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Summary: This paper aims to enhance the buckling load of beam-type structures by active
control. For this purpose, a cantilever beam loaded by a compressive force is investigated
experimentally. The compressive force is introduced by a cable, which is fixed at the tip of
the beam and directed through the beam’s foundation. The structural displacements are mea-
sured by means of laser displacement sensors and strain gauges. For increasing the structural
stability, discrete piezoelectric patches are applied foractuation. Different kinds of constant
feedback control approaches are studied. The influence on the buckling and the active control
limits are demonstrated. The experimental and numerical results agree very well. Furthermore,
an analytical formulation based on the Bernoulli-Euler beam theory is presented. As the system
represents a non-conservative system, a dynamic stabilityanalysis is performed.

1. INTRODUCTION

Due to their capability to withstand relatively large axialloads, slender beam-type structures
are a common member in design, e.g., of light-weight structures. Depending on the load char-
acteristics, constraints and geometry, however, there aredifferent ways such a structure may
lose stability, e.g., buckling beyond critical compressive forces, cf. Timoshenko and Gere [1].
The loss of stability may even cause the structure to collapse in the worst case.

In practice, high efforts are spent to avoid these states of instability and prevent buckling
from the beginning. Obvious approaches to enhance the stability of a structure are methods to
increase its rigidity passively, e.g., by means of modification of design, material, etc. Nowa-
days, these methods may not satisfy the challenging design criteria of aerospace, automotive,
mechanical, civil and even medical engineering like volumeand weight restrictions or flexibil-
ity demands. Instead, it may be advantageous to increase theload capacity by active control
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strategies. As piezoelectric actuators have been proved their effectiveness in many applications,
cf., Preumont [2], they are utilized in the present contribution.

In the literature, only few contributions can be found, which are concerned with experimen-
tal investigations on buckling control. Firstly, different piezoelectric material strips applied to
simply supported beams are actuated by means of feedback control in Thompson and Lough-
lan [3]. As control error a displacement sensor is used. A maximum increase of a factor of
1.371 could be achieved. Berlin [4] studied simply supported beams, again. Here, the sensor
signals of five pairs of strain gauges are feed back to the samenumber of piezoelectric patches
by a proportional-integral-derivative controller. By tuning the controller manually for every
different load case, an increase of factor5.6 of the uncontrolled buckling load is reported. In
Chase and Yim [5] an optimal control algorithm based on a numerical state-space model is de-
signed with eight pairs of piezoelectric patches, which areapplied to a simply supported beam.
Buckling loads up to a factor of2.9 are stated with the help of the control system. Analyti-
cal formulation, numerical simulations and experimental results are firstly presented in Zenz
and Humer [6]. In the experimental setup, twelve pairs of piezoelectric patches increase the
buckling load with the help of a displacement sensor and a proportional feedback controller. A
factor of2.05 is presented. Beside experimental studies, numerical investigations are the topic
of, e.g, Meressi and Paden [7], Fridmann and Abramovich [8] and Zenz and Humer [9]. All
aforementioned publications utilize the bending moment for controlling the structural stability.
Normal forces are not applicable for increasing the buckling load, which could be clarified in
the work of Zehetner and Irschik [10].

The present work experimentally investigates the stability control of a slender cantilever
beam subjected to a compressive force. The compressive force is introduced by tensioning a
cable, which is fixed at the free end of the beam and guided through the foundation of the
cantilever. In order to control the measured tip deflection,discrete piezoelectric patches are
used for actuation. Different proportional feedback control approaches aim to enhance the
critical load at which buckling occurs.

The paper is structured as follows: In a first step, the investigated experimental setup is
presented. Subsequently, the equations of motion of the considered setup are derived. The
consistent analytical formulation, which is based on the Bernoulli-Euler assumptions, includes
discrete sensing and actuation as well as controller design. In a second step, a numerical model
is built up, which, again, includes the used sensors, actuators and the control elements. Finally,
the experimental results are presented and compared to the numerical ones. Different control
approaches, i.e. uniform control, discretely weighted actuation based on the shape control ap-
proach and modal control, are studied in order to derive a maximum increase of the buckling
load. The behaviour of real world structures, e.g., imperfections, sensor noise, discrete mea-
surements, etc. is emphasized.

