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Summary: In the framework of fundamentals of smart materials and structures, a proper
mathematical modeling of electro-kinetic transport phenomena in micro-structures adhering to
the law of conservation of mass is suggested. The reference multiphase medium is described
by a nonlinear Poisson–Nernst–Planck model stated in a heterogeneous pore-particle space
disjoint by the interface. For physical consistency it allows nonlinear boundary reactions at
the phase interface. Based on suitable entropy variables, a variational principle is established
within the Gibbs simplex preserving a volume balance and positive concentrations. The result-
ing generalized model is provided by rigorous analysis and supported by homogenization of
stationary states.

1. INTRODUCTION

From the perspective of mathematical modeling of smart materials and structures, in the
present work we consider a multiphase medium consisted of multiple components (chemical
substances, or bio-molecular species). It is described by a non-linear system of partial differ-
ential equations called the Poisson–Nernst–Planck model. Such models have numerous ap-
plications describing electro-kinetic phenomena in electro-chemical and bio-molecular cells,
photo-voltaic devices, and semiconductors. Our specific motivation concerns, in particular, Li-
Ion batteries (see [1]).

For instance, we bear in mind a solid electrolyte composite in which charged species un-
derlie a purely diffusive process in solid particles as well as diffusion and electro-migration in
the surrounding pore space. This requires to account for boundary reactions at the phase inter-
face which are of the primary importance in engineering applications. Although this situation
happens for a specific modeling of the electrical double layer, it requires a proper description of
interfacial reactions in a broad scope.
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In particular, the interface phenomena result in a mathematical difficulty dealing with mul-
tiphase problems stated in a discontinuous pore-particle space under transmission boundary
conditions allowing jumps. The literature on the corresponding modeling and analysis of trans-
mission problems is rather scarce, e.g. [2, 3, 4]. The principal advance in this respect it attained
by employing variational techniques in singular domains, which we refer for instance to [5].

The Poisson–Nernst–Planck equations are widely used for modeling of a multiphase medium
in various contexts, see [6, 7, 8]. It is closely related to a broad class of other relevant transport
equations in statistical mechanics, e.g. [9, 10, 11, 12], as adopted, for example, in semiconduc-
tor physics [13]. One of the important directions of the research here concerns homogenization
of fine structures at the micro level to get suitable averaged models at the macro-level. We refer
to [14, 15, 16] for suitable methods adopted in the field of asymptotic homogenization and, e.g.,
to [17, 18] for the related methods of singular perturbations in topology optimization.

The classic Poisson–Nernst–Planck model is currently the subject of various modifications
for improving its drawbacks, in particular, preserving the conservation law of mass. Many
works in this respect have been done in the WIAS in the group of W. Dreyer and other authors
cited in [19]. The successful generalization suggests coupling phenomena between species
in the electro-kinetic system and accounting for the pressure according to the incompressible
Navier–Stokes equation. The other challenge is to treat physically consistent quantities within
Gibbs simplex in appropriate manner. This task suggests alternative approaches like excluded
volume models, for example, the Bikerman–Freise, Fermi–Dirac, see its description in [20].
Further development in this direction suggests the Maxwell–Stefan diffusion, see [21].

In the present contribution, based on the general thermodynamic principles, see [22, 23, 24],
on the one hand, we introduce in consideration the proper entropy variables: pressure and quasi-
Fermi electro-chemical potentials, that agrees with the Dreyer generalization. Moreover, these
variables are justified by a suitable variational principle established within the Gibbs simplex,
which constrains the mixture components to have a constant summary volume and positive
concentrations. In fact, from the optimization viewpoint, the pressure and the quasi-Fermi
potentials appear in the model as Lagrange multipliers to the volume balance and the positivity
constraints, respectively.

On the other hand, the mathematical formalism suitable for rigorous analysis of the under-
lying physical models was developed in [25] and other works by T. Roubícek. On its basis, in
the present work we construct an equivalent, reduced model without constraints, which satis-
fies a-posteriori the positivity and volume balance conditions constituting the Gibbs simplex.
These conditions are ensured by diffusion fluxes with specific diffusivities, which are related
to stochastic matrices, by the positive production rate of boundary reactions and balance of the
respective boundary terms.

In this way, employing the reduced model formulation we establish the following results:
the weak maximum principle, conservation of mass and volume balance, existence of a weak
solution of the problem supported by the energy and entropy estimates, entropy dissipation and
uniqueness of the solution in a special case, and formal homogenization of the stationary state.
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2. NOTATION

For convenience we collect below the notation used in the following consideration.

• kB ≈ 1.38e−23 ( J
K

) Boltzmann constant, positive

• θ (K) absolute temperature, positive and constant

• A ( F
m

) electric permittivity, symmetric positive-definite (spd) matrix

• g ( C
m2 ) electric displacement at boundary

• α ( F
m2 ) capacitance density at boundary, positive

• Dij (m2

J·s ) diffusivity matrices, i, j = 1, . . . , n

• D (m2

J·s ) diffusivity, spd-matrix

• Ji ( 1
m2·s ) diffusion fluxes of species, i = 1, . . . , n

• gi ( 1
m2·s ) boundary fluxes of species, i = 1, . . . , n

• zi (C) electric charges of species, i = 1, . . . , n, constants

• βi (m3) volume factors of species, i = 1, . . . , n, positive

• ci ( 1
m3 ) concentrations of species, i = 1, . . . , n, positive

• C ( 1
m3 ) summary concentration, positive and constant

• µi (J) electro-chemical potentials of species, i = 1, . . . , n

• φ (V) electrostatic potential

• p (Pa) pressure

3. GOVERNING PRINCIPLES

We start with the geometric description of the reference configuration. Let Ω ⊂ Rd be a
reference domain (associated to a bath) of the spatial dimension d ∈ {1, 2, 3} with the Lipschitz
boundary ∂Ω. With ν = (ν1, . . . , νd)

> the unit normal vector at the boundary ∂Ω and outward
to Ω is denoted, where the upper > stands for transposition swapping columns and rows.

Bearing in mind micro-particles of a small size ε, we split Ω in the solid phase ωε ⊂ Ω and
the surrounding pore space Ωε = Ω \ ωε disjoint by the interface Σε with faces Σε

± such that

Ω = Ωε ∪ ωε ∪ Σε ∪ ∂Ω, ∂Ωε ∩ Ω =: Σε
+, ∂ωε ∩ Ω =: Σε

−. (1)
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By this, we assume that ωε is a domain (which can consist of multiple disconnected parts asso-
ciating solid particles) of the positive Hausdorff measure |ωε| > 0 with the Lipschitz boundary
∂ωε and the unit normal vector ν which is outward to ωε.

