
7th ECCOMAS Thematic Conference on Smart Structures and Materials

SMART 2015

A.L. Araúo, C.A. Mota Soares, et al. (Editors)

c© IDMEC 2015

MECHANICAL DEGRADATION AND LIFETIME PREDICTION OF
TETRAGONAL FERROELECTRICS UNDER CYCLIC

ELECTROMECHANICAL LOADING

Stephan Lange∗, Andreas Ricoeur†

∗,†University of Kassel, Institute of Mechanics, Chair of Engineering Mechanics / Continuum
Mechanics

Mönchebergstr. 7, 34125 Kassel, Germany

∗stephan.lange@uni-kassel.de
†ricoeur@uni-kassel.de

Keywords: Ferroelectrics, tetragonal unit cells, grain interaction, residual stresses, high cycle
fatigue, lifetime prediction.

Summary: Reliability and life time of smart materials are crucial features for the develop-
ment and design of actuator and sensor devices. Being widely used and exhibiting brittle failure
characteristics, ceramic ferroelectrics are of particular interest in this field. Due to manifold
interactions of the complex nonlinear constitutive behavior on the one hand and the damage
evolution in terms of microcrack growth on the other, modeling and simulation are inevitable
to investigate influence parameters on strength, reliability and life time. The so-called con-
densed approach, which is presented first, considers just one characteristic point in the mate-
rial, nonetheless accounting for polycrystalline grain interactions. Then, a model to predict
the lifetime in terms of high cycle fatigue under electromechanical loading conditions is intro-
duced.

1. INTRODUCTION

Ferroelectric materials such as barium titanate (BT) or lead zirconate titanate (PZT) have
been established as components of so-called smart structures during the past few decades. They
are used as bulk material in actuators or sensors and are constitutents of micro electromechan-
ical systems (MEMS) and composite devices. To model the nonlinear behavior of ferroelectric
materials, a variety of models has been published during the past decades. HWANG et al. [1]
propose a model that assumes a polycrystal with monodomain grains, where the polarization
switches by a discrete angle if an energetic switching criterion is satisfied. In HUBER et al. [2],
scalar weights are introduced for each orientation of the c-axis of a tetragonal unit cell within
a grain. Within the context of material theory, they have to be interpreted as internal variables
controlling all dissipative processes. Their evolution is governed by energetic considerations
based on the first and second principles of thermodynamics. Most of the approaches that have
been developed are implemented within the framework of the Finite Element Method (FEM),
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Figure 1. Illustration of the principles of FE and condensed approaches

enabling the solution of complex boundary value problems (see Fig. 1). On the other hand,
the implementation of a discretization scheme is going along with a high effort and the solution
of problems requires high computational costs. However, many results shown in papers are
restricted to very basic boundary value problems under uniaxial loading. The goal mostly is to
calculate different hysteresis loops of tetragonal ferroelectrics, thus demonstrating and inves-
tigating their constitutive behavior. This kind of investigation, however, does not require the
application of a discretization method.

Following the introduced model by LANGE AND RICOEUR [3], the grains are embedded
into an effective medium and condensed to a single material point (see Fig. 1). The interac-
tion between grains is taken into account applying an averaging technique calculating effective
inelastic mechanical and electrical fields for a polycrystalline material. The computational and
implementation effort going along with the condensed model is low compared to FEM based
approaches. Nevertheless, all essential features are included yielding smooth hysteresis loops of
the bulk material under combined electromechnical load and residual stresses in each grain. To
predict the lifetime of ferroelectric materials under cyclic electromechanical loading, a model
for high cycle fatigue is presented based on the condensed model.

