ∂ ∂ ∂ +x x R  (7) 

where Rk∈Rmxm is the covariance matrix of the 
measurement noise. The EKF gain matrix Kk∈Rnxm is 
defined as  

 ( )T 1

k k k k
P h

−

= ∂ ∂K x R . (8) 
The residual vector at time k+1 is 

 
k 1 k 1 k 1

ˆr −

+ + +
= −z z , (9) 

where ( )k 1 k 1 k 1ˆ , k=h−

+

−
+ ++z x v . 

 
3. SENSORS 

 
This paper focuses on the design of tracking filters based 
on range and bearing measurements provided by an active 
sensor. Assuming that the target is moving underwater in 
the ocean, the sensor must be based on the propagation of 
acoustic waves, as electromagnetic waves suffer high 
attenuation in sea water. 
 
A complete Ultra Short Base Line (USBL) is an active 
tracking system that consists of an array of 
hydrophones, which is usually installed underneath a 

ship, and a pinger or transponder mounted on the target. 
This system provides measurements of the distance d 
from the vehicle (target) and the respective bearing angle 
Ө. The USBL measurements are usually obtained in 
polar coordinates that must be transformed to Cartesian 
coordinates using 

 ( )
( )

2

1

x y
x y

y x

2d
g  , 

tan−

+
= =

θ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. (10) 

The inverse transformation ( )1 ,g d− θ  exist everywhere 
except at the origin (where the distance is null) 

 ( )
( )
( )

1
.cosx

,
.siny

d
g d

d
−

θ
= θ =

θ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (11) 

It is considered that the sensor measurements are 
disturbed by noise, which can be approximated by a 
Gaussian distribution, see (Alves, 2004) for details. 
 

4. TARGET TRACKING STATE MODELS 
 

In this section, the state models considered in this work 
will be introduced. Both models considered will be 
closed related with the trajectories that an underwater 
vehicle executes and that can be approximated locally by 
circular or straight line paths (the straight line 
corresponds to a degenerated case of the circular path). 
 
4.1 Circular motion state model 
 

The model presented in this subsection is suited for 
vehicles performing circular paths with constant linear and 
angular velocities (Alves, 2004). The kinematics of the 
target can be described by  

 
( )

.

.

.
0

ψ = ω

ν
= ψ

⎧
⎪
⎨ ⎡ ⎤
⎪ ⎢ ⎥⎩ ⎣ ⎦

p R
 (12) 

where ψ  is the angle that the vehicle describes with 
direction of reference (e.g. the North direction), ω  is the 

angular velocity, [ ]T

x yp p=p  is the vehicle’s position 

in R2, ( )
( ) ( )
( ) ( )

cos sin

sin cos

ψ − ψ
ψ =

ψ ψ

⎡ ⎤
⎢ ⎥⎣ ⎦

R  is the rotation matrix for 

planar motion and ν  is the vehicle’s linear speed. After 
some algebraic manipulation (12) results in 

 ( ) ( )0 0 0t . t tψ = ψ + ω − , (13) 

 ( )( )
.

x 0 0 0 0p cos . t t= ν ψ + ω − , (14) 

 ( )( )
.

y 0 0 0 0p sin . t t= ν ψ + ω − , (15) 

 ( ) 0tω = ω , (16) 

 ( ) 0tν = ν . (17) 
Using (14) (15) and the rotation matrix, the position is 
given by 

( ) ( )( )[ ]0 0 0 0

0 0

0
. . t t .= + ψ − ω −

ν ω

⎡ ⎤
⎢ ⎥⎣ ⎦

p p R I R , (18) 

that corresponds to the equation of the circumference 
with centre in [ ]0 x 0 y0p p=p T and radius 0 0ν ω . We 
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can also include in the model stochastic linear and 
angular accelerations that can be seen as state uncertainty 
allowing for the Kalman filter to take into account 
variations in the state variables, namely in the linear 
speed and angular velocity of the target. The model 
becomes 

( )
( )
( )
( )
( )

( )
( )

00

x 0x 0

0

0y 0y 0

0

0

tt

0pp t . t
. .

pp t

t 0

t 0

t+                ω

ν

η

η

ω Δψψ

− ω Δ
ψ

ν= + ω

ωω

νν

Δ

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

I R
R

B

(19) 

where tΔ  is the sampling period and the random 
variables 

ω
η  and 

ν
η  are introduced to represent the 

linear speed and angular velocity derivatives, 
respectively. The matrix B is defined by 

