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Abstract. This paper presents a data classification algorithm able to de-
tect corrupted measurements as outliers, with application to underwater
ultra-short baseline (USBL) acoustic positioning systems. The devised frame-
work is based on causal median filters that are readily implementable, and a set of
theoretical analysis tools that allows for the design of the filter parameters is also
presented. The design takes into account very specific implementation details of
USBL acoustic positioning systems and also inherent non-ideal characteristics
that include long period data outages. The outlier classifier is evaluated both in
simulation and with experimental data from a prototype USBL acoustic position-
ing system fully developed in-house.

1 Introduction

Measurement outliers are naturally present in the output of every sensor package avail-
able on the market nowadays. The correct identification of these spurious perturbations
often stands out as one of the important steps to the correct usage and successful inte-
gration of the aforementioned sensor packages into larger systems that are the building
blocks of any robotic platform. This paper addresses the design and experimental vali-
dation of an outlier detector and classifier for underwater positioning systems.

The fast deployment, less complex hardware of small and compact arrays of receivers
and increasing performance of modern factory-calibrated USBL positioning devices
makes it suitable for faster intervention missions Napolitano et al. (2005). In generic op-
erating conditions, a conductivity, temperature and depth (CTD) profile is normally re-
quired to account for the underwater sound velocity variations. Inverted USBL Vickery
(1998) configurations, besides paving the way to future fully autonomous systems with-
out the need to have surface mission support vessels, allows for the sound velocity to be
considered constant while operating in the same underwater layer as the transponders
(for instance, bottom operation while interrogating bottom placed transponders). The
inverted USBL configuration is illustrated in Fig. 1.
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Due to several undesired aspects of the underwater sound propagation channel such
as acoustic reverberation, layered underwater sound speed profiles, and mostly due to
multipath phenomena, these type of acoustic positioning systems are highly susceptible
to measurement outliers which need to be correctly identified. Otherwise these position
measurement outliers can have a severe impact on systems that use them, degrading
their performance downstream, as illustrated in Fig. 2, and worst case leading con-
trol and navigation systems to instability. This paper addresses the design of an outlier
detector and classifier for a USBL positioning system and validates this classifier us-
ing experimental data obtained at sea with a USBL prototype fully developed in-house
Morgado et al. (2010).

Fig. 1. Inverted USBL configuration as opposed to a typical installation floating on the sea surface
- the prototype system developed in-house is also illustrated in the schematic attached to an
underwater robotic in the inverted configuration and to the bow of an autonomous surface craft
in the typical USBL configuration

Outliers s Impact downstream 

Fig. 2. Outliers from the acoustic positioning systems might have a severe degradation of the
navigation system accuracy if not properly identified. In the worst case scenario it might even
lead to instability of control systems that use this information downstream.

1.1 Paper Organization

The paper is organized as follows: Section 2.1 provides a review on the concepts of
causal median filters that the outlier detector and classifier builds upon. Section 2.2
details the application of the median-based causal outlier detector and classifier to the
USBL case. Some simulation results are analysed in Section 3 and Section 4 validates
the usage of the devised classifier with real experimental data obtained at sea with the
USBL prototype. Finally, Section 5 provides some concluding remarks and comments
on future work to be developed within this subject.



Robust Outliers Detection and Classification 557

2 Online Outlier Detection Algorithms

The detection and identification of possible outliers in the acoustic positioning mea-
surements is of the utmost importance as already pointed out due to the fact that, if not
correctly flagged, these spurious outliers might severely degrade the navigation systems
performance that use this information, which information can also be critical to vital
control systems on-board the underwater robotic vehicle. Albeit other more integrated
solutions could be devised, that include designing navigation Kalman filters robust to
outliers (see Ting et al. (2007a) and Gandhi and Mili (2010)), the idea of using instead
a standalone outlier detector and classifier, that is coupled to the output of the acoustic
positioning device, stems from the fact that not all navigation algorithms fit the frame-
work of robust Kalman filters as presented in Ting et al. (2007a) and in Gandhi and Mili
(2010). It is often desirable to have an outlier classifier detached from the dynamic fil-
tering framework, thus allowing for several algorithms to be implemented independent
of the outlier detection stage. Moreover, this setup allows for the USBL to provide posi-
tion measurements with outliers correctly classified to a multitude of systems on-board.