2. A CONDENSED MODEL FOR POLYCRYSTALLINE FERROELECTRICS

Neglecting volume forces and charges, the balance equations of mechanical and electrostatic
equilibrium are reduced to:

σij,j = 0,

Di,i = 0,
(1)
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where (. . .),j = ∂/∂j describes the partial differentiation with respect to xj . σij and Di are
the associated variables stress and electric displacement. Starting from the first law of thermo-
dynamics, considering Eq. (1), static limits u̇i = üi = 0, the divergence theorem, the Cauchy
theorem ti = σij ni and ω̇S = −Ḋi ni as well as the relations Ei = −ϕ,i and σij u̇i,j = σij ε̇ij ,
the local formulation of the energy balance is finally obtained as [3]:

u̇ = σij
(
ε̇revij + ε̇irrij

)
+ Ei

(
Ḋrev
i + Ṗ irr

i

)
− qi,i + ρ r. (2)

The terms ε̇irrij and Ṗ irr
i describe the irreversible strain and polarization rates as results of do-

main wall motion. Thermodynamic consistency requires the satisfaction of the second law of
thermodynamics (e.g. [4])

θ ṡ+ qi,i −
qi
θ

∂θ

∂xi
− ρ r ≥ 0 (3)

where s is the specific entropy. Inserting Eq. (2) into Eq. (3) yields in the generalized CLAUSIUS-
DUHEM-inequality. PATRON AND KUDRYAVTSEV [4] discussed the generalized inequality for
ε̇irrij = 0 and Ṗ irr

i = 0 and showed that it holds for any values of ε̇revij , Ḋrev
i and ṡ leaving the

statement qi θ,i/θ ≥ 0. Thus, considering domain switching as further irreversible processes,
the inequality reads

σij ε̇
irr
ij + Ei Ṗ

irr
i −

qi
θ

∂θ

∂xi
≥ 0. (4)

Eq. (4) is of essential significance for the development of a thermodynamically consistent mi-
crostructural evolution law.

The nonlinear thermodynamic potential of a ferroelectric material is introduced as:

Ψ (εkl, El) =
1

2
Cijklεklεij − elijElεij −

1

2
κilElEi − Cijklεirrkl εij+

+ eiklε
irr
klEi − P irr

i Ei,
(5)

where the strain εkl and the electric field El are chosen as independent variables, Cijkl, elij and
κil are the elastic, piezoelectric and dielectric tensors. The partial derivatives of Ψ with respect
to εij and Ei lead to the constitutive equations:

σij =
∂Ψ

∂εij

∣∣∣∣
E

= Cijkl
(
εkl − εirrkl

)
− enij En, (6)

Di = − ∂Ψ

∂Ei

∣∣∣∣
ε

= eikl
(
εkl − εirrkl

)
+ κinEn + P irr

i . (7)

The domain structure of tetragonal ferroelectrics exhibits 90◦ and 180◦ domain walls (see Fig.
2). Following a model introduced by HUBER et al. [2], each possible polarization direction
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Figure 2. Domain structure of a single grain and motivation of the internal variable ν(n)

in a grain is weighted by an internal variable ν(n) where n = 1, . . . , 4 for a two-dimensional
case. Here, the domain structure of a grain is represented by an arrowed cross at a single local
material point. An evolution law for the internal variables ν(n) is sought. HWANG et al. [1]
formulated a local switching criterion, where the dissipative work wdiss(n) associated with the
switching of a domain species n is related to a threshold value wcrit > 0. Switching of a domain
species occurs, if

w
diss(n)
(β) ≥ wcrit

(β) , n = 1, . . . , 4. (8)

The subscript in Eq. (8) distinguishes between ±90◦ and 180◦ domain variants. The left side of
Eq. (8) is given by:

w
diss(n)
(β) = σij ε

sp(n)
ij(β) + Ei P

sp(n)
i(β) . (9)

An extension of the dissipative work wdiss is recommended by KESSELER AND BALKE [5]
accounting for higher order terms. These terms are small in comparison to the terms outlined in
Eg. (9). Therefore, they are neglected. The evolution equation for each ν(n) is described by:

dν(n) = −dν0H

(
wdiss(n)

wcrit
(β)

− 1

)
, wdiss(n) = max

{
w

diss(n)
(β)

}
. (10)

The quantity dν0 is a model parameter and the Heaviside function H is equal to zero in case
of wdiss(n) < wcrit

(β) or equal to one if wdiss(n) ≥ wcrit
(β) . Threshold values for different switch-

ing variants of a tetragonal unit cell can be found by, e.g. in [3]. The evolution equation
is thermodynamically consistent since Eq. (10) is based on Eq. (9), the latter satisfying the
CLAUSIUS-DUHEM-inequality (4), if qi = 0.