B=
T

0 0 0 1 0

0 0 0 0 1

⎡ ⎤
⎢ ⎥⎣ ⎦

. The covariance of the Gaussian 

white process noise is given by 

 
3 3

2

2

0
,

0
k

v

blkdiag t
×

= Δ
⎛ ⎡ ⎤ ⎞
⎜ ⎟⎢ ⎥⎝ ⎣ ⎦ ⎠

Q 0 ωσ

σ
, (20) 

where blkdiag represents a block diagonal matrix, 2

ωσ  

and 2

vσ  are the variance of the random variables 
ω

η  and 

ν
η , respectively. 

 

Circular motion state model with known angular 
velocity.  
In the case where the angular velocity is known a priori, 
for instance in pre-programmed missions to be carried 
out by Autonomous Underwater Vehicles (AUVs), this 
variable is no longer required to be estimated. Then, the 
model described in (19) can be simplified to give 

 

( )
( )
( )
( )

( ) ( )
00

x x 0 0
0

y y 0 00

0

t t

p t p 0. t
. .

p t p

t 0

0

0
. t

0

1

               
ν

ψ ω Δψ

− ω Δ
= ψ

νω

ν ν

+ η Δ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

I R
R

. (21) 

The covariance is defined as in (20) deleting the rows 
and columns that correspond to the angular velocity. 
 
4.2 Constant turn model with known turn rate 
 

This dynamic model is derived from the standard 
curvilinear-motion model kinematics of a target moving in 
the horizontal plane (Rong and Jilkov, 2003)  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n

x

y

t

a t t

p t

p t

t a t

cos t

sin t

ψ = ν

= ν ψ

= ν ψ

ν =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

.

.

.

.

, (22) 

where xp  and yp  are the target linear position in the 
inertial frame, ν  is the vehicle’s linear speed, ψ  is the 
angle that the vehicle does in relation to a reference 
direction and ta  and na  are the target tangential and 
normal accelerations in the horizontal plane. This 
kinematic model is fairly general as it takes into account 
along and cross accelerations. A particular case of 
interest for the envisaged application is a constant speed 
and constant turn rate motion. The normal and tangential 
acceleration are then constant and zero 
( )n n 0 na a cte, a 0 = = ≠ , respectively. Then, the first 
equation of (22) can be simplified to 

 ψ = ω
.

, (23) 
where ω  is the vehicle’s angular velocity. It follows 
from (22) and (23) that such circular motion can be 
described by 

( ) ( ) ( ) ( ) ( )
T

x t y t y t x t t= −ω ω +⎡ ⎤
⎢ ⎥⎣ ⎦

. . . . .

x Gw  (24) 

where 
T

x x y yp p p p= ⎡ ⎤
⎢ ⎥⎣ ⎦

. .

x  and ( )tGw  are the 

stochastic accelerations that represent uncertainty in 
respective state variables and allow for variations in the 
state, defined by 

( ) [ ]
T

T

x y

0 1 0 0
t w w

0 0 0 1
   = =

⎡ ⎤
⎢ ⎥⎣ ⎦

G w  (25) 

The discrete-time equivalent can then be written in the 
form 

 k 1 k k k+
= φ +x x w , (26) 

where 

t
k

t 1 t1 0

0 0 t
1- t t0 1

0 t 0 t

sin cos 

cos t sin 
e

cos sin 

sin cos 

Δ

ωΔ − ωΔ⎡ ⎤−⎢ ⎥ω ω⎢ ⎥
ωΔ − ωΔ⎢ ⎥φ = = ⎢ ⎥ωΔ ωΔ

⎢ ⎥
ω ω⎢ ⎥

⎢ ⎥ωΔ ωΔ⎣ ⎦

F
, (27) 

x

k

y

t 1 t

t

1- t t

t t

sin cos 

cos t sin 

cos sin 

sin cos 

Δ − Δ
−

Δ − Δ
=

Δ Δ

Δ Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

w

ω ω

ω ω
ηω ω

ηω ω

ω ω
ω ω

, (28) 

with xη  and yη  random variables that represent 
unknown accelerations. The covariance matrix can be 
computed from (Brown and Hwang, 1997) 

( ) ( ) ( ) ( )

( ) ( )
k 1 k 1

k k

T
t t k 1

k t t T

k 1

t ,

t ,

.E

                dξdτ

+ + +

Τ

+

φ ξ ξ ξ τ
=

τ φ τ

⎡ ⎤⎣ ⎦∫ ∫
G w w

Q
G  

(29) 
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The resulting expression is omitted due to complexity. 
 