Given n charged species (ions) characterized by the charges z1, . . . , zn, we look for an un-
known temporal distribution over the multiphase medium of the specie concentrations c(t, x),
c = (c1, . . . , cn)>, and the overall electrostatic potential φ(t, x) with respect to the time t ∈ R+

and the spatial coordinates x = (x1, . . . , xd)
> ∈ Rd.

Our modeling is based on the following general principles. First, the Fickian law of diffusion

∂
∂t
ci = divJi, i = 1, . . . , n (2a)

employs the vector-valued diffusion fluxes Ji(t, x) which are determined by the constitutive law

Ji =
n∑
j=1

cj∇µ>j Dij, i = 1, . . . , n, Dij ∈ Rd×d (2b)

for the electro-chemical potentials µ(t, x), µ = (µ1, . . . , µn)>, with the diffusivity d-by-d ma-
trices Dij , i, j = 1, . . . , n. Here and in what follows div stands for the divergence, and ∇ for
the gradient. The fluxes have to fulfill the balance equation implying the conservation of mass:

n∑
i=1

Ji = 0. (2c)

Second, the specie concentrations are physically consistent within a Gibbs simplex requiring
the positivity and the volume balance condition preserving a summary concentration C > 0:

ci > 0, i = 1, . . . , n, (3a)

n∑
i=1

ci = C. (3b)

Third, the system (2a)–(3b) is completed with the thermodynamic equilibrium:

min
c1>0,...,cn>0

max
φ,p
L(c1, . . . , cn, φ, p, µ1, . . . , µn) (4a)

for the non-trivial pressure p(t, x) which should be taken into consideration according to the
Dreyer generalization, see [19]. The Lagrangian L in (4a) implies the Landau grand potential

L(c, φ, p,µ) =

∫
Ωε

{ n∑
i=1

(
kBθci(ln(βici)− 1) + ziciφ

)
− 1

2
∇φ>A∇φ

+ p
(

1
C

n∑
i=1

ci − 1
)
−

n∑
i=1

µici

}
dx+

∫
Σε

(gφ− α
2
φ2) dSx

(4b)
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see [26], taken over the pore phase. Here kB > 0 is the Boltzmann constant, and the temperature
θ > 0, volume factors of the species βi > 0, i = 1, . . . , n, the boundary capacitance α > 0, and
the electric displacement g are assumed to be given. The electric permittivity d-by-d matrix A
is assumed symmetric positive definite (spd). Therefore, there exist 0 < a ≤ a such that

a|∇φ|2 ≤ ∇φ>A∇φ ≤ a|∇φ|2 for all φ. (4c)

From the optimization viewpoint, specie concentrations c1, . . . , cn and the electrostatic po-
tential φ enter (4b) as the primal variables, while µ1, . . . , µn and p, called the entropy variables,
are here dual ones. In fact, electro-chemical potentials and the pressure appear in L as the
Lagrange multipliers, respectively, to the constraints from (3a) and (3b).

The first-order optimality condition for (4a) together with (4b) constitutes three relations:

0 = ∂L
∂p

= 1
C

∑n
i=1ci − 1 (5a)

which guarantees the summary volume balance (3b), the identity

0 = ∂L
∂ci

= kBθ ln(βici) + ziφ+ 1
C
p− µi, i = 1, . . . , n (5b)

implying the Gibbs–Duhem equation for the electro-chemical potentials, and the Gauss law in
the form of the variational equation with a test-function φ:

0 = 〈∂L
∂φ
, φ〉 =

∫
Ωε

( n∑
i=1

ziciφ−∇φ>A∇φ
)
dx+

∫
Σε

(gφ− αφφ) dSx (5c)

following the Poisson equation under Robin boundary conditions for the electrostatic potential.
On the basis of the governing equations (2), (5b) and (5c) together with the unilateral con-

strains in (3), we derive the generalized system of Poisson–Nernst–Planck equations under suit-
able initial conditions and inhomogeneous, nonlinear boundary conditions at the interface.

4. GENERALIZED POISSON–NERNST–PLANCK MODEL

At the beginning we specify the d-by-d diffusivity matrices D11, . . . , Dnn in (2b).
The standard assumption is the ellipticity condition: there exist 0 < d ≤ d such that

d
n∑
k=1

|∇ck|2 ≤
n∑

i,j=1

∇c>j Dij∇ci ≤ d
n∑
k=1

|∇ck|2 for all c1, . . . , cn. (6a)

For example, if Dij = dijI, where I stands for the d-by-d identity matrix, and dij are scalar
numbers, i, j = 1, . . . , n, then (6a) holds when the entries dij constitute a spd-matrix.

For a given, symmetric positive-definite matrix D = (Dkl)
d
k,l=1, the key assumption is that

n∑
i=1

Dij = D, j = 1, . . . , n, D ∈ Spd(Rd×d). (6b)
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This definition is closely related to the so-called stochastic matrices. Indeed, recomposing the
d-by-d matrix entries Dij = (Dij

kl)
d
k,l=1 in the n-by-n matrices (Dij

kl)
n
i,j=1 for fixed indexes

k, l ∈ {1, . . . , d} the sum in every column j = 1, . . . , n is equal:

n∑
i=1

Dij
kl = Dkl for j = 1, . . . , n and fixed k, l ∈ {1, . . . , d}. (6c)

If all entries Dij
kl, i, j = 1, . . . , n, are non-negative for some index (k, l), then such matrix in

(6c) is called left stochastic when Dkl = 1, otherwise quasi-stochastic.
A special, particular case of such matrices in (6b) are the "diagonal" and equal diffusivities

Dij = D if i = j, and Dij = 0 otherwise. (6d)

The assumption (6d) is stronger than (6b), and we will see in Proposition 6 the crucial issue: the
weak assumption (6b) guarantees the positivity in (3a) only locally in time, while (6d) globally.

A physical reasoning of (6b) comes necessary from the balance (2c) and (3b) as follows.
From (5b) the quasi-Fermi electro-chemical potentials and its gradients are defined as

µi = kBθ ln(βici) + ziφ+ 1
C
p, i = 1, . . . , n, (7a)

∇µi = kBθ
∇ci
ci

+ zi∇φ+ 1
C
∇p, i = 1, . . . , n. (7b)

Substituting the constitutive equations (2b) together with the expression (7b) in the flux balance
equation (2c), using the assumption (6b) after summation over i = 1, . . . , n, we have

0 =
n∑

i,j=1

cj∇µ>j Dij =
n∑
j=1

cj∇µ>j D =
{
kBθ∇

( n∑
j=1

cj
)

+
n∑
j=1

zjcj∇φ+ 1
C

( n∑
j=1

cj
)
∇p
}>
D.

