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Abstract: The knowledge on the state of chaotic efodor the human neuron axon
voltage activity is important to understand braativaty. An approach that consists of
estimating the state of individual oscillators (idual neurons or populations of

synchronous neurons), from sensor measurementsidprgvcombinations of state

variables, can be chosen to tackle that problere. itimber of sensors is typically much
smaller than the number of underlying oscillatémsthis paper a solution to this problem
is exploited, resorting to Extended Kalman Filtesfien one or more chaotic systems
(Lorentz attractors) are considered.

Keywords: chaotic behaviour, estimators, oscillat@ttractors, extended Kalman filters,
synchronization, observability

nature, and several possible improvements arealliste
1. INTRODUCTION later (see Section 6).

1.1 Motivation

1.2 Objective
In recent years the neurons of the human brain have
been studied from a dynamic system perspective.in this work the objectives are twofold. First, aien
There is evidence suggesting that a neuron’s outputto demonstrate that it is possible to use an EKF to
defined as the voltage difference between the @eitsi successfully estimate the state of a chaotic @soill
and the inside of its axon, can be described by(the Lorentz attractor), even when the measurements
continuous-time chaotic systems (Izhikevich, 2007). are not invertible, i.e., there are less measurésmen
than state variables. This is done in Section 4.
In some cases, direct measurements of these signalsecond, we will show that, again with EKFs, it is
can be obtained from electrodes placed directifén  possible to estimate the state of two chaotic
neurons. However, in a typical situation, only oscillators (Lorentz  attractors), when the
indirect measurements corrupted by noise aremeasurements are not invertible and also not
available. For example, in EEG, these are obtainedseparable, meaning that each sensor measures linear
from electrodes in the individual’s scalp. Moreqver combinations of variables coming from both
these measurements typically contain only a fractio oscillators. This is done in Section 5.
of signals when compared to the number of
underlying oscillators (the typical number of sensso
is 64 or 128 in EEG, and up to 300 in MEG, while 1 3 Notation
the brain has approximately f®eurons).

The notation used in this text is typical in the

It is important to estimate the state of the unded literature on dynamic systems and is reviewed here
oscillators when the number of measurements isfor completeness. Throughout this text, we will use
much smaller than the number of state variablesthe following system of equations:

assumed in the brain, i.e. the product of the numbe
of the state variables of the neuron by the nunolber x=f(x)+&
neurons. Even when the connectivity between {

neurons is discarded, this problem is very hard
because the number of available measurements is

always a small fraction of the number of state where x depotes thep-dlmen5|o_r1al ;tate of the
variables in the brain. system,f(x) is a non-linear function is the zero

mean white Gaussian plant noise, is the m-

In this work we aim to provide some insight into a d|mer15|onal mgasurgmen'g(x) is a non-linear
possible solution for this problem using Extended function and® is white noise (called the sensor

Kalman Filters (EKFs). This work is pedagogical in noise). Note that the possible time dependencdl of a
these variables and functions has been omitted for

clarity.

z=g(x)+8



1.4 Paper structure

We begin by introducing two concepts that are 45

important for this work: the Lorentz attractor in 40
Section 2, and Kalman filters in Section 3. In tlist »
section we introduce both the Kalman filter forelam El
systems and the Extended Kalman filter for non- »

linear systems. Section 4 summarizes the methods =
and results obtained for a simulated dataset

consisting of one oscillator, and Section 5 for two 10
oscillators. We discuss the results in SectiontGene 5
possible improvements and extensions of this work 2.
to be addressed in the future are outlined, folbwe 0

by some conclusions in Section 7.

2. THE LORENTZ ATTRACTOR “

The Lorentz attractor is one of the most widely

known continuous-time deterministic dynamical

systems. It has a three-dimensional state variable,
governed by the following state equation,
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Fig. 1. Plot of the trajectory of the Lorentz attiax

parametrized by three paramete,p(o). It is from two different viewpoints. The bottom figure

known that for some choices of these parameters the Shows the two “surfaces”.

system exhibits chaotic behaviour, e.g.for 8/3,p

= 28,0 =10. .

