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Summary: This paper aims to enhance the buckling load of beam-typetstres by active
control. For this purpose, a cantilever beam loaded by a casgive force is investigated
experimentally. The compressive force is introduced byldegavhich is fixed at the tip of
the beam and directed through the beam’s foundation. Thetstral displacements are mea-
sured by means of laser displacement sensors and strairegatl@r increasing the structural
stability, discrete piezoelectric patches are applied dotuation. Different kinds of constant
feedback control approaches are studied. The influence®bubkling and the active control
limits are demonstrated. The experimental and numericallte agree very well. Furthermore,
an analytical formulation based on the Bernoulli-Euler betheory is presented. As the system
represents a non-conservative system, a dynamic stadildiysis is performed.

1. INTRODUCTION

Due to their capability to withstand relatively large ax@dds, slender beam-type structures
are a common member in design, e.g., of light-weight strestuDepending on the load char-
acteristics, constraints and geometry, however, thereliffiexent ways such a structure may
lose stability, e.g., buckling beyond critical compresdiorces, cf. Timoshenko and Gere [1].
The loss of stability may even cause the structure to cadlapghe worst case.

In practice, high efforts are spent to avoid these stateastability and prevent buckling
from the beginning. Obvious approaches to enhance thdistatifia structure are methods to
increase its rigidity passively, e.g., by means of modiitcabf design, material, etc. Nowa-
days, these methods may not satisfy the challenging designi& of aerospace, automotive,
mechanical, civil and even medical engineering like volland weight restrictions or flexibil-
ity demands. Instead, it may be advantageous to increadeatiecapacity by active control
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strategies. As piezoelectric actuators have been proesddffiectiveness in many applications,
cf., Preumont [2], they are utilized in the present conthidiu

In the literature, only few contributions can be found, whaze concerned with experimen-
tal investigations on buckling control. Firstly, diffetgpiezoelectric material strips applied to
simply supported beams are actuated by means of feedbatiolconThompson and Lough-
lan [3]. As control error a displacement sensor is used. Aimam increase of a factor of
1.371 could be achieved. Berlin [4] studied simply supported beaagain. Here, the sensor
signals of five pairs of strain gauges are feed back to the saimder of piezoelectric patches
by a proportional-integral-derivative controller. By tng the controller manually for every
different load case, an increase of facias of the uncontrolled buckling load is reported. In
Chase and Yim [5] an optimal control algorithm based on a nigakstate-space model is de-
signed with eight pairs of piezoelectric patches, whichegmelied to a simply supported beam.
Buckling loads up to a factor af.9 are stated with the help of the control system. Analyti-
cal formulation, numerical simulations and experimenésluits are firstly presented in Zenz
and Humer [6]. In the experimental setup, twelve pairs ok@&ectric patches increase the
buckling load with the help of a displacement sensor and pgtmnal feedback controller. A
factor of2.05 is presented. Beside experimental studies, numericasiigations are the topic
of, e.g, Meressi and Paden [7], Fridmann and Abramovich (i8] Zenz and Humer [9]. All
aforementioned publications utilize the bending momentémtrolling the structural stability.
Normal forces are not applicable for increasing the bugkload, which could be clarified in
the work of Zehetner and Irschik [10].

The present work experimentally investigates the stgbddntrol of a slender cantilever
beam subjected to a compressive force. The compressive iiatroduced by tensioning a
cable, which is fixed at the free end of the beam and guidedigiirahe foundation of the
cantilever. In order to control the measured tip deflectdiacrete piezoelectric patches are
used for actuation. Different proportional feedback coingpproaches aim to enhance the
critical load at which buckling occurs.

