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Summary: This paper proposes a piezoelectric vibration absorber, termed the nonlinear
piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances
of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is
designed according to a principle of similarity, i.e., the NPTVA should be an electric analog of
the primary system. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning
rule is developed. The performance of the NPTVA will be illustrated using a nonlinear system
possessing different types of nonlinearities.

1. INTRODUCTION

Piezoelectric tuned vibration absorbers (PTVAs) represent interesting alternatives to me-
chanical tuned vibration absorbers in that they have no moving parts and they can be fine-tuned
online to compensate any modeling errors [1]. PTVAs are implemented with a piezoelec-
tric transducer (PZT) bonded to, or embedded in the structure and shunted with an electrical
impedance. Resonant circuit shunting is considered where the inherent capacitance of the PZT
is shunted with a resistorR and an inductorL. Different approximate tuning rules for RL shunts
were proposed in the literatures [2, 3, 4] while the exact closed-form solution for the design of
PTVAs was established in reference [5].
With continual interest in expanding the performance envelope of engineering systems, non-
linear components are increasingly utilized in real-worldapplications. Mitigating the resonant
vibrations of nonlinear structures is therefore becoming aproblem of great practical signifi-
cance.
In this context, the objective of this study is to introduce anew piezoelectric vibration absorber,
termed the nonlinear piezoelectric tuned vibration absorber (NPTVA). The nonlinear restoring
force of the NPTVA is tuned according to the nonlinear restoring force of the host structure.
Specifically, we extend the principle of similarity to nonlinear systems and demonstrate that
the NPTVA should be an electrical analog of the nonlinear host system for effective vibration
mitigation.
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2. The linear piezoelectric tuned vibration absorber (LPTVA)

A LPTVA is coupled to an undamped one-degree-of-freedom modal model of the host struc-
ture that represents the resonance of interest (Figure 1). The PZT transducer is considered as a
one-dimensional PZT rod in which both the expansion and polarization directions coincide with
the central axis of the rod (conventionally called ’3-direction’). The capacitance of the PZT rod
with no external forcescPZT and its stiffness with short-circuited electrodeskPZT are defined
as:

cPZT = ǫT
3

s0
l0
, kPZT =

1

sE
33

s0
l0
, (1)

wheres0 andl0 are the cross section area and length of the PZT rod, respectively. ǫT
3

andsE
33

are the permittivity under constant strain and the compliance under constant electric field of the
PZT rod in 3-direction, respectively [6]. The governing equations of the coupled system are

Figure 1. Piezoelectric vibration absorber with a series RLshunt.

written as:

m1ẍ+
(
k1 + kPZT

)
x− θq = f sinωt,

Lq̈ +Rq̇ + c−1

PZT q − θx = 0, (2)

where

cPZT = cPZT (1− k2

0
), kPZT =

kPZT

1− k2

0

, θ =
k0

1− k2

0

√
kPZT

cPZT

, (3)

are the capacitance of the PZT rod under constant strain, thestiffness of the PZT rod with
open electrodes, and the electromechanical coupling factor θ, respectively.k0 is defined as the
electromechanical coupling coefficient ind33-mode:

k0 = d33

√
kPZT

cPZT

= d33
1√
sE
33
ǫT
3

. (4)

The governing equations (2) are recast into:

x̃
′′

+ x̃− δαq̃ = f0 sin γτ

q̃
′′

+ rδ2q̃
′

− δαx̃+ δ2q̃ = 0, (5)
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where prime denotes differentiation respect to the dimensionless timeτ = ω1t and the other
parameters are defined as in [5] :

ω1 =

√
k1 + kPZT

m1

, ωe =
1

√
L cPZT

, γ =
ω

ω1

, δ =
ωe

ω1

,

x̃ =
√
m1 x, q̃ =

√
L q, r = R cPZT ω1,

κ = k1/kPZT , f0 =
f

ω1

√
kPZT + k1

, α = θ

√
cPZT

kPZT + k1

=
k0

√
1 + κ

.