X(t) = AX(®) + HO[Z) = Zpesres®)]-

This system is called aattractor because its orbits

are attractive (Devaney, 2003), which means that fo |t remains to be seen how to compute the gain matri

any initial point, the trajectory of the system is H(t) (called the Kalman gain). If Gaussian

bounded. After a transient period, the trajectofy o distributions are assumed for the plant and sensor

the Lorentz attractor falls into one of two “sudat,  noises, and for the distribution of the initial tetaf

as shown in Fig. 1. the system, and if all these quantities are indégen
from each other, then it can be shown that to
minimize the expected square error

3. KALMAN FILTERING

El|x(t) - %) 2/ z®)|
3.1 Linear Kalman filter MX() X )H ()J

The optimal solution to estimate the state of linea yvhere_Z(t) IS the set of all measurements up to and
dynamic systems is the Kalman Filter, introduced 5oincluding time t, the Kalman gain should be
years ago. A detailed description of this technique computed as

can be found in (Anderson and Moore, 1979); here o

we present a more intuitive view for brevity. H(t) =x(t)Co™,

Given the current state estimafgt), the Kalman where © is the covariance of the sensor noise and

filter for linear and time-invariant systems (syste  =(!) is the covariance of the state estimate at time t
where f(x)=Ax, g(x) =Cx, where A and C are which follows the following propagation rule:

constant matrices) provides estimates on what the . = _ T4
measurements should bezpr(edicled(t) — C)’Z(t)) and Z(t) - A):(t) + Z(t)A +=- Z(t)C () Cz(t) .
compares this with the actual measuremaft). . Note that the equation for the propagatiorzofan
If z <z, the measurements are being po goyeq offline. The Kalman filter is, then, thest
underestimated and the filter should correct tlagest estimator in the sense that it is unbiased andh®s
estimate derivatives to increase the predictedleast mean squared error.

measurements. In mathematical terms, the evolution

of the state should be corrected according to aofaw

the following type:

predicted



3.2 Extended Kalman filter (for nonlinear systems) 4.2 Results

The extended Kalman filter (EKF) is the The above method was repeated for several initial
generalization of the Kalman filter for nonlinear conditions of the attractor and EKF, and for selera
systems. Suppose that the functiohsand g are noise levels. Generally, the EKF performs well for
differentiable in the system model introduced in low levels of noise (variance of the sensor noise
Section 1.3, such that the model can be approximate below ~10*, although this threshold seems to vary

to a linearized version that can be written as with the initial condition), and is able to tracket
x=A(X)X+& attractor's state with minimal error. As an
- illustration, we present the case with initial stét6,
z=C(x)x+8 -6, 20), initial estimate (-6, -6, 20.1) and sensoise
variance 10.
where o
dof d K
A A g
AX)=—, C(X) =— 4
( ) dx ( ) dx 3
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25
If the statex was known exactly, this would be i
entirely equivalent to the real model. In practite 15
real statex is unknown, but its estimate is known. 0
This leads to the following approximation: E
df d o
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Fig. 2: 3D plot of the real state (blue) and EKF
The EKF uses this assumption. The equations that estimate (red, dashed). It is clear that the EKF
govern the EKF are exactly equal to the ones fer th manages to follow the real system quite well,

KF, replacing everywheré and C by A(x) and despite the initial offset.

é(f(). The propagation ok must in this case be
solved on-line.

Contrary to the KF case, there is no proof that the
EKF is the best estimator in any sense. It is not
guaranteed to be stable, robust, or to have gooc
performance. Its advantages are its simplicity, the
strong motivation (as a generalization of the KR)l a
the light computational demand compared to other
observers for nonlinear systems.

4. PART 1: ONE OSCILLATOR L e R
4.1 Methodology Fig. 3: Estimation errors for the 3 state variables
The fact that the initial state is different in theal
A Lorentz attractor with parametefis= 8/3,p = 28 system and in the EKF causes some initial large
ando = 10 was implemented in SIMULINK 7. With errors, but the EKF manages to “catch up” with

these parameters, the Lorentz attractor exhibits the real system and after some transient behaviour
chaotic behaviour as previously mentioned. An EKF it performs well.

was designed and implemented to model the exact

nonlinearity (i.e., no approximation féfx) is used).