The paper is structured as follows: In a first step, the ingattd experimental setup is
presented. Subsequently, the equations of motion of theidered setup are derived. The
consistent analytical formulation, which is based on theBelli-Euler assumptions, includes
discrete sensing and actuation as well as controller deBigmsecond step, a numerical model
is built up, which, again, includes the used sensors, amtsiand the control elements. Finally,
the experimental results are presented and compared taitherital ones. Different control
approaches, i.e. uniform control, discretely weightediaitbn based on the shape control ap-
proach and modal control, are studied in order to derive ammax increase of the buckling
load. The behaviour of real world structures, e.g., impeidas, sensor noise, discrete mea-
surements, etc. is emphasized.

2. INVESTIGATED SETUP

The setup under consideration consists of a cantilever bemted by a compressive force,
cf. Fig. 1. Unlike conventional problems, the compressored changes its orientation during
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buckling as it is imposed by tensioning a steel cable, whiaksps through a fixed point at
the beam’s root. On a substrate layer made of spring stéaljscrete piezoelectric patches
are applied on the top and bottom surfaces of the cantileyendans of an adhesive layer.
Using type DuraAct 15-A patches, the piezoelectric matésianclosed in an isolator cover.
The patches are electrically connected in four groups @etipiezoelectric patches each. The
distance between each active material in a groupdis3 m, between each group031 m and
between the clamping and the first patch99 m. Further geometric and material parameters
can be found in Table 1.

spring steel piezoelectric transducers
/ I 1 1 1 I 1AN§ 1_[ 1 I 1 l—4 I 1 [ 1
< - > —-—- —}\—-—\—-—7[.- —————— i —— —]
v strain gauges Il displacement sensors— l

(b)
Figure 1. Column with load through a fixed point, 24 piezoglegpatches, strain gauges and
two laser displacement sensors: a) schematic and b) exgetahsetup.

For measuring the deflection of the beam, two laser displanésensors are placed at the
middle and at the tip of the beam. Furthermore, four stramsses are applied between each
patch group at each side of the beam, starting next to thepatgmConventional strain gauges
of type Micro-measurements CEA-06-125WT-120 in half beisigode are used as sensors. The
half bridge mode avoids inaccurate measurements due teetewape drifts. In order to derive
the bending strain only, the sensor data of one strain gaugehtracted from the data of the
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beam (steel) PZT
lengthl,l, / m 1.02 0.05
width b, b, / m 0.04 0.03
thicknessh, h, / m 0.002 0.0007
Young's modulus?, E, / Nm—2 2.1 x 10" 6.5 x 10
densityp, p, / kgm 7900 7600
piezoelectric coefficienis; / ASN™! 0 —1.71 x 10710

Table 1. Geometric and material properties

collocated applied sensor. The applied compressive ferogeasured by a force sensor. The
measurements are processed and the controllers are impkaheithin a dSpace system. The
control output of the dSpace system is amplified by factdioofin order to exploit the voltage
range and consequently the deflection range of the piezdelpatches. To avoid irreversible
depolarization of the piezoelectric material, the outueslimited to+200 V.

3. ANALYTICAL CONSIDERATIONS

In this section, an analytical formulation for determinitige critical load of an initially
straight and slender beam compressed by a load through apoietlis presented. The for-
mulation includes discrete piezoelectric actuators,rdiscdisplacement sensors and feedback
control. For the formulation using strain sensors instdatigplacement sensors, see Zenz and
Humer [9].

In the following, it is assumed that the Bernoulli-Euler@asptions hold. Furthermore, the
longitudinal axis of the undeformed configuration coineigath z-axis of the fixed Cartesian
frame, cf. Fig. 1(a), and the deformations are assumed &gkice in thecz-plane only. The
critical loads can be determined by solving the eigenvatoblpm of the linearized problem.
Due to the feedback control, the considered setup repseaamin-conservative system, as the
externally imposed loads depend on the displacement fieldaiits derivatives. Consequently,

a dynamic criterion must be used to derive all states of lgglihose of divergent as well as
flutter instability, cf., Leipholz [11] and Timoshenko an@K [1] for more detalils.