A variety of grains with different orientations shall be considered in a representative volume
element (RVE). Following Fig. 1, all grains in an RVE are condensed to one global material
point which exhibits all possible domain orientations of an RVE. However, switching can only
occur within the four species of a grain. In a FE approach a grain can be interpreted as an inte-
gration point, intrinsically accounting for grain interaction. A grain interaction in the condensed
model is realized by an averaging technique.
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On the macroscopic scale, represented by the RVE, stress and electric displacement are
microscopic volume averages (s. [6]):

〈σij〉 =
1

V

∫
V

σij (xl) dV , 〈Di〉 =
1

V

∫
V

Di (xl) dV. (11)

In the following, the averages are specified by squared brackets. Assuming homogeneous fields
in a grain m the volume V (m) and an equal size for each grain, i.e. σ(m)

ij , D
(m)
i = const in V (m)

and V = M V (m), the averages result in:

〈σij〉 =
1

M

M∑
m=1

σ
(m)
ij , 〈Di〉 =

1

M

M∑
m=1

D
(m)
i . (12)

The resulting material coefficients of an RVE 〈Cijkl〉, 〈eikl〉 and 〈κij〉 are determined likewise.
Next, Eqs. (6) and (7) are formulated for each grain m, relating the quantities σ(m)

ij , D(m)
i ,

E
(m)
n and ε(m)

kl . In the following a generalized Voigt approximation is assumed. Therefore, strain
and electric field are homogeneous in the RVE and thus equal in each grain. Bearing in mind
Eq. (12), the average stress 〈σij〉 and electric displacement 〈Di〉 result in:

〈σij〉 = 〈Cijkl 〉εkl − 〈Cijkl εirrkl 〉 − 〈enij〉En, (13)

〈Di〉 = 〈eikl〉 εkl − 〈eikl εirrkl 〉+ 〈κin〉En + 〈P irr
i 〉. (14)

The bars on εkl and En indicate the variables which are kept constant in the homogenisation
procedure. Depending on the specific boundary value problem, the unknown quantities are
chosen among the macroscopic stress 〈σij〉, electric displacement 〈Di〉, strain εkl and electric
field En. In the following, 〈σij〉 = σext

ij and En = Eext
n are prescribed as boundary conditions.

The strain εkl results from Eq. (13):

εkl = 〈Cijkl〉−1
{
σext
ij + 〈Cijno εirrno〉+ 〈erij〉Eext

r

}
. (15)

The residual stress of a grain m resulting form domain wall motion, is then given by:

σ
(m)
ij = C

(m)
ijkl

(
〈Cijkl〉−1

{
σext
pq + 〈Cpqno εirrno〉+ 〈erpq〉Eext

r

}
− εirr(m)

kl

)
− e(m)

lij E
ext
r . (16)

Other boundary conditions can be chosen, e.g. σext
ij and Dext

i , however they are not investigated
here.

3. MODELING DAMAGE EVOLUTION IN FERROELECTRICS

A continuum damage approach for brittle ferroelectrics is presented in the following. The
defect phase consists of cracks, randomly and dilutely distributed in the material, i.e. neglecting
crack interactions. The constitutive damage model is implemented within the context of the
condensed approach introduced in section 2..
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3.1 Effective material properties in ferroelectrics

To calculate effective material properties, a linear material behavior of the cracked ferro-
electric solid is considered in each load increment. Two out of four possible formulations of the
constitutive behavior are (e.g. [7], [3]):(

εij
Ei

)
=

(
S∗ijkl d∗lij
−d∗ikl β∗il

)(
σkl
Dl

)
,

(
σij
Di

)
=

(
C∗ijkl −e∗lij
e∗ikl κ∗il

)(
εkl
El

)
. (17)

Here, Sijkl, drij and βir describe the elastic compliance, piezoelectric constants and dielectric
impermeability, respectively and ∗ denotes effective properties. Cijkl, eikl and κil are the previ-
ously introduced stiffness, piezoelectric and dielectric constants. In a compressed notation Eq.
(17) can be written as:

Zp = F ∗pq Πq , Πp = C∗pq Zq. (18)