Since
∑n

j=1 cj = C in (3b), then∇(
∑n

j=1 cj) = ∇C = 0, and we obtain the following identity

∇p = −
n∑
i=1

zici∇φ. (8)

In this respect, it is important to note that (8) appears in [19, 20, 25] as a consequence of the
incompressible Navier–Stokes equation for zero barycentric velocity v = 0:

∂
∂t

(ρv) + div(ρv ⊗ v)−∆v +∇p = −
n∑
i=1

zici∇φ. (9)

The substitution of expression (7b) in the Fickian law (2a) and excluding the pressure pwith
the help of (8) it results in the strongly nonlinear diffusion equation for the specie concentrations

∂ci
∂t

=div
n∑
j=1

{
kBθ∇cj + cj

(
zj − 1

C

n∑
k=1

zkck
)
∇φ
}>
Dij, i = 1, . . . , n, in (0, T )× Ωε. (10a)
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The integration by parts of (5c) succeeds in the quasi-linear Poisson equation

−div(∇φ>A)−
n∑
i=1

zici = 0 in (0, T )× Ωε (10b)

formulated over the pore phase Ωε in the time interval (0, T ) for arbitrarily fixed T > 0.

Proposition 1 (Generalized Poisson–Nernst–Planck model). The system (10) for c1, . . . , cn and
φ, coupled inherently with the unilateral constraints (3), describes the generalized Poisson–
Nernst–Planck model. Determining the entropy variables µ1, . . . , µn and p from relations (7a)
and (8), together with conditions (3b) and (6b), the diffusion equation (10a) is equivalent to the
governing relations in (2).

In comparison to (10), the classic Poisson–Nernst–Planck model ignores the pressure and
the specie coupling phenomena, when putting p = 0 and the diagonal diffusivities Dij = Di

for j = i and zero otherwise, that reduces (10a) to the classic Nernst–Planck law:

∂
∂t
ci = div(kBθ∇ci + cizi∇φ)>Di, i = 1, . . . , n, Di ∈ Rd×d. (11)

The principal drawback is that (11) violates the conservation law of mass (2c).
We endow (10) with initial and boundary conditions. For cinit = (cinit

1 , . . . , cinit
n )> such that

cinit
i > 0, i = 1, . . . , n, (12a)

n∑
i=1

cinit
i = C (12b)

we suppose the usual initial value condition for (10a):

ci(0, · ) = cinit
i , i = 1, . . . , n, in Ωε as t = 0. (12c)

Given φD and cD = (cD
1 , . . . , c

D
n )> in the bath (0, T )× Ω such that

cD
i > 0, i = 1, . . . , n, (13a)

n∑
i=1

cD
i = C, (13b)

and compatible with the initial data

cD
i (0, · ) = cinit

i , i = 1, . . . , n, (13c)

we set the inhomogeneous Dirichlet condition associated to the bath outer boundary ∂Ω:

φ = φD, ci = cD
i , i = 1, . . . , n, on (0, T )× ∂Ω. (13d)
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Finally, we consider the phase interface Σε between the pores Ωε and the solid particles ωε,
implying here the pore boundary Σε

+ and recalling the normal vector ν which is inward to Ωε

since chosen outward to ωε. From the variational equation (5c), using the variational argument,
we infer the inhomogeneous Robin boundary condition for the electrostatic potential:

−∇φ>Aν + αφ = g on (0, T )× Σε. (14a)

A more delicate issue concerns formulation of the inhomogeneous, nonlinear Neumann bound-
ary condition stated for the diffusion fluxes:

n∑
j=1

cj∇µ>j Dijν = gi(c1, . . . , cn, φ), i = 1, . . . , n, on (0, T )× Σε (14b)

or, plugging the representation (7b) in (14b), it can be expressed equivalently in the entire form
n∑
j=1

{
kBθ∇cj + cj

(
zj − 1

C

n∑
k=1

zkck
)
∇φ
}>
Dijν = gi(c, φ), i = 1, . . . , n (14c)

at (0, T )×Σε. The terms gi(c, φ) describe nonlinear boundary reactions at the phase interface.
For matching with the constrains (3) it needs proper physical assumptions presented below.

Given nonlinear functions gi(c, φ) have to ensure at (0, T )× Σε: the balance of fluxes

n∑
i=1

gi(c, φ) = 0, (14d)

the positive production rate, for instance, gi(c, φ) = c+
i ĝi, implying that

c−i gi(c, φ) = 0, i = 1, . . . , n (14e)

where c+
i and c−i are defined in (15), and a suitable growth condition with K1i, K2i, K3i ≥ 0:

|gi(c, φ)|2 ≤(K1i +K2i|φ|2)Gi(c), 0 ≤ Gi(c) ≤ K3i, i = 1, . . . , n. (14f)

We note that just constant boundary fluxes gi are not admissible in condition (14e).
Next we bring the boundary value problem (10) under initial condition (12c) and boundary

conditions (13d), (14a), and (14c) in the form suitable for analysis and present its main results.

5. REDUCED PROBLEM FORMULATION AND ITS ANALYSIS

We exclude the unilateral constraints (3) from the consideration and derive the respectively
reduced model without constraints by reformulating the governing equations (10).

With the help of the maximum operator, arbitrary functions ci (i.e not necessary positive) can
be partitioned into distinct the positive c+

i and the negative c−i parts according to the definition:

c+
i := max(0, ci), c

−
i := max(0,−ci) such that ci = c+

i − c−i , c+
i c
−
i = 0, i = 1, . . . , n. (15)
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Using the assumptions (3) on the concentrations and notation (15), we rewrite (10) as

∂ci
∂t

=div
n∑
j=1

{
kBθ∇cj + C∑n

l=1 c
+
l

c+
j

(
zj − 1∑n

l=1 c
+
l

n∑
k=1

zkc
+
k

)
∇φ
}>
Dij, i = 1, . . . , n, (16a)

−div(∇φ>A)− C∑n
l=1 c

+
l

n∑
i=1

zic
+
i = 0 in (0, T )× Ωε. (16b)

Due to (16a) the Neumann condition (14c) takes the reduced form at (0, T )× Σε:

n∑
j=1

{
kBθ∇cj+ C∑n

l=1 c
+
l

c+
j

(
zj − 1∑n

l=1 c
+
l

n∑
k=1

zkc
+
k

)
∇φ
}>
Dijν = gi(c, φ), i = 1, . . . , n. (17)

We formulate the following main results of the analysis of the reduced model.