4.3 Evaluation of the Target Tracking State Models 
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Fig. 1. Test path used to perform the models simulation. 
 

Both models were simulated considering that the 
vehicle was describing a circular path as depicted in Fig. 
1. Monte Carlo simulations were performed to assess 
the performance of the estimation algorithm presented 
in previous section. The mean squared error of the linear 
position estimates as function of the distance and angle 
sensors noise standard deviation are summarized in 
Table 1. 

Table 1 Mean squared error obtained for several noise variance for 
both state models 

distance [m2] angle [(º)2] px error py error px error py error
0,012 0,012 5,275E-03 4,102E-03 8,059E-02 6,366E-02
0,052 0,052 1,518E-02 1,345E-02 1,865E-01 1,420E-01
0,12 12 9,813E-02 6,894E-02 4,033E-01 3,196E-01
12 22 2,242E-01 1,727E-01 6,084E-01 5,563E-01
32 22 3,621E-01 4,414E-01 6,643E-01 6,233E-01
42 32 4,929E-01 5,273E-01 7,388E-01 6,774E-01
42 42 5,665E-01 5,280E-01 7,921E-01 7,049E-01
52 42 6,704E-01 6,435E-01 8,098E-01 7,275E-01
52 52 7,595E-01 6,721E-01 8,761E-01 7,656E-01
52 62 9,977E-01 8,526E-01 9,458E-01 8,065E-01
62 62 9,320E-01 8,383E-01 9,673E-01 8,337E-01

Circular motion state 
model

Constant model with 
known Turn Rate

Noise Variance Mean squared error Mean squared error

 
 
From the results presented in Table 1 it can be 
concluded that the circular motion state model presents 
better performance than that obtained with the constant 
turn rate model for all noise conditions tested. The 
performance of the estimation algorithms degrades 
gracefully with noise. It is interesting to notice that the 
mean squared error of both estimation algorithms get 
closer for high noise standard deviations. 
 

5. NONLINEAR ESTIMATION PERFORMANCE 
 

The problem of estimating the state variables for a 
discrete time nonlinear dynamic system, with discrete 
nonlinear observations corrupted by additive Gaussian 
white noise, arises in many applications. Since the 
optimality of the estimation algorithms developed is not 
guaranteed by the design procedure, an important step is 
the analysis of the lower bound for the estimation 
problem at hand. Then the comparison of the 
performance obtained for a given algorithm to the lower 
bound determines if a more effective algorithm design is 
required. A powerful result to determinate the best 
performance attainable in an estimation problem is the 
so-called Cramér-Rao lower bound (Kay, 1993). 

Defining P as the estimation error covariance matrix 
corresponding to any unbiased estimator, then this 
inequality can be stated as 

 * 1J −≥ =P P  (30) 
where J is the Fisher information matrix, P* is the 
estimation lower bound, and ≥A B  means that −A B  is 
non defined negative. 
 
5.1 Cramér-Rao Lower Bound 
 

Let x be an unknown deterministic parameter and z  the 
vector of observations, corrupted by noise with known 
probability density function (pdf) ( ); xp z . If the pdf 
satisfies the regularity condition (Kay, 1993) 

 
( ); x

0, x
x

ln p
E  

∂
= ∀

∂
⎡ ⎤
⎢ ⎥⎣ ⎦

z
 (31) 

the variance of any unbiased estimator satisfies 

 ( )
( )2

2

1
x̂

; x

x

var
ln p

-E

≥
∂

∂

⎡ ⎤
⎢ ⎥⎣ ⎦

z
 (32) 

where the denominator is the well known Fisher 
information matrix 

 ( ) ( )2

2

; x
x

x

ln p
J =-E

∂

∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

z
 (33) 

and the lower bound on the variance of any estimator is 
given by 

 ( ) ( ) 1x̂ xvar J −
= . (34) 

For the specific case studied here a deeper analysis will 
be performed based in Taylor’s method. Assuming that 
the system is written in the form presented in (1) and is 
not corrupted with any process noise k =w 0 , the pdf 

( )k k|p Z X  can be defined as (Taylor, 1979; Kerr, 1989; 
Level, 2006)  

( )
( )

( ) ( ){ }

( )
( )( ) ( )( ){ }

T 1
k k 0 0 0 0 02 1 2

0

K
T 1

k k k k k2 1 2
k 1 k

1
ˆ ˆ| 1 2 .