The variables in Eq. (18) describe generalized values for strain Zp, stress Πq, stiffness Cpq and
compliance Fpq, where indices p, q run from 1 to 9. Following e.g. [6], [8] and [9], Zp can be
decomposed into a matrix part ZM

p and a part ZC
p representing the defect phase:

Zp = ZM
p + ZC

p . (19)

Based on this assumption, Eq. (18) can be written for the matrix phase as:

ZM
p = FM

pq ΠM
q , ΠM

p = CM
pq Z

M
q . (20)

Inserting Eq. (19) into Eq. (20) leads to relationships between the matrix and the cracked phase:

Zp = FM
pq Πq + ZC

p , ΠM
p = CM

pq

(
Zq − ZC

q

)
. (21)

Two different cases will be discussed in the following: a generalized REUSS assumption, where
generalized stresses are constant and therefore ZC

p = FC
pq Π∞q and a generalized VOIGT ap-

proximation, where generalized strains are constant leading to ZC
p = Dpq Z

∞
q . FC

pq and Dpq

are the influence tensors and Π∞q and Z∞q describe the loading conditions of the RVE. The ef-
fective material coefficients of the REUSS approximation result from Eqs. (18), (21) and the
corresponding definition of the cracked phase ZC

p :

F ∗pq = FM
pq + FC

pq,

C∗pq =
(
FM
pq + FC

pq

)−1
.

(22)

For the VOIGT assumption, the effective coefficients follow from applying Eqs. (18), (21) and
ZC
p of the VOIGT approximation:

C∗pq = CM
pr (δrq −Drq) ,

F ∗pq =
{
CM
pr (δrq −Drq)

}−1
.

(23)
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Deriving the relations (22) and (23), it has to be borne in mind that F−1pq = Cpq. Further,
Πp = ΠM

p is assumed. Mechanically, this implies a stress-free defect phase which holds in
the case of voids or cracks. From the electrostatic point of view, impermeable crack boundary
conditions are modeled.

3.2 Modeling of the defect phase

For the calculation of the effective material constants at a local material point m, the crack
RVE with an edge length of

√
A shown in Fig. 3 is considered. There are several cracks with

σ
(m)
I , D

(m)
2

2a

√
A

xc1

xc2

Figure 3. Model of the defect phase in an RVE m under electromechanical loading

different orientations under an electromechanical loading σ(m)
I and D(m)

2 . Due to the dilute or
noninteracting assumption [10], the model of the defect phase can be reduced to one single
crack in an unbounded medium, where the edge length of the crack RVE is just a parameter
to introduce the crack density. The coordinate system of the crack is defined by xc1 and xc2.
Further, only cracks perpendicular to the principle stress σ(m)

I are considered, since these are
the most critical ones. Thus, the local crack coordinate system and the orientation of the defect
RVE coincide with the principal axes of the stress field. Electric loads parallel to the crack faces
D

(m)
1 are not considered, since they are dispensable from the fracture mechanical point of view,

at least concerning classical theories. Advanced models of piezoelectric fracture mechanics,
however, reveal effects going along with electric fields parallel to the crack faces [11]. Even
collinear stress loads σ̄11 may have an impact on the mode I SIF [12]. The principal stresses
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σ
(m)
I,II of a local material point m are calculated as follows:

σ
(m)
I,II =

1

2

(
σ
(m)
11 + σ

(m)
22

)
±
√

1

4

(
σ
(m)
11 + σ

(m)
22

)2
+
(
σ
(m)
12

)2
, (24)

with σ(m)
I > σ

(m)
II . Following Fig. 3, the crack density

f =
4a2

A
(25)

is introduced as a relationship of the squares of the crack length 2a and the edge length
√
A.

Boundary conditions on the crack surfaces and relevant coordinate systems are illustrated
in Fig 4. Here, an impermeable crack is considered, following the Neumann type boundary

Γ−

E2

∆α

xc2
xm2

αc

αm

Γ+

x1

Pi

x2

2 a

xc1

xm1

β2β1

Figure 4. Coordinate systems and parameters of an arbitrarily orientated impermeable crack

condition investigated e.g. by [13] and [14]. Therefore, the crack faces are free of charges, i.e.