The causal median on-line outlier classifier adopted in this work, is presented in
this section and is based on the work presented in Menold P.H. and Allgower (1999).
Section 2.1 provides an overview of the most important concepts of the causal median
filter presented in Menold P.H. and Allgower (1999) and Section 2.2 explains the steps
taken to adapt the causal median filter framework to the USBL outlier identification and
classification problem. See Ting et al. (2007b) for a recent and alternative approach on
the design of outlier detectors and classifiers using a Bayesian approach.

2.1 The Causal Median Filter

Most of the material presented in this section was carefully introduced in
Menold P.H. and Allgower (1999) and it is introduced here to give the reader an
overview of the theoretical basis for the design of the outlier classifier. Thus this section
summarizes the most important concepts for the design of the outlier classifier. Consider
the current observation xk at time instant k and a data window Wk of fixed-width N

Wk =
[
xk−N+1 · · · xk−1 xk

]
∈ RN .

If the values in Wk are sorted in descending or ascending order to obtain the sorted
window Rk

Rk = sort(Wk)

the median x†
k is easily obtained as the mid-point of Rk as

x†
k =

{
Rk(

N+1
2 ) if N is odd,

1
2

(
Rk(

N
2 ) +Rk(

N
2 + 1)

)
if N is even.

The distance from the current data point xk to the median value x†
k of the window

Wk is given by
dk = |x†

k − xk|. (1)
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The data cleaning filter first identifies outliers by testing this distance dk against a
specified threshold Tk ≥ 0 (which might depend on the data inside the window), and
if the distance dk exceeds the threshold Tk, then the current data point xk is classified
as an outlier. If the data point xk is deemed an outlier, then it may be replaced by a
prediction x∗

k to obtain a filtered sequence fk given by

fk =

{
xk if dk ≤ Tk,

x∗
k if dk > Tk.

or simply flagged to be an outlier so that systems that use this data downstream may now
that it’s not a reliable sample. The authors in Menold P.H. and Allgower (1999) mention
several replacement strategies, which include, for instance, replacing the outliers by the
current median value x∗

k := x†
k or by the last valid value inside of the window Wk.

If the outlier replacement actually takes place in the filtering framework, such setup
is normally called a data cleaning filter. On the other hand, if the outliers are simply
identified and marked, the setup is called an outlier classifier.

In the scope of this work we are not particularly interested in data cleaning filters
since these tend to change the input data. We want to be able to provide raw acoustic
USBL measurements to a myriad of systems and navigation filters on-board but with
some sense of safety by flagging inappropriate data that might lead these navigation and
control systems to instability. Navigation systems on-board the considered robotic plat-
forms are typically based on dynamical systems that resemble the kinematics of rigid
bodies and are able to provide open-loop numerical integration of other sensors such as
accelerometers and rate gyros Morgado et al. (2008) when acoustic positioning systems
data is not available or their measurements are suspected to be outliers. Moreover the
effect of replacing outlier data points using the aforementioned strategies might intro-
duce delays on the sequence and additional distortions on the noise characteristics of
the signals that are difficult to model on the design of control algorithms and navigation
filters. Thus, these replacement strategies should be used with appropriate care.

Threshold Selection. The threshold selection strategy adopted in this work and pre-
sented in Menold P.H. and Allgower (1999) is actually a combination of two strategies
— the median absolute deviation (MAD) scale based threshold and a fixed lower bound
for the threshold — and is given by