Proposition 2 (Hierarchy of models). The reduced model formulation (16) follows from the
generalized Poisson–Nernst–Planck equations (10) together with unilateral constraints (3). In
return, (10) follows from (16) only if the unilateral constraints (3) hold.

Indeed, the assertion of Proposition 2 can be checked directly.

Proposition 3 (Well-posedness of the reduced problem). Under assumptions (4c) and (6a) on
the matrices A and D11, . . . , Dnn, (13c) on the initial and boundary data, and the growth con-
dition (14f), there exists a weak solution c1, . . . , cn and φ of the boundary value problem con-
sisting of the reduced equations (16) under the initial condition (12c), the Dirichlet condition
(13d), the Robin and nonlinear Neumann boundary conditions (14a) and (17).

It satisfies the following a-priori estimate: for arbitrarily fixed final time T > 0, there exist
positive constants Kφ, Kc > 0 depending on the problem data and maybe small δ > 0 such that

sup
t∈(0,T )

∫
Ωε

(φ2 + |∇φ|2) dx ≤ Kφ, (18a)

n∑
i=1

{
sup
t∈(0,T )

∫
Ωε
c2
i dx+

∫ T

0

∫
Ωε

(c2
i + |∇ci|2) dxdt

}
≤ T

δ
Kφ +Kc. (18b)

Proof. We sketch the proof, which is based on the technique in [25]. First we ensure the a-priori
estimate (18) and then, based on this estimate, we apply the Schauder–Tikhonov fixed-point
theorem for a suitable Galerkin approximation.

For arbitrary τ ∈ (0, T ), multiplying (16a) with smooth test-functions ci, integrating the
result by parts over Qε

τ := (0, τ) × Ωε using the Neumann boundary condition (17) at the
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interface Σε, and introducing the notation Sετ := (0, τ) × Σε for short, we get n variational
equations for concentrations for i = 1, . . . , n:∫

Qετ

{
∂ci
∂t
ci +

n∑
j=1

(
kBθ∇cj +

Cc+j∑n
l=1 c

+
l

(
zj −

∑n
k=1 zkc

+
k∑n

l=1 c
+
l

)
∇φ
)>
Dij∇ci

}
dxdt

=

∫
Sετ

gi(c1, . . . , cn, φ)ci dSxdt for all ci such that ci = 0 on (0, T )× ∂Ω.

(19a)

Multiplying (16b) with a smooth test-function φ and integrating by parts over Ωε with the help
of the Robin boundary condition (14a) at the interface Σε, we obtain the variational equation
for the electrostatic potential (cf. (5c)) in the time interval t ∈ (0, T ):∫

Ωε

(
∇φ>A∇φ− C∑n

l=1 c
+
l

n∑
i=1

zic
+
i φ
)
dx+

∫
Σε
αφφ dSx =

∫
Σε
gφ dSx

for all test-functions φ such that φ = 0 on ∂Ω.

(19b)

The coupled system of nonlinear equations (19) together with the initial condition (12c) and the
Dirichlet boundary conditions (13d) implies the weak formulation of the reduced problem.

First we prove (18a). For this task, the test function φ = φ − φD =: φ̂ for short, which is
zero at ∂Ω due to the first Dirichlet condition in (13d), can be inserted into (19b). This yields∫

Ωε
∇φ̂>A∇φ̂ dx+

∫
Σε
αφ̂2 dSx

=

∫
Ωε

(
C

n∑
i=1

zi
c+i∑n
l=1 c

+
l

φ̂−∇(φD)>A∇φ̂
)
dx+

∫
Σε

(g − αφD)φ̂ dSx.
(20)

Using the boundedness 0 ≤ c+i∑n
l=1 c

+
l

≤ 1 and the second inequality in (4c), we estimate from
above the right-hand side of (20) by Young’s inequality with arbitrary weights δ1, δ2, δ3 > 0:

|∇(φD)>A∇φ̂| ≤ a
(
δ1|∇φ̂|2 + 1

4δ1
|∇φD|2

)
,
∣∣ n∑
i=1

zi
c+i∑n
l=1 c

+
l

φ̂
∣∣ ≤ Zn

(
δ2φ̂

2 + 1
4δ2

)
|(g − αφD)φ̂| ≤

(
δ3(1 + α)φ̂2 + 1

4δ3
(g2 + α(φD)2)

)
, Z := max

k∈{1,...,n}
|zk|.

(21)

Further we employ the trace theorem at Σε: there exist constants 0 < K ≤ K such that

K‖u‖2
Ωε ≤

∫
Σε
u2 dx ≤ K‖u‖2

Ωε , ‖u‖2
Ωε :=

∫
Ωε

(u2 + |∇u|2) dx (22a)

and the Poincare inequality: there exists constant K0 > 0 such that∫
Ωε
u2 dx ≤ K0

∫
Ωε
|∇u|2 dx (22b)
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hold for all smooth, differentiable functions u such that u = 0 at ∂Ω.
Estimating the left-hand side of (20) from the first inequality in (4c), applying (21) and (22b)

to its right-hand side, and collecting the integral terms, for a constant δ0 > 0 it follows:(
(1− δ0)a− aδ1

) ∫
Ωε
|∇φ̂|2 dx+

(
α− (1 + α)δ3

) ∫
Σε
φ̂2 dSx +

(
δ0a
K0
− CnZδ2

)
×
∫

Ωε
φ̂2 dx ≤ a

4δ1

∫
Ωε
|∇φD|2 dx+ Cn|Ωε|

4δ2
Z + 1

4δ3

∫
Σε

(g2 + α(φD)2) dSx =: M δ
φ.

(23)

Free parameters δ0, δ1, δ2, δ3 can be chosen sufficiently small so that all three factors by the
integrals in the left-hand side of (23) are positive, hence have a positive lower bound:

min
{

(1− δ0)a− aδ1,
δ0a
K0
− CnZδ2, α− (1 + α)δ3

}
=: mδ

φ > 0. (24)

Therefore, (23) implies mδ
φ‖φ̂‖2

Ωε ≤ M δ
φ, where the squared norm is defined in (22a). Decom-

posing ‖φ‖2
Ωε = ‖φ−φD +φD‖2

Ωε ≤ 2(‖φ̂‖2
Ωε + ‖φD‖2

Ωε), from (23) and (24) for arbitrary time
t ∈ (0, T ) we infer the estimate (18a) with the constant Kφ = 2

(
1
mδφ
M δ

φ + ‖φD‖2
Ωε

)
.