2. INVESTIGATED SETUP

The setup under consideration consists of a cantilever beamloaded by a compressive force,
cf. Fig. 1. Unlike conventional problems, the compressive force changes its orientation during
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buckling as it is imposed by tensioning a steel cable, which passes through a fixed point at
the beam’s root. On a substrate layer made of spring steel,24 discrete piezoelectric patches
are applied on the top and bottom surfaces of the cantilever by means of an adhesive layer.
Using type DuraAct 15-A patches, the piezoelectric material is enclosed in an isolator cover.
The patches are electrically connected in four groups of three piezoelectric patches each. The
distance between each active material in a group is0.013 m, between each group0.031 m and
between the clamping and the first patch0.099 m. Further geometric and material parameters
can be found in Table 1.

piezoelectric transducersspring steel

displacement sensorsstrain gauges
P

x

z

(a)

(b)

Figure 1. Column with load through a fixed point, 24 piezoelectric patches, strain gauges and
two laser displacement sensors: a) schematic and b) experimental setup.

For measuring the deflection of the beam, two laser displacement sensors are placed at the
middle and at the tip of the beam. Furthermore, four strain sensors are applied between each
patch group at each side of the beam, starting next to the clamping. Conventional strain gauges
of type Micro-measurements CEA-06-125WT-120 in half bridge mode are used as sensors. The
half bridge mode avoids inaccurate measurements due to temperature drifts. In order to derive
the bending strain only, the sensor data of one strain gauge is subtracted from the data of the
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beam (steel) PZT

lengthl, lp / m 1.02 0.05
width b, bp / m 0.04 0.03
thicknessh, hp / m 0.002 0.0007
Young’s modulusE, Ep / Nm−2 2.1 × 1011 6.5 × 1010

densityρ, ρp / kgm−3 7900 7600
piezoelectric coefficientd31 / AsN−1 0 −1.71 × 10−10

Table 1. Geometric and material properties

collocated applied sensor. The applied compressive force is measured by a force sensor. The
measurements are processed and the controllers are implemented within a dSpace system. The
control output of the dSpace system is amplified by factor of100 in order to exploit the voltage
range and consequently the deflection range of the piezoelectric patches. To avoid irreversible
depolarization of the piezoelectric material, the outputsare limited to±200 V.

3. ANALYTICAL CONSIDERATIONS

In this section, an analytical formulation for determiningthe critical load of an initially
straight and slender beam compressed by a load through a fixedpoint is presented. The for-
mulation includes discrete piezoelectric actuators, discrete displacement sensors and feedback
control. For the formulation using strain sensors instead of displacement sensors, see Zenz and
Humer [9].

In the following, it is assumed that the Bernoulli-Euler assumptions hold. Furthermore, the
longitudinal axis of the undeformed configuration coincides with x-axis of the fixed Cartesian
frame, cf. Fig. 1(a), and the deformations are assumed to take place in thexz-plane only. The
critical loads can be determined by solving the eigenvalue problem of the linearized problem.
Due to the feedback control, the considered setup represents a non-conservative system, as the
externally imposed loads depend on the displacement field and on its derivatives. Consequently,
a dynamic criterion must be used to derive all states of stability, those of divergent as well as
flutter instability, cf., Leipholz [11] and Timoshenko and Gere [1] for more details.

