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Abstract: The knowledge on the state of chaotic models for the human neuron axon 
voltage activity is important to understand brain activity.  An approach that consists of 
estimating the state of individual oscillators (individual neurons or populations of 
synchronous neurons), from sensor measurements providing combinations of state 
variables, can be chosen to tackle that problem. The number of sensors is typically much 
smaller than the number of underlying oscillators. In this paper a solution to this problem 
is exploited, resorting to Extended Kalman Filters, when one or more chaotic systems 
(Lorentz attractors) are considered. 
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1. INTRODUCTION 

 
1.1 Motivation 
 
In recent years the neurons of the human brain have 
been studied from a dynamic system perspective. 
There is evidence suggesting that a neuron’s output, 
defined as the voltage difference between the outside 
and the inside of its axon, can be described by 
continuous-time chaotic systems (Izhikevich, 2007). 
 
In some cases, direct measurements of these signals 
can be obtained from electrodes placed directly in the 
neurons. However, in a typical situation, only 
indirect measurements corrupted by noise are 
available. For example, in EEG, these are obtained 
from electrodes in the individual’s scalp. Moreover, 
these measurements typically contain only a fraction 
of signals when compared to the number of 
underlying oscillators (the typical number of sensors 
is 64 or 128 in EEG, and up to 300 in MEG, while 
the brain has approximately 1011 neurons). 
 
It is important to estimate the state of the underlying 
oscillators when the number of measurements is 
much smaller than the number of state variables 
assumed in the brain, i.e. the product of the number 
of the state variables of the neuron by the number of 
neurons. Even when the connectivity between 
neurons is discarded, this problem is very hard 
because the number of available measurements is 
always a small fraction of the number of state 
variables in the brain. 
 
In this work we aim to provide some insight into a 
possible solution for this problem using Extended 
Kalman Filters (EKFs). This work is pedagogical in 

nature, and several possible improvements are listed 
later (see Section 6). 
 
 
1.2 Objective 
 
In this work the objectives are twofold. First, we aim 
to demonstrate that it is possible to use an EKF to 
successfully estimate the state of a chaotic oscillator 
(the Lorentz attractor), even when the measurements 
are not invertible, i.e., there are less measurements 
than state variables. This is done in Section 4. 
Second, we will show that, again with EKFs, it is 
possible to estimate the state of two chaotic 
oscillators (Lorentz attractors), when the 
measurements are not invertible and also not 
separable, meaning that each sensor measures linear 
combinations of variables coming from both 
oscillators. This is done in Section 5. 
 
 
1.3 Notation 
 
The notation used in this text is typical in the 
literature on dynamic systems and is reviewed here 
for completeness. Throughout this text, we will use 
the following system of equations: 
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where x denotes the n-dimensional state of the 
system, f(x) is a non-linear function, ξ is the zero 
mean white Gaussian plant noise, z is the m-
dimensional measurement, g(x) is a non-linear 
function and θ is white noise (called the sensor 
noise). Note that the possible time dependence of all 
these variables and functions has been omitted for 
clarity. 



 

     

1.4 Paper structure 
 
We begin by introducing two concepts that are 
important for this work: the Lorentz attractor in 
Section 2, and Kalman filters in Section 3. In this last 
section we introduce both the Kalman filter for linear 
systems and the Extended Kalman filter for non-
linear systems. Section 4 summarizes the methods 
and results obtained for a simulated dataset 
consisting of one oscillator, and Section 5 for two 
oscillators. We discuss the results in Section 6, where 
possible improvements and extensions of this work 
to be addressed in the future are outlined, followed 
by some conclusions in Section 7. 
 
 

2. THE LORENTZ ATTRACTOR 
 
The Lorentz attractor is one of the most widely 
known continuous-time deterministic dynamical 
systems. It has a three-dimensional state variable, 
governed by the following state equation, 
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parametrized by three parameters (β,ρ,σ). It is 
known that for some choices of these parameters the 
system exhibits chaotic behaviour, e.g. for β = 8/3, ρ 
= 28, σ = 10. 
 
This system is called an attractor because its orbits 
are attractive (Devaney, 2003), which means that for 
any initial point, the trajectory of the system is 
bounded. After a transient period, the trajectory of 
the Lorentz attractor falls into one of two “surfaces”, 
as shown in Fig. 1.  
 