Second we prove (18b). The test functions ci = ci − cD
i =: ĉi, i = 1, . . . , n, are zero at

(0, T )× ∂Ω due to the second Dirichlet condition in (13d) and can be inserted into (19a):∫
Qετ

{
∂ĉi
∂t
ĉi +

n∑
j=1

kBθ∇ĉ>j Dij∇ĉi
}
dxdt = −

∫
Qετ

{
∂cDi
∂t
ĉi +

n∑
j=1

{
kBθ∇cD

j

+
Cc+j∑n
l=1 c

+
l

(
zj −

∑n
k=1 zkc

+
k∑n

l=1 c
+
l

)
∇φ
}>
Dij∇ĉi

}
dxdt+

∫
Sετ

gi(c, φ)ĉi dSxdt, i = 1, . . . , n.

(25)

The compatibility (13c) argues the following calculus for the time derivative:∫
Qετ

∂ĉi
∂t
ĉi dxdt = 1

2

∫ τ

0

∫
Ωε

∂ĉ2i
∂t
dxdt = 1

2

∫
Ωε
ĉ2
i dx

∣∣τ
t=0

= 1
2

∫
Ωε
ĉ2
i (τ, x) dx, i = 1, . . . , n. (26)

After summation of (25) over i = 1, . . . , n, using the assumption (6a) for D11, . . . , Dnn, the
boundedness 0 ≤ c+i∑n

l=1 c
+
l

≤ 1, the identity (26), and applying Young’s inequality we infer

n∑
i=1

{
1
2

∫
Ωε
ĉi(τ, x)2 dx+ kBθd

∫
Qετ

|∇ĉi|2 dxdt
}
≤

n∑
i=1

{
kBθd

(
δ4

∫
Qετ

|∇ĉi|2 dxdt

+ 1
4δ4

∫
Qετ

|∇cD
i |2 dxdt

)
+ ZC(1 + n)d

(
δ5

∫
Qετ

|∇ĉi|2 dxdt+ 1
4δ5

∫
Qετ

|∇φ|2 dxdt
)

+
(
δ6

∫
Qετ

ĉ2
i dxdt+ 1

4δ6

∫
Qετ

(
∂cDi
∂t

)2 dxdt
)

+
(
δ7

∫
Sετ

ĉ2
i dSxdt+ 1

4δ7

∫
Sετ

g2
i (c, φ) dSxdt

)} (27)
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with arbitrary weights δ4, δ5, δ6, δ7 > 0. Collecting the same integral terms in (27), using the
growth condition (14f) at the interface Sετ , the trace theorem (22a), and the Poincare inequality
(22b), it follows the estimate with arbitrary weights δ8, δ9 > 0:

n∑
i=1

{
1
2

∫
Ωε
ĉi(τ, x)2 dx+

(
kBθd(1− δ8 − δ9)− kBθdδ4 − ZC(1 + n)dδ5

)
×
∫
Qετ

|∇ĉi|2 dxdt+
(
kBθd( δ8

K0
− δ9)− δ6

) ∫
Qετ

ĉ2
i dxdt+

(
kBθd

K
δ9 − δ7

) ∫
Sετ

ĉ2
i dSxdt

}
≤ τM δ

φKφ +M δ
c (τ)

(28a)

where we have used (18a) and the notation:

M δ
φ := Cn(1+n)d

4δ5
Z +

n∑
i=1

K2iK3i

4δ7
|Σε|,

M δ
c (τ) :=

n∑
i=1

{
kBθd
4δ4

∫
Qετ

|∇cD
i |2 dxdt+ 1

4δ6

∫
Qετ

(
∂cDi
∂t

)2 dxdt+ K1iK3i

4δ7
|Sετ |

}
.

(28b)

Sufficiently small δ4–δ9 guarantee the left-hand side of (28a) to be strongly positive:

min
{

1
2
, kBθd(1− δ8 − δ9)− kBθdδ4 − ZC(1 + n)dδ5,

kBθd( δ8
K0
− δ9)− δ6,

kBθd

K
δ9 − δ7

}
=: mδ

c > 0.
(28c)

Taking the supremum over all τ ∈ (0, T ) in (28a) and using the decomposition ‖c‖2
QεT

=

‖c− cD + cD‖QεT ≤ 2(‖c− cD‖2
QεT

+ ‖cD‖2
QεT

) with the squared vector-norm defined by

‖c‖2
QεT

:=
n∑
i=1

{
sup
t∈(0,T )

∫
Ωε
c2
i dx+

∫
QεT

(c2
i + |∇ci|2) dxdt

}
(29)

relations (28) lead to the estimate (18b) with 1
δ

= 2
mδc
M δ

φ and Kc = 2
(

1
mδc
M δ

c (T ) + ‖cD‖2
QεT

)
.

Given c(0) = (c
(0)
1 , . . . , c

(0)
n )>, for k ∈ N0 we set the linear approximation of equations (19):∫

Ωε
∇(φ(k))>A∇φ dx+

∫
Σε
αφ(k)φ =

∫
Ωε

C∑n
l=1(c

(k)
l )+

n∑
i=1

zi(c
(k)
i )+φdx+

∫
Σε
gφ dSx

for all test-functions φ such that φ = 0 on ∂Ω.

(30a)

∫
Qετ

{
∂c

(k+1)
i

∂t
ci +

n∑
j=1

kBθ∇(c
(k+1)
j )>Dij∇ci

}
dxdt = −

∫
Qετ

n∑
j=1

C(c
(k)
j )+∑n

l=1(c
(k)
l )+

(
zj

−
∑n
l=1 zl(c

(k)
l )+∑n

l=1(c
(k)
l )+

)
∇φ(k)

)>
Dij∇ci dxdt+

∫
Sετ

gi(c
(k), φ(k))ci dSxdt

for all test-functions ci such that ci = 0 on (0, T )× ∂Ω, i = 1, . . . , n

(30b)
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supported by the initial condition (12c) and the Dirichlet boundary conditions (13d).
The mapping of c(k) = (c

(k)
1 , . . . , c

(k)
n )> 7→ c(k+1) = (c

(k+1)
1 , . . . , c

(k+1)
n )> defined by (30) is

continuous on the ball ‖c(k)‖2
QεT
≤ T

δ
Kφ +Kc due to the estimate (18). Henceforth, there exists

an accumulation point of the iterates (30) as k → ∞ which solves the nonlinear problem (19)
under the initial condition (12c) and the Dirichlet conditions (13d). The proof is completed.