The attractor and EKF were simulated fon [0,10]. 5. PART 2: TWO OSCILLATORS
The measurement was arbitrarily chosemg@} = x;
(the first state variable). 5.1 Methodology

Although no plant noise was implemented, the EKF Two Lorentz attractors, with the same parameters as

assumes a small value (90for the variance of each above, were implemented in SIMULINK 7 as one
state variable to work correctly. single system with six state variables. An EKF with

six state variables was also implemented with no
approximation orf(x). Given the limited computation
power available, the system was simulated tfam
[0,5]. The measurement was chosen as having three
scalar values, each being a fixed, known linear



combination of all six state variables with random a0
coefficients (uniform between 0 and 1). In other
words,g(x) = Cx whereC is a 3x6 random matrix.

40,

30

Just like in Part 1, a small value Qs assumed in x
the EKF for the plant noise, but not actually
implemented, in order to make the estimator work
correctly. o

5.2 Results

Contrary to Part 1, in this case the performance of =7
the EKF depends heavily on the initial conditioris o

the state variables and their estimates, and on the
number of sensors. The EKF will sometimes perform
poorly even for very low levels of noise. For this
reason, we chose to present a case where the EK
performs badly and one where it performs well to el
illustrate the kind of results that can be obtainguke %
main difference between these two cases is the
number of sensors: there are two in the “bad

40

20

example” and three in the “good example”. 8

10
Bad performance examplén this case it will be 5
seen that the EKF can perform poorly, and even ™ 7 .
diverge (despite the fact that the original sysism o owmo® w00
bounded).

Fig. 4: 3D plot of the real state (blue) and EKF
estimate (red, dashed). The first three variables
(i.e. the first Lorentz attractor) are on the I¢ffie
last three (i.e. the second Lorentz attractor)hen t
right. The black circle marks approximately the
point where the EKF “loses” the real state=(
1.6). It can be seen that one of the attractoes (th
first one, on the left) was passing from one
surface to the other one at that time. This is a
general finding in our simulations.

For this case the initial state was randomly gdrdra
as (-1.7681, -3.8994, 20.1202, -0.5350, -7.8059,
8.9165), the initial state estimate was taken dxact
equal to the initial state, and the mixing matrixv@s
randomly generated as

{0.6261 0.0194 0.1334 0.8934 0.2704 0.655(1

0.2341 0.1454 0.3737 0.6015 0.3395 0.4326

The noise covariance was chosen diagonal with
diagonal elements equal to “1@or generating the -
noise, but the EKF assumed it as®l@umerical
issues arise if I0is used here, but using i6or the

3001

actual noise causes the EKF to not be able toviollo anr
the attractor). 100}
of— LT

The plots below (Fig. 4) show the trajectory of the
first and second oscillators and the point wheee th
EKF diverges from the real state. In this caseait =00r |
be seen that this separation between the realnsyste -}
and the EKF occurs when one of the individual
attractors is passing from one of the “surfaceghto

other one (in this case it was the first attracttm)  Fig. 5: Plot of the difference between the reaesta
our simulations, we have verified that this is a and the EKE estimate. It is clear that after1.6
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general property, i.ewhenever the EKF diverges the EKF starts to perform very poorly and
from the real state, it does so when one of the two eventually diverges. Each different color
attractors is passing from one “surface” to the represents one of the six state variables.

other one The converse is not true, i.e., the

attractors can switch from one “surface” to theeoth Good performance examp“n this case the initial

one without causing the EKF to diverge (see nextstate was randomly generated as (-3.1286, -1.1406,

example). 5.7074, -0.5008, -6.6860, 13.4181), the initialtesta
estimate was taken exactly equal to the initialesta
and the mixing matrixC was randomly generated as