 

3. KALMAN FILTERING 
 
3.1 Linear Kalman filter 
 
The optimal solution to estimate the state of linear 
dynamic systems is the Kalman Filter, introduced 50 
years ago. A detailed description of this technique 
can be found in (Anderson and Moore, 1979); here 
we present a more intuitive view for brevity. 
 
Given the current state estimate )(ˆ tx , the Kalman 

filter for linear and time-invariant systems (systems 
where xxgxxf CA == )(,)( , where A and C are 

constant matrices) provides estimates on what the 
measurements should be ( )(ˆ)( txtzpredicted C= ) and 

compares this with the actual measurement z(t). 
If zzpredicted < , the measurements are being 

underestimated and the filter should correct the state 
estimate derivatives to increase the predicted 
measurements. In mathematical terms, the evolution 
of the state should be corrected according to a law of 
the following type:  

 

    
 
Fig. 1. Plot of the trajectory of the Lorentz attractor 

from two different viewpoints. The bottom figure 
shows the two “surfaces”. 
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It remains to be seen how to compute the gain matrix 
H(t) (called the Kalman gain). If Gaussian 
distributions are assumed for the plant and sensor 
noises, and for the distribution of the initial state of 
the system, and if all these quantities are independent 
from each other, then it can be shown that to 
minimize the expected square error  
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where Z(t) is the set of all measurements up to and 
including time t, the Kalman gain should be 
computed as 
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where ΘΘΘΘ is the covariance of the sensor noise and 
ΣΣΣΣ(t) is the covariance of the state estimate at time t, 
which follows the following propagation rule: 
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Note that the equation for the propagation of ΣΣΣΣ can 
be solved off-line. The Kalman filter is, then, the best 
estimator in the sense that it is unbiased and has the 
least mean squared error. 
 
 
 



 

     

3.2 Extended Kalman filter (for nonlinear systems) 
 
The extended Kalman filter (EKF) is the 
generalization of the Kalman filter for nonlinear 
systems. Suppose that the functions f and g are 
differentiable in the system model introduced in 
Section 1.3, such that the model can be approximated 
to a linearized version that can be written as 
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If the state x was known exactly, this would be 
entirely equivalent to the real model. In practice, the 
real state x is unknown, but its estimate x̂  is known. 
This leads to the following approximation: 
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The EKF uses this assumption. The equations that 
govern the EKF are exactly equal to the ones for the 
KF, replacing everywhere A and C by )ˆ(ˆ xA  and 

)ˆ(ˆ xC . The propagation of ΣΣΣΣ must in this case be 

solved on-line. 
 
Contrary to the KF case, there is no proof that the 
EKF is the best estimator in any sense. It is not 
guaranteed to be stable, robust, or to have good 
performance. Its advantages are its simplicity, the 
strong motivation (as a generalization of the KF) and 
the light computational demand compared to other 
observers for nonlinear systems. 
 
 

4. PART 1: ONE OSCILLATOR 
 
4.1 Methodology 
 
A Lorentz attractor with parameters β = 8/3, ρ = 28 
and σ = 10 was implemented in SIMULINK 7. With 
these parameters, the Lorentz attractor exhibits 
chaotic behaviour as previously mentioned. An EKF 
was designed and implemented to model the exact 
nonlinearity (i.e., no approximation for f(x) is used). 
The attractor and EKF were simulated for t in [0,10]. 
The measurement was arbitrarily chosen as g(x) = x1 
(the first state variable). 
 
Although no plant noise was implemented, the EKF 
assumes a small value (10-6) for the variance of each 
state variable to work correctly. 
 
 
 
 

4.2 Results 
 
The above method was repeated for several initial 
conditions of the attractor and EKF, and for several 
noise levels. Generally, the EKF performs well for 
low levels of noise (variance of the sensor noise 
below ~10-4, although this threshold seems to vary 
with the initial condition), and is able to track the 
attractor’s state with minimal error. As an 
illustration, we present the case with initial state (-6, 
-6, 20), initial estimate (-6, -6, 20.1) and sensor noise 
variance 10-6. 