Proposition 4 (Volume balance). In addition to Proposition 3, if the weak assumption (6b) on
the diffusion matrices D11, . . . , Dnn holds, supported by assumptions (12b) on the initial data,
(13b) and (14d) on the Dirichlet and Neumann boundary data, then the solution components
c1, . . . , cn of the reduced problem preserve the summary volume, i.e. satisfy (3b).

Proof. We plug the combinationC :=
∑n

i=1 ci−C, which is zero at (0, T )×∂Ω due to assump-
tion (13b) on the sum of the Dirichlet data, as the test functions ci = C in (19a) and sum these
equations over i = 1, . . . , n. Applying the weak assumption (6b) on the diffusion matrices, as-
sumption (14d) on the sum of the boundary reaction terms, and the identities ∂

∂t
(
∑n

i=1 ci) = ∂
∂t
C

and∇(
∑n

i=1 ci) = ∇C since C is constant, we derive the trivial equality in the right-hand side:

1
2

∫
Ωε
C

2
(τ, x) dx+ kBθd

1+K0

∫
Qετ

(C
2
+|∇C|2) dxdt ≤

∫
Qετ

{
∂C
∂t
C+kBθ∇C

>
D∇C

}
dxdt = 0. (31)

To get the lower bound in (31) we have used (22b), the calculus in the manner of (26), supported
by assumption (12b) on the sum of the initial data, and d|∇C|2 ≤ ∇C>D∇C. Henceforth,
C ≡ 0 implies that the volume balance (3b) holds in Qε

T . The proof is completed.

Proposition 5 (Weak maximum principle). In addition to Proposition 3, if the strong assump-
tion (6d) on the diffusion matrices D11, . . . , Dnn holds, supported by assumptions (12a) on the
initial data, (13a) and (14e) on the Dirichlet and Neumann boundary data, then the solution
components c1, . . . , cn of the reduced problem are positive, i.e. satisfy (3a).

Proof. Employing the partition in positive and negative parts from (15), the negative parts c−i
are zero at ∂Ω due to assumption (13a) on the sign of the Dirichlet data, at it can be substituted
as the test functions ci = −c−i in (19a) for i = 1, . . . , n. After summation over i = 1, . . . , n,
applying the strong assumption (6d) on the diffusion matrices, assumption (14e) on the positive
production rate of the interfacial reactions, and the complementarity in (15), we get∫

Qετ

n∑
i=1

{
∂c−i
∂t
c−i + kBθ∇(c−i )>D∇c−i

}
dxdt = 0. (32)

The calculus in the manner of (26) holds here due to the assumption (12a) on the sign of the
initial data. Therefore, taking the supremum over τ ∈ (0, T ) in (32), in view ofD ∈ Spd(Rd×d),
it results in the estimate min{1

2
, kBθd

1+K0
}‖c−‖2

QεT
≤ 0 with the norm defined in (29). This implies

c−i ≡ 0 for i = 1, . . . , n overall in Qε
T and the positivity in (3a), thus completing the proof.
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As a consequence of Propositions 2–5 we infer straightforwardly the existence theorem for
the generalized Poisson–Nernst–Planck problem.

Proposition 6 (Well-posedness of the generalized Poisson–Nernst–Planck problem). Under as-
sumptions made in Propositions 3, 4, and 5 on the diffusion matrices, initial and boundary data,
the solution c1, . . . , cn and φ of the reduced problem solves as well the generalized Poisson–
Nernst–Planck equations (16) coupled with the constraints (3) under the initial condition (12c)
and the boundary conditions (13d), (14a), and (14c), for arbitrary time intervals (0, T ).

If only the weak assumption (6b) holds instead of the strong one (6d), then there exists a time
interval (0, T ) with T > 0, which may be small, where the solution components c1, . . . , cn of the
reduced problem remain still positive by continuity, hence c1, . . . , cn and φ solve the generalized
Poisson–Nernst–Planck problem locally in this time (0, T ).

Moreover, if a solution component φ is smooth such that its gradient ∇φ is bounded uni-
formly in the supremum-norm, and the boundary reaction terms g1(c, φ), . . . , gn(c, φ) are suffi-
ciently small, then the solution c1, . . . , cn and φ is unique.

Proof. For uniqueness of the solution, we sketch the proof based on the technique from [27].
Let c(1) = (c

(1)
1 , . . . , c

(1)
n ), φ(1) and c(2) = (c

(2)
1 , . . . , c

(2)
n ), φ(2) be two distinctive, weak

solutions of the generalized Poisson–Nernst–Planck problem, that is (cf. (19)) for k = 1, 2:∫
Qετ

{
∂c

(k)
i

∂t
ci +

n∑
j=1

(
kBθ∇c(k)

j + c
(k)
j

(
zj − 1

C

n∑
l=1

zlc
(k)
l

)
∇φ(k)

)>
Dij∇ci

}
dxdt

=

∫
Sετ

gi(c
(k), φ(k))ci dSxdt for all ci such that ci = 0 on (0, T )× ∂Ω, i = 1, . . . , n,

(33a)

∫
Ωε

(
∇(φ(k))>A∇φ−

n∑
i=1

zic
(k)
i φ
)
dx+

∫
Σε
αφ(k)φ dSx =

∫
Σε
gφ dSx

for all test-functions φ such that φ = 0 on ∂Ω

(33b)

coupled with the constraints (3) under the initial (12c) and the Dirichlet (13d) conditions.
Its difference denoted by (c̃1, . . . , c̃n)> = c̃ := c(1) − c(2) and φ̃ := φ(1) − φ(2) satisfies∫

Ωε

{
∂c̃i
∂t
c̃i +

n∑
j=1

kBθ∇c̃>j Dij∇c̃i
}
dx =

∫
Σε

(
gi(c

(1), φ(1))− gi(c(2), φ(2))
)
c̃i dSx

−
∫

Ωε

(
c

(1)
j

(
zj −

n∑
l=1

zl
c
(1)
l

C

)
∇φ(1) − c(2)

j

(
zj −

n∑
l=1

zl
c
(2)
l

C

)
∇φ(2)

)>
Dij∇c̃i dx,

(34a)