The equation of motion for small deformations of a beam sabgkto an compressive force
reads:

82Mj . P82U)j . '82’(1]]'

0a” oz~ 1 o
wherew;(x,t) denotes the lateral deflectioy; (x, ¢) is the bending moment about theaxis,
andu; = p;A; the beam’s mass per unit length. In order to take into acabenthanging cross
section due to the discrete piezoelectric patches, the es@gmented such that the properties
of each sectiory of the n segments can be included. In the considered framework,hwhic
neglects shear deformation and shortening of the beam gadd®small deflections only, the

=0, (1)
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curvature can be approximated ki, t) ~ —9%w/0x*. Therefore, following relation between
bending moment and the beam’s curvature via the bendirfgestg can be found:
0*w;
ox?
The additional term\/(¢) respects the influence of the piezoelectric bending actuati the
beam. In the following, only a transverse component of teetek field€, is considered. This
electric field is considered to be constant over the pieztrédethickness layer., ; and pro-
portional to the applied voltagg (¢), which leads to the correlatiafy, = Fv;/h, ;. ASsuming
furthermore a perfectly bonded patch, with the plane of sgtnyrin thexry-plane and polarized
in z-direction, the equation of the actuation moment is deteechby

h/2+hyp, ;

M? =2 / Ep,jd?)l,jgszp,j dz ~ :FEp,jd?;l,jbp,j(h + hp,j)vja (3)

Mj(x,t) = —(EI); %50 4 M?. @)

J
h/2

In the above relatiod’, denotes Young’s modulus of the piezoelectric matetial, the piezo-
electric coefficient and, the electric field. The height of the substrate and width efglezo-
electric actuator are andb, ;. Inserting the constitutive relation (2) into the equatdmotion
(1) leads to the well-known fourth-order differential etjaa:
4 2

]aa . +P88U;J +Mj8 w
As the actuation momentd/{ remain constant over the length, it enters the boundary and
necessary continuity condition of the considered configomaonly.

Separating the above equation into the product of a spgtia) and a time-harmonic part
e™it due to its linearity, leads to a fourth-order ordinary diffetial equation, which can be
commonly solved by the help of an general solution of theiapptrt, cf., e.g., Zenz and
Humer [6].

Anyways, the general solution needs to be determined frarbtiundary conditions. At
the clamped end of the structure= 0 the rotation of the cross-section are prohibited kinemat-
ically. At the free endr = [, j = n, the bending moment must vanish while the shear force
Qn(l) = M/ (l) needs to satisfy the conditi@p, () = Pw/ (l) — Pw"(l , due to configuration of
a load through the fix point at the beam’s foundation, wheuram;g smaII deformations, see
Timoshenko and Gere [1]. In terms of deflectiof(), the boundary conditions read

r=0: w(0)=0, wi(0)=0,
M k2w, (1) (5)
I =0, w!(l)+ k2w () - 2" =0,
As a set ofr differential equations are considered, continuity cdodg for each segment= [;
are needed: / /
w;i(ly) = wipa(ly), wily) = wj, (),
M; = Mj, Qj = Qjt,

(EI)

— 0. (4)

r=10: wl(l)—

n

(6)
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wherel; denotes the distance from the clamped end in the straiglfigcoation up toj, with
consequently,, = [, the length of the entire cantilever. For segment withoezpelectric
material, the actuation moment is set to zero.

So far, the piezoelectric transducers are activated by sanaeof applied voltage. Here,
this voltage depends on some kind of measurement, whichngumated by a feedback control
algorithm. In this experimental setup, the deflectionis measured at the tipof the beam.
Using a proportional gain feedback control, the appliedagdv, of Eq. (3) is given as

gwy (1) )

v; ==+ ,
’ Ep,jd?»l,jbpvj(h + hpu')

whereg denotes the gain value of the proportional controller. Foraretails on the analytical
formulation and its validation, see Zenz and Humer [6].