 
Fig. 2: 3D plot of the real state (blue) and EKF 

estimate (red, dashed). It is clear that the EKF 
manages to follow the real system quite well, 
despite the initial offset. 

 

Fig. 3: Estimation errors for the 3 state variables 
The fact that the initial state is different in the real 
system and in the EKF causes some initial large 
errors, but the EKF manages to “catch up” with 
the real system and after some transient behaviour 
it performs well. 

 
 

5. PART 2: TWO OSCILLATORS 
 
5.1 Methodology 
 
Two Lorentz attractors, with the same parameters as 
above, were implemented in SIMULINK 7 as one 
single system with six state variables. An EKF with 
six state variables was also implemented with no 
approximation on f(x). Given the limited computation 
power available, the system was simulated for t in 
[0,5]. The measurement was chosen as having three 
scalar values, each being a fixed, known linear 



 

     

combination of all six state variables with random 
coefficients (uniform between 0 and 1). In other 
words, g(x) = Cx where C is a 3x6 random matrix. 
 
Just like in Part 1, a small value (10-6) is assumed in 
the EKF for the plant noise, but not actually 
implemented, in order to make the estimator work 
correctly. 
 
 
5.2 Results 
 
Contrary to Part 1, in this case the performance of 
the EKF depends heavily on the initial conditions of 
the state variables and their estimates, and on the 
number of sensors. The EKF will sometimes perform 
poorly even for very low levels of noise. For this 
reason, we chose to present a case where the EKF 
performs badly and one where it performs well to 
illustrate the kind of results that can be obtained. The 
main difference between these two cases is the 
number of sensors: there are two in the “bad 
example” and three in the “good example”. 
 
Bad performance example: In this case it will be 
seen that the EKF can perform poorly, and even 
diverge (despite the fact that the original system is 
bounded).  
 
For this case the initial state was randomly generated 
as (-1.7681, -3.8994, 20.1202, -0.5350, -7.8059, 
8.9165), the initial state estimate was taken exactly 
equal to the initial state, and the mixing matrix C was 
randomly generated as 










0.43260.33950.60150.37370.14540.2341

0.65500.27040.89340.13340.01940.6261

 
The noise covariance was chosen diagonal with 
diagonal elements equal to 10-7 for generating the 
noise, but the EKF assumed it as 10-6 (numerical 
issues arise if 10-7 is used here, but using 10-6 for the 
actual noise causes the EKF to not be able to follow 
the attractor). 
 
The plots below (Fig. 4) show the trajectory of the 
first and second oscillators and the point where the 
EKF diverges from the real state. In this case, it can 
be seen that this separation between the real system 
and the EKF occurs when one of the individual 
attractors is passing from one of the “surfaces” to the 
other one (in this case it was the first attractor). In 
our simulations, we have verified that this is a 
general property, i.e, whenever the EKF diverges 
from the real state, it does so when one of the two 
attractors is passing from one “surface” to the 
other one. The converse is not true, i.e., the 
attractors can switch from one “surface” to the other 
one without causing the EKF to diverge (see next 
example). 
 

 
Fig. 4: 3D plot of the real state (blue) and EKF 

estimate (red, dashed). The first three variables 
(i.e. the first Lorentz attractor) are on the left, the 
last three (i.e. the second Lorentz attractor) on the 
right. The black circle marks approximately the 
point where the EKF “loses” the real state (t = 
1.6). It can be seen that one of the attractors (the 
first one, on the left) was passing from one 
surface to the other one at that time. This is a 
general finding in our simulations. 

 

 
Fig. 5: Plot of the difference between the real state 

and the EKF estimate. It is clear that after t = 1.6 
the EKF starts to perform very poorly and 
eventually diverges. Each different color 
represents one of the six state variables. 

 
Good performance example: In this case the initial 
state was randomly generated as (-3.1286, -1.1406, 
5.7074, -0.5008, -6.6860, 13.4181), the initial state 
estimate was taken exactly equal to the initial state, 
and the mixing matrix C was randomly generated as  



 

     

















6490.06596.08175.05216.06820.05005.0

9730.01499.08181.00714.00596.07127.0

5186.07224.00967.00424.04711.09787.0

 
The noise covariance matrix was chosen diagonal 
with diagonal elements equal to 10-7 for generating 
the noise, but the EKF assumed it as 10-6 (numerical 
issues arise if 10-7 is used here, but using 10-6 for the 
actual noise causes the EKF to not be able to follow 
the attractor). This is a very small value, and our 
simulations show that greater values cause the EKF 
to lose track of the real state and eventually diverge. 
 