D+
2

(
xc1
)

= D−2
(
xc1
)

= 0 (26)

on the positive Γ+ and negative Γ− crack surfaces.
Besides the global coordinate system (x1, x2), other coordinate systems are relevant for the

development of the damage model. The one related to the local material point m, following
the idea of the condensed approach depicted in Fig. 1, is denoted by (xm1 , x

m
2 ), β1 and β2

describe the orientation of the polarisation direction with respect to xc1 and xm1 . αc and αm

denote the orientations of the local coordinate systems of the crack and the material RVE related
to (xm1 , x

m
2 ). The angle between these two systems is defined as ∆α = αc − αm. The different

angles, shown in Fig. 4, are relevant for the calculation of the Irwin matrix (see e.g. [15]) and
the effective material constants.
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The jump of generalized displacements ∆uM at the crack faces in a ferroelectric ceramic
under an electromechanical loading was discussed e.g. by [16], [15] and [12]. With the imper-
meable boundary condition introduced in Eq. (26) and bearing in mind that a two-dimensional
case is supposed, ∆uM is given by:

∆uM =

∆u1
∆u2
∆ϕ

 = 2

Y11 Y12 Y14
Y21 Y22 Y24
Y41 Y42 Y44

 0
σI
D∞2

√a2 − (xc1)
2,

= 2YMN ΣN

√
a2 − (xc1)

2,

(27)

where YMN is the Irwin matrix depending on material constants and the orientation of the crack
with respect to the poling direction. To calculate the effective material properties of a micro-
scopic RVE, following the REUSS or VOIGT approximations, the strain and electric field of the
defect phase are given by:

〈εij〉C =
1

2A

a∫
−a

(∆uinj + ∆ujni) dxc1 , 〈Ei〉C = − 1

A

a∫
−a

∆ϕni dx
c
1, (28)

where ni is the unit normal on the positive crack face and the part for the strain is classical (see
e.g. [6]). The influence tensor FC

pq according to Eq. (22) is hence determined as

FC
pq =

1

4
π f


0 0 0 0 0
0 Y22 0 0 Y24
0 Y12 0 0 Y14
0 0 0 0 0
0 −Y42 0 0 −Y44

 . (29)

Assuming a generalized VOIGT approximation, the influence tensorDpq results from the REUSS

approximation by replacing Π∞q by Z∞q via the constitutive equations (17):

Dkm =
1

4
π f


0 0 0

Y22C
M
21 + Y24e

M
21 Y22C

M
22 + Y24e

M
22 Y22C

M
23 + Y24e

M
23

Y12C
M
21 + Y14e

M
21 Y12C

M
22 + Y14e

M
22 Y12C

M
23 + Y14e

M
23

0 0 0
−Y42CM

21 − Y44eM21 −Y42CM
22 − Y44eM22 −Y42CM

23 − Y44eM23
0 0

Y24κ
M
21 − Y22eM12 Y24κ

M
22 − Y22eM22

Y14κ
M
21 − Y12eM12 Y14κ

M
22 − Y12eM22

0 0
Y42e

M
12 − Y44κM21 Y42e

M
22 − Y44κM22

 .

(30)
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Finally, it should be mentioned that the local polarisation directions β1/2, see Fig. 4, depend
on the microstructural evolution due to domain switching, see Sec. 2, thus being subject to a
permanent change during the loading process. Therefore, the effective material properties and
the Irwin matrix have to be recalculated after each switching increment dν.

3.3 An accumulation model for high cycle fatigue and lifetime prediction

The condensed approach outlined in Sec. 2 is exploited in regard to high cycle fatigue. The
damage evolution is based on subcritical crack growth governed by the classical Paris law [17].
Most investigations about fatigue damage of ferroelectrics under electromechanical loading deal
with low cycle fatigue from an experimental or modeling point of view (e.g. [18], [19] and
[20]). For high cycle fatigue, a cycle by cycle simulation is unrealistic due to the high effort and
computational costs. The idea presented in the following is based on an accumulation of many
physical cycles NP and their mapping onto much less numerical ones N .