Tk = max (cSk, Tmin) (2)

where Tmin is the lower bound for the threshold, Sk is an estimate for the MAD, and
for some constant c ∈ R+, chosen independent of the data in the window Wk. The
MAD scale estimate is defined as the median absolute deviation of the data points in
the window Wk from the median x†

k, and is simply given by the median of the distances
between all the data points in the window Wk and the median x†

k

Dk =
[
dk−N+1 · · · dk−1 dk

]
∈ RN (3)

where dk−i with i = {0, 1, . . . , N − 1} is defined similarly to (1)

dk−i = |x†
k − xk−i|, ∀i = {0, 1, . . . , N − 1}.
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Thus, the MAD scale estimate Sk is given by the median of Dk from (3). This un-
normalized MAD scale estimate is often normalized Menold P.H. and Allgower (1999)
to S̃k = Sk/0.6745 ≈ 1.4826Sk to make it an unbiased estimate of the standard devi-
ation for Gaussian data Huber and Ronchetti (1981). The choice of the scale parameter
c in (2) will be addressed in Section 2.1.

The idea behind the dual strategy combination lies on the practical limitation with
the MAD scale estimate being Sk = 0 for sequences that have, in a window of width
N , at least (N − 1)/2 + 1 values (if N is odd, or N/2 + 1 if N is even), identical to
the current data point xk . If a lower bound Tmin was not adopted, the threshold would
be Tk = 0 in such cases regardless of parameter c. Thus Tmin should be chosen taking
into account the measurement noise level of the input signal and other parameters such
as quantization and sensor resolution. Using this threshold selection rule, changes in the
input sequence up to Tmin are invariant, and as such it should not be chosen too large.

MAD Scale Parameter c. The results presented in this section provide a theoreti-
cal background on the design choice of the parameter c in (2). Most importantly they
also provide lower bounds for c for certain type of sequences to be invariant under the
MAD data cleaning filter. The following theorem establishes a lower bound for c under
monotonic sequences that satisfy a growth rate restriction.

Theorem 1 ((Menold P.H. and Allgower, 1999, Theorem 5.1)). Any monotonic se-
quence {xk} satisfying the growth rate restriction

|xi+2 − xi+1| ≤ m|xi+1 − xi|,

for some m ∈ [0, 1] and ∀i ∈ N , is invariant under the data cleaning filter of width
N = 4H + 1 provided c ≥ 1 +mH .

Proof: See the proof of Theorem 5.1 in Menold P.H. and Allgower (1999).

An illustrative example of a monotonic decreasing sequence and the corresponding
lower bound for c under three different window sizes is presented in Fig. 3. From this
example it comes that as a rule of thumb, the parameter c should be larger than 2 for
this type of sequences, that is c ≥ 2.

The next set of results provide a basis to the lower bounding of the parameter c for
two other distinct types of sequences defined in the following.

Definition 1 ((Menold P.H. and Allgower, 1999, Definition 5.1)). A sequence of Type
I satisfies the following conditions

xk−2H = x†
k, 0 < c1 ≤ c2 < ∞,

c1(2H − i) ≤ xk−i − x†
k ≤ c2(2H − i) ∀i ≤ 2H,

c1(2H − i) ≥ xk−i − x†
k ≥ c2(2H − i) ∀i > 2H,

for all k and where x†
k is the median of the window of width N = 4H + 1.
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Fig. 3. Growth rate analysis of monotonic sequences and choice of the constant value c ≥ 1+mH

with H = (N−1)/4

Definition 2 ((Menold P.H. and Allgower, 1999, Definition 5.2)). A sequence of
Type II satisfies the following conditions

xk−2H = x†
k, 0 > c1 ≥ c2 > ∞,

c1(2H − i) ≥ xk−i − x†
k ≥ c2(2H − i) ∀i ≤ 2H,

c1(2H − i) ≤ xk−i − x†
k ≤ c2(2H − i) ∀i > 2H,

for all k and where x†
k is the median of the window of width N = 4H + 1.

The following theorem provides a lower bound for the parameter c under this type
of sector bounded sequences defined in Definitions 1 and 2.

Theorem 2 ((Menold P.H. and Allgower, 1999, Theorem 5.2)). Any sequence {xk}
of type I or II is invariant under the MAD-based data cleaning filter of width N =
4H + 1 with c ≥ 2c2/c1.

Proof: See the proof of Theorem 5.2 in Menold P.H. and Allgower (1999).

Remark 1. The sequences of Type II in Definition 2 are the decreasing analogous to
the increasing Type I sequences in Definition 1.