4. NUMERICAL SIMULATIONS

In this section, the finite element model is briefly presergted the characteristics of the
uncontrolled numerical simulation are compared to the expmtal ones. The mechanical,
sensory, actuatorical as well as control parts of the seipglemented within the framework
of the multibody and finite system code HOTINT [12]. Withingiramework, a planar beam
finite element based on the absolute coordinate formuldAdICF) is used for modelling the
smart beams, cf. Gerstmayr and Irschik [13] for details @fémmulation.

The numerical model is set up according to Fig. 1(a). Baseal @onvergence study, show-
ing a convergence rate of(@/,), a number of..,, = 25 elements, each element with its adequate
material parameters, is already sufficient to compute theiea accurately. During simulation,
the axial compressive force is increased gradually frofhN up to a maximum of000 N. In
order to avoid instable equilibrium paths, a small latecaté is introduced at the tip of the
beam.

Before investigating the controlled configurations, theuasacy of the numerical setup is
validated by the experimental results of the uncontrolletts. For this purpose the eigenfre-
quencies, transfer function, deflection of the beam foranerdctuations and natural buckling
load are compared. The results agree very well, see Fig. théocomparison of the transfer
functions, even though the numerical model does not indbdadhesive layer, weight of the
electric wiring for actuation and measurements and theiéimadf the cable for the compressive
force at the tip of the beam. The buckling load of the numénoadel with72.9 N deviates
from the experimental setup witf8.5 N by a factor of only0.8%. Also the comparisons of
different voltage levels applied to the piezoelectric patcagreed with a maximum achievable
deflection of+7 mm.

5. RESULTS

In this section, the experimental results are presentectamgpared to the numerical ones.
For evaluating the influence of the active feedback confrpt@ach, the load-deflection curves
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Figure 2. Comparison of experimental and numerical results

with the applied compressive load and the tip deflection efdbntrolled case are compared
to the natural buckling load of the setup. While an analyscdution determines the buckling
load by a single bifurcation point, the load-deflection @uof experimental and numerical in-
vestigations are changing gradually, due to imperfecti@unsequently, a condition is defined
in order to determine the bucking load. For the numerical @mdhe point with the maximal
curvature on the load-deflection curve determines the ugkbad. Similar to the numerical
model with a small lateral force, experimental setups aghty bent in the unloaded configu-
ration due to several imperfections and have thereforedopneant deflection direction. When
gradually loading the beam with a compressive force, théigoration exhibits a natural equi-
librium path before the critical load and the same naturalelsas a secondary complementary
equilibrium path, cf., Singer [14]. This secondary pathn$/accessed, if the buckled beam is
manually deflected in the opposite predominant directionthé following, the buckling load
of the experimental setup is defined as the force at which ¢laenbpersists on the secondary
equilibrium path. Any decrease of the compressive forceldvoansequently lead to a swing
back to the natural path. All following results are obtairmddifferent proportional control
approaches using the same preceding experimental setdjgcl.

Besides increasing the stability limit of a structure, fesck control can also cause a de-
crease of the maximum bearable buckling load. Such a decadabe buckling load can be
obtained by positive feedback control and may be advantegggw, e.g., applications, which
require both, flexible and stiff states of a structure. Infdil®wing, however, only the enhance-
ment of the buckling load by negative feedback — denoted methative gain values — will be
presented.
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5.1 Uniform control approach

In a first approach, the same output of one proportional obetr is applied reversely to
all piezoelectric patches on both sides. The controlletagd is calculated from the error of
the displacement sensor of the beam’s tip to the non-deflextefiguration. The influence of
different gain values can be found in Fig. 3. By playing witle gain values, a maximum in-
crease up td30 N could be achieved for a gain value at approximateks —0.318. Further
increase of the gain value does not increase the bucklirgboaresults to states of a flutter
behavior around30 N. Such flutter behavior may occur in non-conservative sgsten con-
trast to divergent instability, where the stability lim#& determined by a frequency becoming
zero for a certain compressive force, i.e., the bucklingl Jdktter instability is characterized
by two frequencies coinciding exactly at a certain compvedsrce intensity. At this buckling
load, the frequency has a double root, which would changedonaplex solution for higher
compressive load intensities and therefore to increassodlations. The investigations on the
stability of the control system could confirm the observagioFurthermore, the numerical sim-
ulations show the same results with comparable load-dispt@nt curves, cf. Fig. 3(b). The
smaller deformation can be attributed to the neglected aoadty unknown imperfections of
the experimental setup.
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Figure 3. Load-displacement curves of uniform control apph: a) Experimental and b) sim-
ulation results for different gain valugs