yes

no

no

yes
Iteration over

other mat. points

E2

N

NP

4 5

6

∆K̂I

7

∆âN = âN−1 γ∆K̂I > KIth

1/8

2

C∗ijkl , e
∗
ikl

κ∗ij

∆a
(m)
N

3

∆K
(m)
I > KIth

Figure 5. Calculation scheme for high cycle fatigue damage prediction based on the condensed
model

The calculation scheme is captured in Fig. 5 and includes eight steps. In the first step, one
load cycle N is simulated applying the approach outlined in section 2.. Next, the material RVE
with the maximum peak-to-peak stress intensity factor (SIF) ∆K̂I is sought. The SIF at a local
material point m is calculated as

∆K
(m)
I = ∆σ

(m)
I

√
π a0 (31)

with ∆σ
(m)
I = σ

max(m)
I − σmin(m)

I . σI results from Eq. (24) and ∆KI will be simply denoted as
SIF in the following. In the third step it is checked if ∆K̂I is larger than or equal to the threshold
valueKIth. If this criterion is not satisfied, the next load cycle is simulated. Otherwise, the crack
propagation increment ∆âN is determined as follows:

∆âN = γ âN−1. (32)

10
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Notice, that the initial crack length is a0. Again, the superscript hat refers to the material point
with the maximum principal stress. γ is a numerical parameter describing the ratio of the
increment ∆a and the crack length. Therefore, the new crack length âN is obtained as:

âN = (1 + γ) âN−1. (33)

While the aforementioned load cycles N have a pure numerical background, the number of
physical cycles NP associated with the crack growth increment ∆âN , is the relevant quantity.
Thus, in the next step, NP is determined from the classical Paris law [17]

da

dN
= C (∆KI)

η . (34)

C and η are material-dependent parameters. Separation of crack length and number of cycles
under consideration of Eq. (31) leads to

NP∫
0

dN =

aN∫
aN−1

da

C (∆σI
√
πa)

η . (35)

Integration of both sides of Eq. (35) and assuming that the peak-to-peak value ∆σI is constant
during one numerical cycle N yields

NP =
2

C (2− η) (∆σI
√
π)

η

[
(âN−1 (1 + γ))

2−η
2 − â

2−η
2

N−1

]
. (36)

In step six of Fig. 5 the crack propagation ∆a
(m)
N in each of the other local material points m is

determined from Eq. (34) as a function of NP , ∆σ
(m)
I and a(m)

N−1:

∆a
(m)
N = C

(
∆σ

(m)
I

√
πa

(m)
N−1

)η
NP . (37)

A simplifying assumption of Eq. (37) is that the crack length is constant for the integration.
After having calculated all ∆a

(m)
N , the effective material constants are determined according to

the introduced averaging technique in Sec. 2.. Now, the next numerical load cycle is simulated
based on the updated crack lengths.

The scheme is repeated assembling the physical cycles to obtain their total number, finally
representing the life time of the structure under electromechanical loading. The simulation is
stopped, as soon as a rupture criterion is satisfied. Here, the average damage variable or crack
density parameter 〈f〉, respectively, reaches a critical value, e.g. 0.5. Following the weakest
link interpretation, the simulation can also be controlled by the material point m̂, which in the
first load cycle has been identified as the one with the highest stress level. Then, just the crack
density f̂ (m) is inserted into the rupture criterion. The progress of damage in the other material
points, however, still has an impact on the predicted life time by influencing the evolution
of effective elastic, piezoelectric and dielectric constants. These material properties are in turn
decisive for the domain induced residual stresses which are significantly controlling the damage
process.
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4. RESULTS OF LIFETIME PREDICTION

All calculations are based on the material data of barium titanate taken from [21]. The
constants for the Paris law have been taken from [22], where experiments on fatigue crack
growth in PZT under pure mechanical loading are presented. The values of C and η have been
adopted here, since there are not any other experimental data in this field.