(6)

Given a value of the dimensionless electromechanical coupling parameterα, the tuning of the
shunt requires to determine the frequencyδ and dampingr ratios in Equation (5). Reference
[5] derived the optimum values of these parameters (δopt andropt) which imposes exactly two
equal peaks in the receptance function that are associated with the smallest possible vibration
amplitude of the host structure (H∞ optimization). The optimum resistanceR and inductance
L of the shunt circuit are calculated directly fromropt andδopt:

Lopt =
1

δ2opt

m1

(1 + κ)

s33
ǫT
3

(
l0
s0

)2

,

Ropt =
ropt
ǫT
3

√
m1

1 + κ

√
s33

1− k0
2

(
l0
s0

)3

. (7)

3. LPTVA coupled to a nonlinear oscillator

To illustrate the detuning of the LPTVA in the presence of nonlinearity, a nonlinear term of
ordern is added in the equation governing the host oscillator:

x̃
′′

+ x̃− δαq̃ + knx̃
n = f0 sin γτ,

q̃
′′

+ rδ2q̃
′

− δαx̃+ δ2q̃ = 0. (8)

Figure 2 represents the response of the host structure coupled to a Duffing nonlinear term
(n = 3) for different forcing amplitudesf0. The frequency response of the coupled system
is calculated using a path-following algorithm combining shooting and pseudo-arclength con-
tinuation [7]. The nonlinear coefficientk3 is equal tok3 = 10−5, andα is chosen to be equal to
0.2. The linear tuning parametersδopt = 1.00017 andropt = 0.2491 are computed according to
the exact tuning rule proposed in [5]. Forf0 = 2 in Figure 2, the system behaves linearly, and
two peaks of equal amplitude are obtained in accordance withlinear theory. When the forcing
amplitude is increased, the cubic nonlinearity of the host system is activated and is responsible
for a substantial increase in the resonance frequency of thesecond peak. Forf0 = 8 and be-
yond, unequal peaks are observed.

3
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Quintic nonlinear restoring force is also considered in thegoverning equation of the oscillating
host by assumingn = 5. In this case, the nonlinear coefficientk5 is equal tok3 = 10−8 with the
same electromechanical coupling parameter (α = 0.2). The frequency responses of the nonlin-
ear primary system coupled to a LPTVA at different forcing amplitudes are shown in Figure 3 .
Similar trends as the cubic nonlinear host are also observedand inequality in the resonant peaks
are clearly seen at the forcing amplitude higher thanf0 = 5.
As a result, at high forcing amplitudesf0, noticeable difference between the amplitudes of the
resonances makes LPTVA inappropriate for the nonlinear oscillating host.
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Figure 2. Frequency response of a nonlinear cubic oscillator with an attached LPTVA for dif-
ferent forcing amplitudesf0 (α = 0.2 andk3 = 10−5).
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Figure 3. Frequency response of a nonlinear quintic oscillator with an attached LPTVA for
different forcing amplitudesf0 (α = 0.2 andk5 = 10−8).
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4. NPTVA coupled to a nonlinear oscillator

A NPTVA is now considered for suppressing the vibrations of the nonlinear oscillator. An
unconventional feature of the NPTVA is that the mathematical form of its nonlinear restoring
force is not imposed a priori, as it is the case for most existing nonlinear absorbers. The equa-
tions of motion are therefore:

x̃
′′

+ x̃− δαq̃ + knx̃
n = f0 sin γτ,

q̃
′′

+ rδ2q̃
′

− δαx̃+ δ2q̃ + g(q̃) = 0, (9)

whereg(q̃) represents a nonlinear capacitor and is to be determined.
Reference [8], which examined the case of a nonlinear mechanical absorber coupled to

a nonlinear mechanical structure, demonstrated that the absorber should be a ‘mirror’ of the
host system for effective mitigation in a large range of forcing amplitudes. For instance, if the
nonlinearity in the host system is quadratic or cubic, the absorber should possess a quadratic
or a cubic spring, respectively. This mirror rule suggests that the NPTVA should be chosen
such that the shunt is governed by an equation analogous to that of the host structure, thereby
extending the principle of similarity described in [9, 10, 11, 12] to nonlinear systems. Following
this result, the coupled host and NPTVA system should be written:

x̃
′′

+ x̃− δαq̃ + knx̃
n = f0 sin γτ,

q̃
′′

+ rδ2q̃
′

− δαx̃+ δ2q̃ + βnq̃
n = 0. (10)