09787 04711 0.0424 0.0967 0.7224 0.5186
0.7127 0.0596 0.0714 0.8181 0.1499 0.9730
0.5005 0.6820 0.5216 0.8175 0.6596 0.6490

o1r

ooar

The noise covariance matrix was chosen diagonal

with diagonal elements equal to 16or generating T ﬁ
the noise, but the EKF assumed it a¥ {ifumerical sy

issues arise if T0is used here, but using i6or the a1

actual noise causes the EKF to not be able toviollo

the attractor). This is a very small value, and our
simulations show that greater values cause the EKF
to lose track of the real state and eventually ige OBrgs 1 15 2 25 3 35 4 45 5

015+

nz2k

With these choices, the EKF performs well and Fig. 7: Plot of the components of the estimatiaorer
manages to follow the attractor with a maximum  (real state minus estimate). Although there are
absolute error in each component below 0.2, and SOme spontaneous “outbursts” of larger error,
averaging 0.02. Note that the trajectory of the  they are always under 0.2 in absolute value.
Lorentz attractor has typical values of each

coordinate between 5 and 25, so this is a smait.err

This does not happen every time (it depends on the 6. DISCUSSION

starting point for the attractors).
The work presented here shows that the use of

Below we present some p|0ts to illustrate the dynamic filters such as the EKF to estimate theesta
performance of the EKF (figs. 6 and 7). of a chaotic system is possible, however in thescla
of problems addressed here, this strategy can fail.
Also, it shows that it is possible to estimate skete
of chaotic systems whose measurements are mixed.
There are, however, several improvements possible.
50
The Lorentz attractor is, among the span of
continuous-time chaotic systems, a tough one to
follow. This happens because there are very strong
bifurcations, where points very close to each other
will go to different “surfaces” (see Fig.1). If meane
of these points the sensor noise causes the EKF to
2 A estimate that the correct state will lead to onéase
0 0 when in fact it will lead to the other, the estimat
A ey can become very poor. This is what is demonstrated
in theBad Examplebove.
There are plenty more continuous-time chaotic
systems that could be used. In fact, the Lorentz
attractor does not intend to model the neuron igtiv
(see (Izhikevich, 2007) for some chaotic systemas th
aim to do that). To use systems with few variables
that model the neuron reasonably well, one could fo
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= example use the Fitzhugh oscillator (Fitzhugh, 3961
5 which is related to the more well-known Van der Pol
s oscillator.
0 Also, theEKF is not the right tool for this estimation
problem. Recently, some groups have developed
L T T CR B observer design techniques which specialize in

estimating the state of chaotic systems. For exampl
Xiao et. al.(2003) have found a technique to develop
observers for the Van der Pol system which are
globally stable. The problem we saw in tBad

Fig. 6: 3D plot of the real state (blue) and EKF
estimate (red). The first three variables (i.e. the
first Lorentz attractor) are on the left, the last

three (i.e. the second Lorentz attractor) on the Example would never occur, because a stable

right. It can be seen that the EKF manages t0,pqerer coupled with a bounded system can never
follow the real system very well, despite the fact diverge

that the second attractor switches surfaces a few

times. In linear systems, the concept observability is

used to classify systems as observable or not
observable. Intuitively, an observable system ie on



in which knowing a finite number of past
measurements in a deterministic setting allowsous t
infer what the state of the system was at the sfart
those measurements (see (Anderson and Moore,
1979) for a rigorous definition). For non-linear
systems there is a reasonably similar concept
introduced by Takens (1981)akens’ theorem
gives conditions on a chaotic system which allow fo
its state to be reconstructed from a series of
measurements. In more intuitive terms, it is the
analog for chaotic systems of the observability
concept. This theorem is considerably less inteitiv
than the simple observability concept and will bet
detailed nor used here. In principle, the condgion
mentioned in this theorem could be used to better
understand under which conditions a pair of Lorentz
attractors can be followed by an EKF or not. Thia i
topic for further research.

7. CONCLUDING REMARKS

We demonstrated that an EKF can correctly estimate
the state of a chaotic system (the Lorentz attracto
under low-noise conditions. We also showed that the
state variables of a pair of such systems providing
measurements which mix the variables of both
systems can be correctly estimated under low-noise
conditions for some sensor matrices while for ather
it can diverge. The study of which sensor matrices
allow correct estimation is a topic for further \Wor
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