The equation of motion for small deformations of a beam subjected to an compressive force
reads:

∂2Mj

∂x2
− P

∂2wj

∂x2
− µj

∂2wj

∂t2
= 0, (1)

wherewj(x, t) denotes the lateral deflection,Mj(x, t) is the bending moment about they-axis,
andµj = ρjAj the beam’s mass per unit length. In order to take into accountthe changing cross
section due to the discrete piezoelectric patches, the beamis segmented such that the properties
of each sectionj of the n segments can be included. In the considered framework, which
neglects shear deformation and shortening of the beam and regards small deflections only, the
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curvature can be approximated byκ(x, t) ≈ −∂2w/∂x2. Therefore, following relation between
bending moment and the beam’s curvature via the bending stiffness can be found:

Mj(x, t) = −(EI)j
∂2wj

∂x2
+ Ma

j . (2)

The additional termMa(t) respects the influence of the piezoelectric bending actuation of the
beam. In the following, only a transverse component of the electric fieldEz is considered. This
electric field is considered to be constant over the piezoelectric thickness layerhp,j and pro-
portional to the applied voltagevj(t), which leads to the correlationEz = ∓vj/hp,j. Assuming
furthermore a perfectly bonded patch, with the plane of symmetry in thexy-plane and polarized
in z-direction, the equation of the actuation moment is determined by

Ma
j = 2

h/2+hp,j∫

h/2

Ep,jd31,jEzzbp,j dz ≈ ∓Ep,jd31,jbp,j(h + hp,j)vj, (3)

In the above relationEp denotes Young’s modulus of the piezoelectric material,d31,j the piezo-
electric coefficient andEz the electric field. The height of the substrate and width of the piezo-
electric actuator areh andbp,j. Inserting the constitutive relation (2) into the equationof motion
(1) leads to the well-known fourth-order differential equation:

(EI)j
∂4wj

∂x4
+ P

∂2wj

∂x2
+ µj

∂2wj

∂t2
= 0. (4)

As the actuation momentsMa
j remain constant over the length, it enters the boundary and

necessary continuity condition of the considered configuration only.
Separating the above equation into the product of a spatialfj(x) and a time-harmonic part

eiωjt due to its linearity, leads to a fourth-order ordinary differential equation, which can be
commonly solved by the help of an general solution of the spatial part, cf., e.g., Zenz and
Humer [6].

Anyways, the general solution needs to be determined from the boundary conditions. At
the clamped end of the structurex = 0 the rotation of the cross-section are prohibited kinemat-
ically. At the free endx = l, j = n, the bending moment must vanish while the shear force
Qn(l) = M ′

n(l) needs to satisfy the conditionQn(l) = Pw′
n(l)−

Pwn(l)
l

, due to configuration of
a load through the fix point at the beam’s foundation, when assuming small deformations, see
Timoshenko and Gere [1]. In terms of deflectionwj(l), the boundary conditions read

x = 0 : w1(0) = 0, w′
1(0) = 0,

x = l : w′′
n(l) −

Ma
j

(EI)j

= 0, w′′′
n (l) + k2

nw′
n(l) −

k2
nwn(l)

l
= 0.

(5)

As a set ofn differential equations are considered, continuity conditions for each segmentx = lj
are needed:

wj(lj) = wj+1(lj), w′
j(lj) = w′

j+1(lj),

Mj = Mj+1, Qj = Qj+1,
(6)
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wherelj denotes the distance from the clamped end in the straight configuration up toj, with
consequentlyln = l, the length of the entire cantilever. For segment without piezoelectric
material, the actuation moment is set to zero.

So far, the piezoelectric transducers are activated by somekind of applied voltage. Here,
this voltage depends on some kind of measurement, which is manipulated by a feedback control
algorithm. In this experimental setup, the deflectionwj is measured at the tipl of the beam.
Using a proportional gain feedback control, the applied voltagevj of Eq. (3) is given as

vj = ±
gwn(l)

Ep,jd31,jbp,j(h + hp,j)
, (7)

whereg denotes the gain value of the proportional controller. For more details on the analytical
formulation and its validation, see Zenz and Humer [6].