2

1
1 2

2

n

m

p exp -

    exp - h h

−

−

=

= − −

− −∏

Z X x x S x x
S

z x R z x
R

π

π

 

  (35) 
where ( )0 0 0

ˆ ,Nx x S , { }k 0 1 K, , ...,=Z z z z  and 

{ }k 0 1 K, , ...,=X x x x . Taking the logarithm of (35) and 
then the expectation of the second partial in accordance 
with (33), we obtain 

T T
K

1 10 0 k k
k 0 k

k 1K K K K

h h
J − −

=

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑x x
S R

x x x x
. 

  (36) 
Defining 

 
( )

k

k
k

k

, kh∂

∂
x

x
H

x
, (37) 

and applying the chain rule of partial differentiation to 
equation (36), yields 

Test path 

= 

~ 
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T T

K
1 T 10 0 k k

k 0 k k k
k 1K K K K

J − −

=

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑x x x x
S H R H

x x x x
.   (38) 

Defining  

 k k

K

∂ ∂
=

∂ ∂

x

x x

φ
, (39) 

equation (38) can be written in a recursive form in terms 
of P* as 

( )
k k

1T

1* * T 1k k
k k k 1 k k kJ P

−

− −

−

∂ ∂
= = +

∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦x x

P H R H
x x

φ φ . (40) 

 
5.2 Posterior Cramér-Rao Bound 
 

The Posterior Cramér-Rao Bound (PCRB) provides a 
mean-square error lower bound for the discrete time 
nonlinear filtering problem. This lower bound is 
applicable to multidimensional nonlinear dynamical 
systems, corrupted by disturbances not necessarily 
Gaussian, and is more general than other approaches 
described in the literature (Tichavský, Muravchik, 
Nehorai, 1998). This approach can also deal with 
process noise, so the Fisher matrix is defined as 

 ( )( ){ }T

k k, ,J E  ln p  = − ∇ ∇⎡ ⎤⎣ ⎦x x X Z  (41) 

where 
1 k

, ...,
x x

∂ ∂
∇ =

∂ ∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

x is the Jacobian. In this case 

both kZ  and kX  are random variables, instead of kX  
being deterministic as for the Cramér-Rao Lower Bound 
(CRLB). So, the pdf is now defined as 

( ) ( ) ( ) ( )
k k

k k 0 i i j j 1
i 1 j 1

, | |p p p p −

= =

= ∏ ∏X Z x z x x x . (42) 

In (Tichavský, Muravchik, Nehorai, 1998) it is shown 
that the Fisher matrix in recursive form is 

 ( ) 122 21 11 12

k 1 k k k k kJ D D J D D
−

+
= − + , (43) 

where, in the general case, 
 ( )

k k

11 T

k k 1 k|D E ln p
+

= −∇ ∇⎡ ⎤⎣ ⎦x x x x , (44) 

( )
k k 1

T12 T 21

k k 1 k k|x x x xD E ln p D
+

+
= −∇ ∇ =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ , (45) 

 
( )

( )
k 1 k 1

k 1 k 1

22 T

k k 1 k

T

k 1 k 1

|

|

D E ln p

          E ln p

+ +

+ +

+

+ +

= −∇ ∇

+ −∇ ∇

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

x x

x x

x x

z x
. (46) 

Simplifying under the assumption of white Gaussian 
noise, equations given by (44), (45) and (46) result in  

 ( ) ( )
k k

T11 1

k k k k k kD −= ∇ ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x xx Q xφ φ , (47) 

 ( )
k

T T12 1 21

k k k k kD D−= − ∇ =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦x x Qφ , (48) 

 ( ) ( )
k 1 k 1

T22 1 1

k k k 1 k k 1D h h
+ +

− −

+ +
= + ∇ ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x xQ x R x . (49) 

The Fisher matrix previously introduced in (43) is 
simplified to 

( ) ( )( )
( ) ( )

k k

k 1 k 1

-1T-1
k 1 k k k k k k

T 1
k 1 k 1 k 1

J J +

          + h h
+ +

+

−
+ + +

⎡ ⎤ ⎡ ⎤= ∇ ∇ +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤∇ ∇⎣ ⎦ ⎣ ⎦

x x

x x

x x Q

x R x

φ φ

  (50) 

Comparing (50) to (40), it is apparent that these two 
equations are identical, which leads to a interesting 
conclusion: Taylor’s method for computing the CRLB 
can be easily adapted to compute an approximate PCRB 
by simply including the process noise covariance. It is 
important to notice that the linearization of the system 
dynamics in (37), (40) and (50) should be obtained about 
the nominal path (an equilibrium path for the dynamics) 
considered in simulation. 
 