5.2 Weighted control approach

In a second approach, it is aimed to nullify not only the tifietdion as in the previous sec-
tion, but to compensate the deformation along the entire aixthe beam. With the approach
of shape control, cf. Irschik [15], a compensation of flegibibrations can be achieved by
applying spatially distributed piezoelectric eigenstsai Following the considerations of Hu-
ber [16] for discretely distributed piezoelectric patchesrresponding weighting coefficients
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for discretely applying the voltage to the four groups of prezoelectric patches can be found.
This weighting coefficients are calculated by consultiregfttst modal strain function, cf. Tzou
and Hollkamp [17],

Mz'a faii+l wi’(x)dm
My [P (a)de
The modal strain function is derived from the first eigenmasder). In contrast to conventional
setups, the compressive load causes load dependent aratjuently changing eigenfrequen-
cies, cf. Fig 4 for different eigenmodes due to compressivestP, scaled with the Euler load
Pg. Consequently, the influence on the buckling load of diversgpes calculated on the ba-
sis of different first modes is studied. As in the previousigethe output of one proportional
feedback algorithm, which is calculated from the tip deftecerror, is used as feedback. The
maximum increase could be obtained by using a weightingtiomat a force ofP = 70 N,
which is close to the uncontrolled buckling mode. The caitad weighting factors of, ; = 1,
pa1 = 1.457, p3; = 1.457 andp,; = 1.004 could increase the buckling load 161 N, cf.
Fig. 5. Here, the first index denotes the patch group, beggai the clamping and the second
index identifies the addressed mode. Again, the simulagsnlts agree very well with the
experimental outcome.

ki
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Figure 4. Influence of compressive force on the first eigeranod

So far, the proposed approaches to enhance the criticalclaabt increase the buckling
load over the second critical lodé, = 4P;. An explanation of this behavior can be that con-
trolling the tip of the beam corresponds to a beam with one sidmped and the other pinned.
The appropriate Euler load of such a configuration is detegthiby Pr = 72FE1/(0.6997)>
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instead of Py = w2 E1/1? for the uncontrolled configuration. Hence, the new confitioneex-
hibits a2.05 higher buckling load, which is the same factor derived frtwa maximal increase
of using the active control. As the buckling mode of the colfed configuration changes, the
used control approach is not applicable any more. In ordewéocome this buckling control
limit, a control approach has to be found, which can handéecttanging mode shapes.

5.3 Modal control approach

To overcome the limitations of the previous approaches, daincontrol approach is con-
sidered. The aim of modal control is to control each mode kg @ntroller individually, cf.
Hanson and Snyder [18] and Inman [19]. The particular modesltained by an appropriate
transformation of the sensors and actuators. Consequeatth modal sensor information is
manipulated by its individual controller and applied to thedal actuators.

In the present approach, two displacement sensors aremseddr to get the information
of a possibly occurring second mode. In typical setups, #resars utilize symmetries and
modal nodes for filtering the proper modal information. A®ur configuration, a quasi-static
behavior of an axially compressed cantilever is considdtezie are no symmetries nor nodes
occurring. However, it is assumed that for small deformregtiof the beam, the sensors can be
located such, that a constant relation can be obtaineddonttasured deflection when the beam
is controlled, as long as only the first mode appears. Corsglyumainly a second mode will
be observed if the measurements are subtracted apprdpriate