4. NUMERICAL SIMULATIONS

In this section, the finite element model is briefly presentedand the characteristics of the
uncontrolled numerical simulation are compared to the experimental ones. The mechanical,
sensory, actuatorical as well as control parts of the setup are implemented within the framework
of the multibody and finite system code HOTINT [12]. Within this framework, a planar beam
finite element based on the absolute coordinate formulation(ANCF) is used for modelling the
smart beams, cf. Gerstmayr and Irschik [13] for details on the formulation.

The numerical model is set up according to Fig. 1(a). Based ona convergence study, show-
ing a convergence rate of O(n4

el), a number ofnel = 25 elements, each element with its adequate
material parameters, is already sufficient to compute the solution accurately. During simulation,
the axial compressive forceP is increased gradually from0 N up to a maximum of1000 N. In
order to avoid instable equilibrium paths, a small lateral force is introduced at the tip of the
beam.

Before investigating the controlled configurations, the accuracy of the numerical setup is
validated by the experimental results of the uncontrolled setup. For this purpose the eigenfre-
quencies, transfer function, deflection of the beam for certain actuations and natural buckling
load are compared. The results agree very well, see Fig. 2 forthe comparison of the transfer
functions, even though the numerical model does not includethe adhesive layer, weight of the
electric wiring for actuation and measurements and the fixation of the cable for the compressive
force at the tip of the beam. The buckling load of the numerical model with72.9 N deviates
from the experimental setup with73.5 N by a factor of only0.8%. Also the comparisons of
different voltage levels applied to the piezoelectric patches agreed with a maximum achievable
deflection of±7 mm.

5. RESULTS

In this section, the experimental results are presented andcompared to the numerical ones.
For evaluating the influence of the active feedback control approach, the load-deflection curves
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Figure 2. Comparison of experimental and numerical results.

with the applied compressive load and the tip deflection of the controlled case are compared
to the natural buckling load of the setup. While an analytical solution determines the buckling
load by a single bifurcation point, the load-deflection curve of experimental and numerical in-
vestigations are changing gradually, due to imperfections. Consequently, a condition is defined
in order to determine the bucking load. For the numerical models, the point with the maximal
curvature on the load-deflection curve determines the buckling load. Similar to the numerical
model with a small lateral force, experimental setups are slightly bent in the unloaded configu-
ration due to several imperfections and have therefore a predominant deflection direction. When
gradually loading the beam with a compressive force, the configuration exhibits a natural equi-
librium path before the critical load and the same natural aswell as a secondary complementary
equilibrium path, cf., Singer [14]. This secondary path is only accessed, if the buckled beam is
manually deflected in the opposite predominant direction. In the following, the buckling load
of the experimental setup is defined as the force at which the beam persists on the secondary
equilibrium path. Any decrease of the compressive force would consequently lead to a swing
back to the natural path. All following results are obtainedby different proportional control
approaches using the same preceding experimental setup, cf. Fig. 1.

Besides increasing the stability limit of a structure, feedback control can also cause a de-
crease of the maximum bearable buckling load. Such a decrease of the buckling load can be
obtained by positive feedback control and may be advantageous for, e.g., applications, which
require both, flexible and stiff states of a structure. In thefollowing, however, only the enhance-
ment of the buckling load by negative feedback – denoted withnegative gain values – will be
presented.
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5.1 Uniform control approach

In a first approach, the same output of one proportional controller, is applied reversely to
all piezoelectric patches on both sides. The controller voltage is calculated from the error of
the displacement sensor of the beam’s tip to the non-deflected configuration. The influence of
different gain values can be found in Fig. 3. By playing with the gain values, a maximum in-
crease up to130 N could be achieved for a gain value at approximatelyg = −0.318. Further
increase of the gain value does not increase the buckling load but results to states of a flutter
behavior around130 N. Such flutter behavior may occur in non-conservative systems. In con-
trast to divergent instability, where the stability limit is determined by a frequency becoming
zero for a certain compressive force, i.e., the buckling load, flutter instability is characterized
by two frequencies coinciding exactly at a certain compressive force intensity. At this buckling
load, the frequency has a double root, which would change to acomplex solution for higher
compressive load intensities and therefore to increasing oscillations. The investigations on the
stability of the control system could confirm the observations. Furthermore, the numerical sim-
ulations show the same results with comparable load-displacement curves, cf. Fig. 3(b). The
smaller deformation can be attributed to the neglected and broadly unknown imperfections of
the experimental setup.
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Figure 3. Load-displacement curves of uniform control approach: a) Experimental and b) sim-
ulation results for different gain valuesg.