6. MODELS PERFORMANCE – RESULTS AND 
DISCUSSION 

 

In order to analyze the performance of both estimation 
algorithms the Cramer-Rao and Posterior Cramer-Rao 
lower bounds were computed for the problem at hand. First 
a CRLB analysis was carried out, where uncorrupted 
process models were considered. The results are 
summarized and in Fig. 2. and Fig. 3. 
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Fig. 2. Position estimation performance and CRLB 
results using the circular motion state model. 
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Fig. 3. Position estimation performance and CRLB 
results using the constant model with known turn 
rate. 

From the results depicted in Fig. 2. and Fig. 3., it can be 
concluded that the constant model with known turn rate 
has better performance than the circular motion state 
model. Notice that the estimation performance is quite 
similar for both models for low noise variances. As the 
noise variance increases the estimation performance 
degrades but the constant model with known turn rate 
becomes more accurate than the circular motion state 
model. 
Next a Posterior Cramer-Rao lower bound analysis was 
performed. The results are summarized in Fig. 4. and 
Fig. 5. 

921



     

0,0E+00

2,0E-01

4,0E-01

6,0E-01

8,0E-01

1,0E+00

1,2E+00

0,01 0,05 1 2 2 3 4 4 5 6 6

0,01 0,05 0,1 1 3 4 4 5 5 5 6

Distance [m] and angle [º] standard deviation

M
ea

n 
sq

ua
re

d 
er

ro
r

px Mean squared
error
PCRB px Mean
squared error
py Mean squared
error
PCRB py Mean
squared error

 

Fig. 4. Position estimation performance and PCRB 
results using the circular motion state model. 

In these figures the circular motion state model has 
shown better performance than the constant model with 
known turn rate, almost for all noise variances 
considered in the simulation. However these results, 
when compared with the corresponding posterior lower 
bounds, allow one to conclude that there might be other 
estimation techniques that can provide better estimates, 
thus near the PCRLB. 
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Fig. 5. Position estimation performance and PCRB 
results using the constant model with known turn 
rate. 

From the results obtained, it is also possible to conclude 
that the performance of the algorithm, although 
degraded for higher noise variances, becomes similar. 
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Fig. 6. Mean squared error (MSE) evolution for the 
constant model with known turn rate using the 
optimal estimator derived with PCRB theory. 

Notice the periodic evolution of the mean square error 
in the optimal situation derived with PCRB theory, as 
depicted in Fig. 6. This evolution reveals the impact of 
the geometry of mission on the estimation problem 
performance, i.e. due to the circular motion performed 
by the vehicle. The estimated on the coordinate x has 
higher uncertainty when the vehicle is far from the 
sensor in the coordinate y. Similarly, for the coordinate 
x higher uncertainty in the coordinate x occurs when the 
vehicle is far from the sensor in coordinate y. This fact 
is justified due to the noise that corrupts the bearing 
angle that, for higher distances, results on larger 
uncertainty in the estimation of the vehicle position. 
 

7. CONCLUSIONS 
In this paper two different dynamic models for target 
tracking were presented. The performance of the 
Extended Kalman filters for the estimation of the 
unknown quantities, in both models, was studied. The 
results obtained show that the proposed algorithms can 
be further improved, due to the fact that the mean 
squared estimate errors are relatively far from the 
optimal solution. 
Comparatively, the circular motion state model has better 
performance than the constant model with known turn 
rate in the case where it was considered process noise in 
the system. In the case with no process noise, the 
constant model with known turn rate had better 
performance. Although it was interesting to see that the 
estimation performance of both models, in both 
situations referred previously, become closer as the noise 
variance increases. The performance of both algorithms is 
improved for lower signal to noise ratios. The analyses 
performed in this work lead us to the conclusion that the 
uncertainty affecting the bearing angle had great influence 
in the performance of the algorithms. 
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