In our configuration, the same control loop as in the weigltedfiguration is used for
controlling the first mode. The second mode is identified bggia second deflection sensor,
which is applied in the middle of the beam. The constantimradf the two deflection mea-
surements is estimated by a factordf. As for the first mode, the influence of different second
eigenmodes is studied in order to calculate an appropriatghting function. The maximum

10



Georg Zenz, Alexander Humer

experimental increase could be achieved by using the eigdarshape aP = 80 N, with the
factorsp; o = 1, pa o = —0.841, p3» = —1.408 andp4» = —1.131. The influence of the modal
control approach with the proportional controllegss= —0.5 andg = —0.2 for the first and
second control loop, respectively, are shown in Fig. 6(de dverall control amount in terms
of voltage applied at the piezoelectric patches are predantFig 6(b).
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Figure 6. Modal control approach compared to a) Experinidotal-displacement curves,
b) control amount and c) displacement ratio of the sensors.

While the numerical simulation could shift the buckling dio@ the second critical loagh,
only a buckling load ofl74 N could be achieved in the experimental setup. In this cantex
the ratio of the displacement measurements of the two dispiant sensors are regarded, see
Fig. 6(c). While the ratio is almost constant with a ratio @kffor compressive loads smaller
than P/Pr = 0.6, the ratio changes for higher values. As this change inesets applied
control voltage to the patches, the experimental increasieedouckling load is limited by the
maximal voltage o200 V. In case of the simulation, such a voltage limit is not ialwoed.
However, numerical and experimental results show a higianee. So far, no explanation for
this phenomena has been found.

11
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5.4 Control using strain gauges

Instead of using displacement sensors, also strain gaagesecused for measurement, cf.
Berlin [4] and Chase and Yim [5]. However, in the consideretlip the used strain gauges are
inappropriate due to the signal-to-noise ratio, espsciaien two collocated strain gauges are
used in order to obtain the bending strain only. For the psgmd controlling the buckling load
of a beam, the feedback control has to be able to influencerair@mal deflections. For these
small deflections and consequently small strains, the rofifee measurements is too high. In
order to derive appropriate measurements also for smalhstrspecial strain gauges have to be
applied, e.g., MEMS-based strain gauges as used in Chasérarjg].

6. CONCLUSIONS

In the present work, the influence of active feedback cooinahe bucking bending load of a
beam subjected to a compressive load is investigated. Bgpiinpose, a cantilever compressed
by a load through a fix point is considered. The feedback oblttop consist of displacements
sensors, constant gain feedback approached 2addscretely distributed piezoelectric patches
along each side of the beam. Three different control appesmccharacterized by uniform
actuation, weighted actuation and weighted modal actoasice investigated.

After describing the general experimental setup, an aicalyformulation based on the
Bernoulli-Euler assumptions is presented. The formutatakes into account the influence
of the axial compressive force and the entire feedback ebhmticluding discretely distributed
piezoelectric actuators, discrete sensors and the propaltontroller on the beam.

Subsequently, the experimental results using differentrobapproaches are presented and
compared to a numerical model, which is implemented witherhultibody and finite element
system code HOTINT. In a first approach, all piezoelectricipas are actuated in parallel —
mirror inverted on one side in order to gain a maximum benduognent — based on the sensor
information of the tip deflection, which is manipulated byeogproportional controller. With
this configuration, the natural buckling load Bf = 73.5 N could be increased t& = 130 N.
The numerical results agree very well with the experimeatas. In a second approach, it
is aimed to compensate the entire deflections along the Bemas. Therefore, the actuation
of piezoelectric patches is weighted, following the theofyghape control, according to their
position. Using again a displacement sensor at the tip aedpooportional controller, the
buckling load could be enhanced by facfob5 to P = 150 N. The numerical model showed
the same results. Finally, a modal control approach is setlydn order to control the second
eigenform. Hence, modal sensors and actuator are used.oe Yoltage limit, the increase
of the buckling load is restricted to a factor 287. Again, the numerical results agree very
well, but could achieve higher buckling loads by means ofgdavoltage range.

12
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