5.2 Weighted control approach

In a second approach, it is aimed to nullify not only the tip deflection as in the previous sec-
tion, but to compensate the deformation along the entire axis of the beam. With the approach
of shape control, cf. Irschik [15], a compensation of flexible vibrations can be achieved by
applying spatially distributed piezoelectric eigenstrains. Following the considerations of Hu-
ber [16] for discretely distributed piezoelectric patches, corresponding weighting coefficients
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for discretely applying the voltage to the four groups of thepiezoelectric patches can be found.
This weighting coefficients are calculated by consulting the first modal strain function, cf. Tzou
and Hollkamp [17],

ki =
Ma

i

Ma
1

=

∫ xi+1

xi
w′′

1(x)dx∫ x2

x1
w′′

1(x)dx
. (8)

The modal strain function is derived from the first eigenmodew1(x). In contrast to conventional
setups, the compressive load causes load dependent and consequently changing eigenfrequen-
cies, cf. Fig 4 for different eigenmodes due to compressive forceP , scaled with the Euler load
PE. Consequently, the influence on the buckling load of diverseshapes calculated on the ba-
sis of different first modes is studied. As in the previous setup, the output of one proportional
feedback algorithm, which is calculated from the tip deflection error, is used as feedback. The
maximum increase could be obtained by using a weighting function at a force ofP = 70 N,
which is close to the uncontrolled buckling mode. The calculated weighting factors ofp1,1 = 1,
p2,1 = 1.457, p3,1 = 1.457 andp4,1 = 1.004 could increase the buckling load to151 N, cf.
Fig. 5. Here, the first index denotes the patch group, beginning at the clamping and the second
index identifies the addressed mode. Again, the simulation results agree very well with the
experimental outcome.
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Figure 4. Influence of compressive force on the first eigenmode.

So far, the proposed approaches to enhance the critical loadcannot increase the buckling
load over the second critical loadP2 = 4P1. An explanation of this behavior can be that con-
trolling the tip of the beam corresponds to a beam with one side clamped and the other pinned.
The appropriate Euler load of such a configuration is determined byPE = π2EI/(0.699l)2
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Figure 5. Load-displacement curves including uniform and aweighted control strategy: a)
Experimental and b) simulation results.

instead ofPE = π2EI/l2 for the uncontrolled configuration. Hence, the new configuration ex-
hibits a2.05 higher buckling load, which is the same factor derived from the maximal increase
of using the active control. As the buckling mode of the controlled configuration changes, the
used control approach is not applicable any more. In order toovercome this buckling control
limit, a control approach has to be found, which can handle the changing mode shapes.

5.3 Modal control approach

To overcome the limitations of the previous approaches, a modal control approach is con-
sidered. The aim of modal control is to control each mode by one controller individually, cf.
Hanson and Snyder [18] and Inman [19]. The particular modes are obtained by an appropriate
transformation of the sensors and actuators. Consequently, each modal sensor information is
manipulated by its individual controller and applied to themodal actuators.

In the present approach, two displacement sensors are used in order to get the information
of a possibly occurring second mode. In typical setups, the sensors utilize symmetries and
modal nodes for filtering the proper modal information. As inour configuration, a quasi-static
behavior of an axially compressed cantilever is considered, there are no symmetries nor nodes
occurring. However, it is assumed that for small deformations of the beam, the sensors can be
located such, that a constant relation can be obtained for the measured deflection when the beam
is controlled, as long as only the first mode appears. Consequently, mainly a second mode will
be observed if the measurements are subtracted appropriately.