In practice, the choice of the parameter c can be accomplished with the aid of the
results presented in this section. For this purpose one could analyse sub-sequences of
the nominal sequence and apply both Theorems 1 and 2 to compute a set of lower
bounds for c, and then choose the largest lower bound that satisfies the invariance for
the full sequence. On the other hand, it is recognizable that this procedure might be
cumbersome, and probably the simplest way to choose a reasonable value for c is to
examine and try out some values on training sets of the contaminated sequences. It is
important to emphasize that c should also not be set too large, otherwise the outlier
identification function will cease to be effective.
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Table 1. USBL Data classification levels and flags

Level Flag Description
0 invalid unrealisable solutions due to physical con-

straints of the USBL array: exceed the maximal
allowed time delay between any two receivers
on-board

1 valid pass the physical limitations validation test but
are yet unknown regarding its good or outlier

2 outlier valid solution but clearly flagged as an outlier
that violates the distance to the median of the
window of valid samples

3 good indicates that at least 2/3 of the samples on the
detection window were classified as valid

Window Size N . The window size is also a very important parameter in the design of
the outlier classifier, and it should be chosen to avoid observations from high dynamic
range systems to be incorrectly considered outliers. Both the median x†

k and the MAD
scale estimate Sk become less connected to local variations as N becomes too large
and the analysis of a new measurement xk less effective. On the other hand, N should
also not be set too small in order to accommodate a reasonable amount of defective
data patches. Data patches may occur for instance when a sensor saturates its output or
errors in the measurements happen. For a window size of N = 4H+1, both the median
x†
k and the MAD scale estimate Sk are completely set to the value of a patch of 2H +1

samples. For instance, for N = 9, 5 patched outliers would undermine the effectiveness
of the classifier.

2.2 Adaptation to the USBL System

The USBL positioning system provides measurements of the position of a transponder
with respect to the reference frame of the robotic vehicle, that is, a p ∈ R3. In order
to adapt the outlier detection scheme to the USBL system, the algorithm outlined in
Section 2.1 has to be extended to the three-dimensional case. The extension is fairly
simple in which the window size is also extended to Wk ∈ R3×N and the evaluation is
performed separately for each of the three Cartesian coordinates.

The next improvement to be incorporated is the introduction of a classifier flag in-
stead of performing outliers replacement, deriving what was named an outlier classifier
in Section 2.1. A four level classification scheme is adopted that allows to introduce ro-
bustness to the classification process and the usage in downstream systems that require
the classified data. The four levels can be summarized in Table 1.

Another feature that is needed due to the fact that underwater acoustics are highly
susceptible to jamming and periods without actual measurements, is a time-elapsed
window reset that removes observations from the window if their time tags are older
than R seconds from the current system time. Finally, the global classification flag
for each of the N -triplet values is assessed as follows: if any of its three values vi-
olates the threshold distance rule then the entire triplet is set as an outlier. The final
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Table 2. Acoustic outlier classification algorithm

Algorithm ClassifyData(p, t)
(∗ detect outliers and classify USBL positioning data ∗)
Input: p - current position measurement
Input: t - current measurement time
Output: class - classification level of current measurement
(∗ persistent Wp positions window size 3×N init. to 0 ∗)
(∗ persistent tv last valid measured time tag init. to 0 ∗)
1. if t− tv > R
2. then remove from Wp elements older than tv
3. else insert the new data point in the window
4. Wv ←select only valid elements from Wp

5. mk ←compute the row-wise median of Wv

6. dk ←compute the distances |Wv −mk|
(∗ Compute the MAD scale estimate ∗)
7. Sk ←compute the row-wise median of dk
(∗ Normalize the MAD scale estimate ∗)
8. S̃k ←1.4826Sk

(∗ Threshold selection ∗)
9. T ←max(cS̃k, Tmin)
(∗ Test the data point against the threshold ∗)
10. if |pk −mk| > T
11. then class = outlier
12. remove data point from the window Wp

13. else class = valid
14. update last valid time tag to current tv ←t
15. if number of valid data points in Wp > 2/3N
16. then class = good

algorithm is outlined in Algorithm 2. The adaptation steps of the algorithm can be
briefly summarized as follows:

– Extension to three dimensions
– Introduction of a classifier flag instead of performing outliers replacement
– Creation of a four-level classification scheme: invalid, outlier, valid, and good
– Introduction of an elapsed-time R window reset.