First, the influence of a bipolar and an unipolar electrical loading is investigated. Mechani-
cally, the specimen is neither clamped nor submitted to a traction load. The loading scheme is
shown in Fig. 6 (a) in terms of the normalized electric field vs. the first numerical load cycles.
In Fig. 6 (b) the crack density f normalized with respect to the initial damage f0 is plotted
vs. the accumulated number of physical cycles. It becomes obvious, that the damage evolution

(a)
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Figure 6. Comparison of bipolar and unipolar electric loading: loading schemes (a) and damage
evolution (b)

exhibits an asymptotic behavior. The critical lifetime results with a sufficient accuracy from the
vertical tangent. Therefore, in Fig. 6 (b) a lifetime of N crit

P ≈ 2 · 105 is given for the bipolar
loading scheme andN crit

P ≈ 7 ·109 for the unipolar loading scheme. The results presented in the
following are based on unipolar loading. The solid line is thus denoted as reference simulation
in the following.

In Fig. 7 (a) the influence of the initial crack density f0 on the critical number of cycles is
shown. It is obvious, that an increasing initial crack density results in a decreasing number of
cycles and therefore a decreasing lifetime. Fig. 7 (b) presents the influence of the parameters
of the PARIS law, following Eq. (34). Fundamental finding of Fig. 7 (b) is a crucial influence
of the parameters C and η on the number of critical cycles. Especially η is a very sensitive
parameter. Bearing in mind, that C and η are taken from PZT and not be known for BaTiO3,
the results of the predictions presented in this paper have to considered as qualitative.
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Figure 7. Influence of the initial crack density (a) and the parameters of the PARIS law (b) on
the lifetime
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Figure 8. Influence of a compressive preload on actuation strain and life time. The dotted line
represents the strain in an undamaged structure

In Fig. 8 the influence of an electromechanical loading on the lifetime and the actuation
strain is investigated. The initial crack density f0 and the parameters C and η are the same as
for the solid lines in Fig. 7. The amplitude of the unipolar loading scheme is 10Ec. Current ex-
perimental investigations show on the one hand that a mechanical compressive preloading into
the direction of the electric field fosters the poling and thus the actuation strain within a certain
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stress range [23, 24, 25]. On the other hand, a reduction of the lifetime due to compressive
preloading has recently been observed [26]. Both effects are shown in Fig. 8. The solid line
represents the number of critical cycles, the dashed line the actuation strain and the dotted line
represents the actuation strain in an undamaged structure. Main findings of Fig. 8 are as follows:
Increasing compressive preloading reduces the influence of damage on the actuation efficiency
∆ε22 and at a compressive preload of σ22 = −15 MPa, the difference between an undamaged
and damaged structure becomes negligible. The actuation efficiency becomes a maximum at
σ22 = −20 MPa and goes along with a lifetime reduction of 40 percent in comparison to the
stress-free loading condition. An increasing compressive preloading below σ22 = −20 MPa
finally results in a decreasing actuation efficiency and a recovering of the lifetime.

5. CONCLUSIONS

A condensed approach for tetragonal ferroelectrics has been presented based on a homogeni-
sation technique and the effective medium theory. Being mechanically and electrostatically
consistent and evolved from a thermodynamical framework, it provides a powerful and efficient
tool to investigate the inelastic constitutive behavior of multifunctional materials. In contrast to
FE approaches, a spacial discretisation is not necessary and both implementation and computa-
tion efforts are comparably low. Concerning damage predictions in ferroelectrics, it is essential
that residual stresses are accurately obtained from a modeling approach, since they provide the
major contribution to the loading of microcracks or other defects. The constitutive framework
describes an evolution of the microstructure in terms of domain wall motion and the growth of
microcracks. Due to the influence of the state of damage on the effective elastic, dielectric and
piezoelectric properties, there is a mutual interaction between both irreversible mechanisms.
Results are discussed in terms of life time predictions under high cycle electric loading con-
ditions, requiring an approach to efficiently handle up to 1010 load cycles. To improve the
predictions quantitatively, more sophisticated models have to be established accounting e.g. for
crack interactions or nontrivial boundary conditions at crack faces. Also, the influence of an
electric field is just taken into account on the loading side by controlling the residual stress.
This might be the major contribution, however it has to be borne in mind that the intrinsic ma-
terial resistance may also depends on electric fields. Finally, to get closer to applied research,
the constitutive behavior of modern ferroelectric materials, including morphotropic or lead-free
compositions, has to be a subject of advanced modeling.
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