In our configuration, the same control loop as in the weightedconfiguration is used for
controlling the first mode. The second mode is identified by using a second deflection sensor,
which is applied in the middle of the beam. The constant relation of the two deflection mea-
surements is estimated by a factor of4.8. As for the first mode, the influence of different second
eigenmodes is studied in order to calculate an appropriate weighting function. The maximum
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experimental increase could be achieved by using the eigenmode shape atP = 80 N, with the
factorsp1,2 = 1, p2,2 = −0.841, p3,2 = −1.408 andp4,2 = −1.131. The influence of the modal
control approach with the proportional controllersg1 = −0.5 andg = −0.2 for the first and
second control loop, respectively, are shown in Fig. 6(a). The overall control amount in terms
of voltage applied at the piezoelectric patches are presented in Fig 6(b).
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Figure 6. Modal control approach compared to a) Experimental load-displacement curves,
b) control amount and c) displacement ratio of the sensors.

While the numerical simulation could shift the buckling load to the second critical loadP2,
only a buckling load of174 N could be achieved in the experimental setup. In this context,
the ratio of the displacement measurements of the two displacement sensors are regarded, see
Fig. 6(c). While the ratio is almost constant with a ratio of five for compressive loads smaller
thanP/PE = 0.6, the ratio changes for higher values. As this change increases the applied
control voltage to the patches, the experimental increase of the buckling load is limited by the
maximal voltage of±200 V. In case of the simulation, such a voltage limit is not introduced.
However, numerical and experimental results show a high variance. So far, no explanation for
this phenomena has been found.
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5.4 Control using strain gauges

Instead of using displacement sensors, also strain gauges can be used for measurement, cf.
Berlin [4] and Chase and Yim [5]. However, in the considered setup the used strain gauges are
inappropriate due to the signal-to-noise ratio, especially when two collocated strain gauges are
used in order to obtain the bending strain only. For the purpose of controlling the buckling load
of a beam, the feedback control has to be able to influence evenminimal deflections. For these
small deflections and consequently small strains, the noiseof the measurements is too high. In
order to derive appropriate measurements also for small strains, special strain gauges have to be
applied, e.g., MEMS-based strain gauges as used in Chase andYim [5].

6. CONCLUSIONS

In the present work, the influence of active feedback controlon the bucking bending load of a
beam subjected to a compressive load is investigated. For this purpose, a cantilever compressed
by a load through a fix point is considered. The feedback control loop consist of displacements
sensors, constant gain feedback approaches and12 discretely distributed piezoelectric patches
along each side of the beam. Three different control approaches, characterized by uniform
actuation, weighted actuation and weighted modal actuation, are investigated.

After describing the general experimental setup, an analytical formulation based on the
Bernoulli-Euler assumptions is presented. The formulation takes into account the influence
of the axial compressive force and the entire feedback control, including discretely distributed
piezoelectric actuators, discrete sensors and the proportional controller on the beam.

Subsequently, the experimental results using different control approaches are presented and
compared to a numerical model, which is implemented within the multibody and finite element
system code HOTINT. In a first approach, all piezoelectric patches are actuated in parallel –
mirror inverted on one side in order to gain a maximum bendingmoment – based on the sensor
information of the tip deflection, which is manipulated by one proportional controller. With
this configuration, the natural buckling load ofP1 = 73.5 N could be increased toP = 130 N.
The numerical results agree very well with the experimentalones. In a second approach, it
is aimed to compensate the entire deflections along the beam’s axis. Therefore, the actuation
of piezoelectric patches is weighted, following the theoryof shape control, according to their
position. Using again a displacement sensor at the tip and one proportional controller, the
buckling load could be enhanced by factor2.05 to P = 150 N. The numerical model showed
the same results. Finally, a modal control approach is studied, in order to control the second
eigenform. Hence, modal sensors and actuator are used. Due to the voltage limit, the increase
of the buckling load is restricted to a factor of2.37. Again, the numerical results agree very
well, but could achieve higher buckling loads by means of a larger voltage range.
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