3 Simulation Analysis

The outlier classifier presented previously was first evaluated in simulation to assess its
feasibility and performance. The nominal sequence to be tested was derived from the
output of a second order spring-mass-damper system on the presence of small input
step changes. Additive white Gaussian Noise was added to the output with a standard
deviation of σ = 0.03. Ten percent of the values on the sequence were disturbed with
outliers in random positions, with amplitudes in the interval ±[0.25, 0.6].
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Fig. 4. Classification analysis in simulation results, with N = 9 and c = 5 — the parameter c
was adjusted on this training set so that there are not false positive classifications as good

0 100 200 300 400 500 600 700 800 900
50

0

50

p
x
[m

]

0 100 200 300 400 500 600 700 800 900
200

100

0

100

200

p
y
[m

]

0 100 200 300 400 500 600 700 800 900
150

100

50

0

50

100

p
z
[m

]

t [ s ]

300 320 340 360 380 400 420 440 460 480 500
50

0

50

p
x
[m

]

300 320 340 360 380 400 420 440 460 480 500
50

0

50

100

p
y
[m

]

300 320 340 360 380 400 420 440 460 480 500
80

60

40

20

0

20

p
z
[m

]

t [ s ]

Fig. 5. Experimental results for the USBL positioning system during tests in Roses, Spain in
October 2011. On the left: Overview of the total of approx. 900 seconds of data. On the right:
Zoom from 290 to 512 seconds of operation.

The lower-bound for the threshold Tmin was adjusted to accommodate disturbances
on nominal, non-dynamically changing sequences up to 3σ of the additive white Gaus-
sian noise perturbation, whereas the MAD scale estimate multiplier was initially set to
c = 6 with a window size of N = 9. This first approach led to the conclusion that
some values were being classified as false positive good values. It can be easily argued
that is highly preferable to have false identifications of outliers on good values, rather
than having outliers being classified as good values. Thus the value for the MAD scale
estimate multiplier was adjusted to c = 5 and the classifier rerun on the same data. The
remastered results are presented in Fig. 4, where it can be seen that there are no more
false positives of good values while maintaining the performance on the remainder of
the sequence. Lower-bounds for this c value can be found with the aid of Theorems 1
and 2 on sub-sequences of this training set, nonetheless it is always a good practice to
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adjust this value bearing in mind the overall performance of the classifier on the entire
training set.

4 Validation with Real Data

The devised outlier classifier was implemented and applied to a real USBL positioning
system, fully developed in-house Morgado et al. (2010) and its outlier detection capa-
bilities and performance are evaluated in this section. The parameters of the classifier
were adjusted to: c = 6, a window-size of N = 9 samples, time reset constant of
R = 20 seconds, and a threshold lower-bound of Tmin = 6 meters. The outlier de-
tection capability of the system in real world operation scenarios is evidenced in Fig.
5.

5 Conclusions

This paper presented an outlier detection and classifier algorithm with application to
underwater acoustic positioning systems. The devised framework is based on causal
median filters and a set of theoretical analysis tools that allows for the design of the
filter parameters was also presented. Specific details that arise from the implementation
of such an algorithm in real-world operation conditions were taken into account and a
set of new features, such as a multi-level classification scheme and a time-based moving
window reset, was added to cope with periods of acoustic data outage, which are quite
typical in underwater scenarios. Interestingly enough, given the necessary window-size
and computations, the outlier classifier is easily implementable in low-cost and low-
power consumption digital signal processor (DSP) hardware. The outlier classifier was
finally evaluated both in simulation and with experimental data from a prototype USBL
acoustic positioning system fully developed in-house. Interesting ideas on future direc-
tions of research in this subject might include the validation of an adaptive algorithm
for the choice of certain parameters in the filter.
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