With these choices, the EKF performs well and 
manages to follow the attractor with a maximum 
absolute error in each component below 0.2, and 
averaging 0.02. Note that the trajectory of the 
Lorentz attractor has typical values of each 
coordinate between 5 and 25, so this is a small error. 
This does not happen every time (it depends on the 
starting point for the attractors). 
 
Below we present some plots to illustrate the 
performance of the EKF (figs. 6 and 7). 
 

 
Fig. 6: 3D plot of the real state (blue) and EKF 

estimate (red). The first three variables (i.e. the 
first Lorentz attractor) are on the left, the last 
three (i.e. the second Lorentz attractor) on the 
right. It can be seen that the EKF manages to 
follow the real system very well, despite the fact 
that the second attractor switches surfaces a few 
times. 
 

 
Fig. 7: Plot of the components of the estimation error 

(real state minus estimate). Although there are 
some spontaneous “outbursts” of larger error, 
they are always under 0.2 in absolute value. 
 

 
6. DISCUSSION 

 
The work presented here shows that the use of 
dynamic filters such as the EKF to estimate the state 
of a chaotic system is possible, however in the class 
of problems addressed here, this strategy can fail. 
Also, it shows that it is possible to estimate the state 
of chaotic systems whose measurements are mixed. 
There are, however, several improvements possible. 
 
The Lorentz attractor  is, among the span of 
continuous-time chaotic systems, a tough one to 
follow. This happens because there are very strong 
bifurcations, where points very close to each other 
will go to different “surfaces” (see Fig.1). If near one 
of these points the sensor noise causes the EKF to 
estimate that the correct state will lead to one surface 
when in fact it will lead to the other, the estimation 
can become very poor. This is what is demonstrated 
in the Bad Example above. 
There are plenty more continuous-time chaotic 
systems that could be used. In fact, the Lorentz 
attractor does not intend to model the neuron activity 
(see (Izhikevich, 2007) for some chaotic systems that 
aim to do that). To use systems with few variables 
that model the neuron reasonably well, one could for 
example use the Fitzhugh oscillator (Fitzhugh, 1961), 
which is related to the more well-known Van der Pol 
oscillator. 
 
Also, the EKF  is not the right tool for this estimation 
problem. Recently, some groups have developed 
observer design techniques which specialize in 
estimating the state of chaotic systems. For example, 
Xiao et. al. (2003) have found a technique to develop 
observers for the Van der Pol system which are 
globally stable. The problem we saw in the Bad 
Example would never occur, because a stable 
observer coupled with a bounded system can never 
diverge. 
 
In linear systems, the concept of observability is 
used to classify systems as observable or not 
observable. Intuitively, an observable system is one 



 

     

in which knowing a finite number of past 
measurements in a deterministic setting allows us to 
infer what the state of the system was at the start of 
those measurements (see (Anderson and Moore, 
1979) for a rigorous definition). For non-linear 
systems there is a reasonably similar concept 
introduced by Takens (1981). Takens’ theorem 
gives conditions on a chaotic system which allow for 
its state to be reconstructed from a series of 
measurements. In more intuitive terms, it is the 
analog for chaotic systems of the observability 
concept. This theorem is considerably less intuitive 
than the simple observability concept and will not be 
detailed nor used here. In principle, the conditions 
mentioned in this theorem could be used to better 
understand under which conditions a pair of Lorentz 
attractors can be followed by an EKF or not. This is a 
topic for further research. 
 
 

7. CONCLUDING REMARKS 
 
We demonstrated that an EKF can correctly estimate 
the state of a chaotic system (the Lorentz attractor) 
under low-noise conditions. We also showed that the 
state variables of a pair of such systems providing 
measurements which mix the variables of both 
systems can be correctly estimated under low-noise 
conditions for some sensor matrices while for others 
it can diverge. The study of which sensor matrices 
allow correct estimation is a topic for further work. 
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