The value of nonlinear coefficientβn (or equivalently the nonlinear tuning parametermn =
βn/kn) should be determined in a way that the frequency responce ofthe primary host realizes
two equal peaks when the LPTVA starts to be detuned.
For instance, in case of cubic nonlinear term withn = 3 and atf0 = 8, a value ofm3 = 2.06was
obtained fork3 = 10−5 by numerical iteration. Figure 4 illustrates the corresponding response
of the host structure scaled by the forcing amplitudef0. The result in this figure is remarkable
for two reasons. First, not only equal peaks are obtained atf0 = 8, but they are also observed at
higher forcing amplitudes. This means that equal peaks can be maintained in a relatively large
range of forcing amplitudes when a properly-tuned NPTVA is attached to a nonlinear oscillator.
Second, the amplitudes of the resonance peaks in Figure 4 arebarely affected by the forcing
amplitudef0, as if the coupled nonlinear system would obey the superposition principle.
A nonlinear oscillator with quintic spring and a quintic NPTVA was also studied (i.e. n = 5).
For k5 = 10−8, the nonlinear coefficientm5 = β5/k5 is found to be equal to4.11 at f0 = 5
which guarantees the equality of the amplitudes at the resonant peaks. Figure 5 confirms that
qualitatively similar results are obtained for quintic nonlinearities, at different levels of the
forcing amplitudes.

Figures 6 and 7 demonstrate the performance of the NPTVA against the LPTVA. The fre-
quency response of the cubic and quintic oscillator are computed using numerical simulations
with their corresponding nonlinear coefficientm3 = 2.06 andm5 = 4.11. Regardless of the
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Figure 4. Frequency response of a nonlinear oscillator withan attached cubic NPTVA coupled
to a cubic oscillator for different forcing amplitudesf0 (α = 0.2, k3 = 10−5 andm3 = 2.06).
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Figure 5. Frequency response of a nonlinear oscillator withan attached quintic NPTVA coupled
to a quintic oscillator for different forcing amplitudesf0 (α = 0.2, k5 = 10−8 andm5 = 4.11).

values off0, two peaks of almost equal amplitudes are obtained, which provides further evi-
dence of the performance improvement brought by the NPTVA compared to the LPTVA.
For a more quantitative comparison between the performanceof the LPTVA and the NPTVA,
the amplitudes of the resonant peaks of the host oscillator are compared in Figure 8 as a function
of f0. Figures 8(a,b) reveal that, unlike the LPTVA, the amplitudes of the two resonance peaks
of the host system with an attached NPTVA remain almost identical. In addition, an interesting
observation is that these amplitudes seem linearly relatedto the forcing amplitude, meaning that
considering a properly-tuned nonlinearity in a shunt circuit connected to an already nonlinear
system can give rise to linear-like behaviors and operational domain of the forcing amplitudes.
Figures 8(c,d) illustrate that the NPTVA performance is always superior to that of the LPTVA,
which is an appealing feature of this device.
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Figure 6. Frequency response of a cubic oscillator (α = 0.2, k3 = 10−5) attached to a cubic
NPTVA with m3 = 2.06
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Figure 7. Frequency response of a quintic oscillator (α = 0.2, k5 = 10−8) attached to a quintic
NPTVA with m5 = 4.11

5. Conclusion

This paper introduces a new nonlinear piezoelectric vibration absorber which aims the mit-
igation of a specific nonlinear resonance of a mechanical system. The tuning rule used for
absorber design relies on a nonlinear principle of similarity, i.e., the nonlinear shunt should be
an electrical analog of the host system, and allows us to extend Den Hartog’s tuning method
to nonlinear systems. Specifically, equal peaks can be maintained in a relatively large range of
forcing amplitudes, and this, despite the variation of the resonance frequency of the host sys-
tem. Compared to the linear piezoelectric vibration absorber, the nonlinear absorber improves
mitigation performance and retains the linear-like behaviors in a wider range of the forcing
amplitudes.
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(d) 

Figure 8. Peak amplitudes of the NPTVA (solid lines) againstLPTVA (dashed lines) for (a) a
Duffing nonlinear host withk3 = 1 × 10−5 (b) a nonlinear host with quintic nonlinear terms
with k5 = 1 × 10−8 atα = 0.2; The percentage of improvement brought by the NPTVA with

respect to LPTVA for (c) the Duffing (cubic) nonlinear host , (d) the quintic nonlinear host.
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