∫
Ωε
∇φ̃>A∇φ̃ dx+

∫
Σε
αφ̃2 dSx =

∫
Ωε

n∑
i=1

zic̃iφ̃dx, (34b)
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φ̃ = c̃1 = · · · = c̃n =
n∑
i=1

c̃i = 0 on {0} × Ωε and (0, T )× ∂Ω. (34c)

The relations (34) hold for arbitrary t ∈ (0, T ), they are derived from (33) by skipping the time-
integration in (33a) and the subsequent substitution of the test-functions ci = c̃i, i = 1, . . . , n,
and φ = φ̃ which are zero at (0, T )× ∂Ω. We assume that there exists

max
k∈{1,2}

{
sup

(t,x)∈QεT

(
|φ(k)|+ |∇φ(k)|

)}
=: MT

φ <∞ (35a)

and the boundary reaction terms are such that its disturbance can be estimated (cf. (14f)) as

∣∣ n∑
i=1

(
gi(c

(1), φ(1))− gi(c(2), φ(2))
)
c̃i
∣∣ ≤ G̃(c(1), φ(1), c(2), φ(2))

n∑
i=1

c̃2
i ,

where 0 ≤ G̃(c(1), φ(1), c(2), φ(2)) ≤ δ10 <
kBθd

K
and δ10 maybe small.

(35b)

Applying Young’s inequality to (34b) with the weight δ11 = αK
Z

and using (4c) and (22a)
due to the homogeneous Dirichlet condition at ∂Ω, we estimate straightforwardly∫

Ωε
|∇φ̃|2 dx ≤ K̃φ

∫
Ωε

n∑
i=1

c̃2
i dx, K̃φ = Z2

4αK(a+αK)
, Z := max

k∈{1,...,n}
|zk|. (36)

With the help of (34c), (35), and (36), applying Young’s inequality to (34a) such that

n∑
i.j=1

{
c

(1)
j

(
zj −

n∑
l=1

zl
c
(1)
l

C

)
∇φ(1) − c(2)

j

(
zj −

n∑
l=1

zl
c
(2)
l

C

)
∇φ(2)

}>
Dij∇c̃i

=
n∑

i.j=1

{
c̃j
(
zj −

n∑
l=1

zl
c
(1)
l

C

)
∇φ(1) + c

(2)
j

(
zj −

n∑
l=1

zl
c
(2)
l

C

)
∇φ̃− c

(2)
j

C

n∑
l=1

zlc̃l∇φ(1)
}>
Dij∇c̃i

≤ Zd

n∑
i=1

{
(1 + n)MT

φ

(
δ12|∇c̃i|2 + 1

4δ12
c̃2
i

)
+ (1 + n)C

(
δ13|∇c̃i|2 +

K̃φ
4δ13

n∑
l=1

c̃2
l

)
+MT

φ

(
δ14|∇c̃i|2 +

K̃φ
4δ14

(
n∑
l=1

c̃l)
2
)}

similarly to the lines in the proof of Proposition 3 we estimate for t ∈ (0, T ):

k̃c

∫
Ωε

n∑
i=1

|∇c̃i|2 dx+ 1
2
d
dt

∫
Ωε

n∑
i=1

c̃2
i dx ≤ K̃c

∫
Ωε

n∑
i=1

c̃2
i dx,

where K̃c := δ10K + Zd
( (1+n)MT

φ

4δ12
+

n(1+n)CK̃φ
4δ13

+
n2MT

φ K̃φ

4δ14

)
,

k̃c := kBθd− δ10K − Zd
(
(1 + n)MT

φ δ12 + (1 + n)Cδ13 +MT
φ δ14

)
.

(37)



Victor A. Kovtunenko 16

Choosing the parameters δ12, δ13, δ14 sufficiently small so that k̃c ≥ 0, we integrate the inequal-
ity (37) and obtain due to the initial condition in (34c) that

0 ≤
∫

Ωε

n∑
i=1

c̃2
i (t, x) dx ≤ e2K̃ct

∫
Ωε

n∑
i=1

c̃2
i (0, x) dx = 0. (38)

Hence c̃ ≡ 0 inQε
T and φ̃ ≡ 0 due to (36) that proves the uniqueness under assumption (35).

Proposition 7 (Entropy estimate and stability). Let the Dirichlet data cD
i be constant, βi = 1

cDi
,

satisfy the charge-neutrality condition
∑n

i=1 zic
D
i = 0, and the coefficient matrices be scalar

A = aI and Dij = dδijI with the Kronecker-delta δij , i, j = 1, . . . , n. For a non-negative
entropy defined for the solution of generalized Poisson–Nernst–Planck problem as

S := kBC|Ωε| − ∂L
∂θ

= kB

∫
Ωε

{
C −

n∑
i=1

ci(ln( ci
cDi

)− 1)
}
dx = −kB

∫
Ωε

n∑
i=1

ci ln( ci
cDi

) dx, (39)

the entropy dissipation characterizing the system stability has then the following expression:

dS
dt

=kBd

∫
Ωε

{
kBθ

n∑
i=1

4|∇(
√
ci)|2 + 1

a

( n∑
i=1

zici
)2}

dx

− kB

∫
Σε

{ n∑
i=1

gi(c, φ) ln( ci
cDi

) + d
a
(αφ− g)

( n∑
i=1

zici
)}
dSx.

(40)

The entropy inequality dS
dt
≥ 0 can be ensured for small boundary terms gi(c, φ) and αφ− g.

Proof. We consider the weak solution c1, . . . , cn and φ of the generalized Poisson–Nernst–
Planck problem satisfying the variational equations in (33) (without the super-index (k)).

Then S ≥ 0 in (39) is provided by ci
cDi

ln( ci
cDi

) ≥ ci
cDi
−1 and the volume balance (3b) and (13b).

Following [28], we substitute the test functions ci = ln( ci
cDi

) in (33a) since ln( ci
cDi

) = ln 1 = 0

at ∂Ω, skipping the time integration, and φ =
∑n

l=1 zlcl in (33b), due to the charge-neutrality
condition. Using the assumption on the coefficient matrices and∇

(
ln( ci

cDi
)
)

= ∇ci
ci

it implies:∫
Ωε

{
∂ci
∂t

ln( ci
cDi

) + d
{
kBθ∇ci + ci

(
zi − 1

C

n∑
l=1

zlcl
)
∇φ
}>∇ci

ci

}
dx

=

∫
Σε
gi(c, φ) ln( ci

cDi
) dSx, i = 1, . . . , n,

(41a)

∫
Ωε

{
a∇φ>∇

( n∑
l=1

zlcl
)
−
( n∑
l=1

zlcl
)2}

dx =

∫
Σε

(g − αφ)
( n∑
l=1

zlcl
)
dSx. (41b)

We sum (41a) over i = 1, . . . , n, multiplied with kB, and subtract (41b) multiplied with the
factor kBd

a
. Due to

∫
Ωε

∑n
l=1

∂cl
∂t

ln( cl
cDi

) = − 1
kB

dS
dt

according to (39) and ∂
∂t

(
∑n

l=1 cl) = 0, using

the identities ∇(
∑n

l=1 cl) = 0 and |∇ci|
2

ci
= 4|∇(

√
ci)|2 since ci > 0 in (41a), this yields (40),

hence proves the assertion.
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6. STATIONARY STATE AND HOMOGENIZATION

For homogenization as ε ↘ 0+ we rely on the static model and extend it in the solid phase
underlying the pure diffusion process, see the background in [1]. The domain Ω is partitioned by
indicator functions such that 1Ωε = 1, 1ωε = 0 in the pore space Ωε ∪Σε

+ and 1Ωε = 0, 1ωε = 1
in the solid particles ωε ∪ Σε

−. The governing equations (10) and (7a) turn into, respectively:

− div
n∑
j=1

cj∇µ>jDij
ε = 0, i = 1, . . . , n, −div(∇φ>Aε) = 1Ωε

n∑
i=1

zici, (42a)

µi = kBθ ln(βici) + 1Ωεziφ+ 1
C
p, i = 1, . . . , n, in Ωε ∪ ωε (42b)

with periodically oscillating coefficient matrices Dij
ε := Dij(x

ε
), Aε := A(x

ε
), see e.g. [16], and

supported by the transmission conditions depending on the homogenization parameter ε:

−
n∑
j=1

cj∇µ>jDij
ε ν = εgi(c, φ)1Ωε , −∇φ>Aεν + α

ε
[[φ]] = −εg1ωε on Σε

± (42c)

for i = 1, . . . , n, with the notation [[φ]] := φ
∣∣
Σε+
−φ
∣∣
Σε−

of the jump across Σε. The jump is taken
positive from Ωε to ωε corresponding to the normal vector ν pointing away from the domain ωε.

Together with the Dirichlet condition (13d), the problem (42a) and (42c) after multiplication
with proper test-functions and integration by parts over Ωε∪ωε yields the following weak form:∫

Ωε∪ωε

n∑
j=1

cj∇µ>i Dij
ε ∇ci dx =

∫
Σε+

εgi(c, φ)ci dSx, i = 1, . . . , n,

for all test-functions ci in Ωε ∪ ωε allowing jump across Σε and ci = 0 on ∂Ω,

(43a)

∫
Ωε∪ωε

(
∇φ>Aε∇φ− 1Ωε

n∑
i=1

ziciφ
)
dx+

∫
Σε

α
ε
[[φ]][[φ]] dSx =

∫
Σε−

εgφ dSx

for all test-functions φ in Ωε ∪ ωε allowing jump across Σε and φ = 0 on ∂Ω.

(43b)

Excluding p from (42b) due to (3b) we arrive at the quasi-Fermi statistics, for i = 1, . . . , n:

ci =
C

1
βi

exp
(

1
kBθ

(µi−1Ωεziφ)
)

n∑
l=1

1
βl

exp
(

1
kBθ

(µl−1Ωεzlφ)
) , p = kBθC ln

[
C

n∑
l=1

1
βl

exp
(

1
kBθ

(µl−1Ωεzlφ)
)
]

(43c)

where the concentrations fulfill naturally the positivity and the volume balance in (3), and the
pressure p is a redundant variable. We note that for zero fluxes gi(c, φ) avoiding boundary
reactions and µi = 0 in (43a), that reduces (43c) to the Boltzmann statistics, see [2].

Following [7], the formal homogenization of (43) yields the following result.



Victor A. Kovtunenko 18

Proposition 8 (Averaged static model). Under the periodicity assumption, given the surface
area κS := |∂ω|

|Y | and volume κV := |Y p|
|Y | fractions of porosity, Y p := Y \ ω, for g and gi defined

in Ω, the averaged homogeneous model corresponding to the heterogeneous model (43) reads:∫
Ω

n∑
j=1

cj∇µ>j D
ij
eff∇ci dx = κS

∫
Ω

gi(c, φ)ci dx, i = 1, . . . , n,

for all test-functions ci such that ci = 0 on ∂Ω,

(44a)

∫
Ω

(
∇φ>Aeff∇φ− κV

n∑
i=1

ziciφ
)
dx = κS

∫
Ω

gφ dx for all φ such that φ = 0 on ∂Ω, (44b)

ci =
C

1
βi

exp
(

1
kBθ

(µi−κVziφ)
)

∑n
l=1

1
βl

exp
(

1
kBθ

(µl−κVzlφ)
) , i = 1, . . . , n (44c)

where the effective coefficient d-by-d matrices in a cell Y containing a solid particle ω ⊂ Y :

Dij
eff = 1

|Υ|

∫
Y p∪ω

( ∂
∂x
M + I)Dij dy, Aeff = 1

|Υ|

∫
Y p∪ω

( ∂
∂x

Φ + I)Ady (44d)

are found from the cell problems: Find vectors M,Φ with the zero average such that∫
Y p∪ω

( ∂
∂x
M + I)Dij∇u dy +

∫
∂ω

α[[M ]][[u]] dSy = 0, i, j = 1, . . . , n,∫
Y p∪ω

( ∂
∂x

Φ + I)A∇u dy +

∫
∂ω

α[[Φ]][[u]] dSy = 0 for all periodic test-functions u.
(44e)

7. CONCLUSION

A generalized Poisson–Nernst–Planck system on a multi-phase medium preserving the mass
conservation is modeled within the Gibbs simplex. The generalized model takes nonlinear
reaction terms at the pore-particle phase interface into the consideration.

In the variational framework, the positivity and the volume balance constraints associate
the respective entropy variables. The rigorous analysis of the problem is supported by a-priori
estimates providing the well-posedness, stability, and homogenization of the stationary state.

For numerical techniques adopted for solution of the non-linear Poisson–Nernst–Planck
equations, see [20]. Also we refer to e.g. [29, 30] for advanced, generalized Newton-type,
numerical methods in the context of non-linear optimization subject to unilateral constraints.
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