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Summary: A smart structure is a structure that can reduce the structural vibration by in-
tegration of sensor(s), actuator(s), and controller(s). The sensor detects the vibration of the
beam and transfers the signal to the controller. Then the controller computes the desired con-
trol signal and sends it to the actuator. The controller is designed to compensate the beam’s
vibration. A piezoelectric patch is often used as a sensor or an actuator in a smart structure, as
in this research project. A smart structure with a properly designed controller can reduce the
structural vibration without changing the structure’s physical dimensions. As a smart structure
has more components in comparison to a passive structure, it can contain more uncertainties.
Therefore, it should be well analyzed to ensure its reliability and robustness. Sensitivity analysis
is a method that can describe the system’s behavior quantitatively. This paper explains how to
build a numerical model of a smart beam structure and how to design the control concepts for it
with regard to the sensitivity analysis of this system. To carry out the sensitivity analysis the pa-
rameters of the smart structure will be varied in a small deviation and thousands of variations
can be simulated. The difficulties arise from the definitions of the parameters of the controller
to meet the requirements of thousands of variations.

1. INTRODUCTION

Nowadays lightweight materials are widely used in many machines in order to reduce the
costs of production and power consumption. But this leads to a new problem: Under the same
excitation, the structure made of the lightweight materials undergoes stronger vibrations than a
structure made of conventional materials. A smart structure can solve this problem [1]. Through
the integration of sensor(s) and actuator(s) with a properly designed control strategy, a smart
structure can reduce the vibration of the lightweight structure. As a smart structure has more
components, it contains more uncertainties in comparison to the passive structure. Therefore,
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a smart structure should be well analyzed to ensure its reliability and robustness. Sensitivity
analysis is a method to quantitatively describe the relationship between the inputs and outputs of
a structure [2]. One of the sensitivity analysis methods is the stochastic analysis of a numerical
model, which predicts the structure’s behavior by analysis of the simulation’s results under
thousands of random structural input parameters [2].

This paper uses a beam structure as a reference system to clarify how to design the control
concepts for it with regard to the system’s sensitivity analysis. The smart beam structure with
its designed geometric and material’s parameters is used as the reference in this project. During
the sensitivity analysis the geometric and material’s parameters are slightly varied according
to their predefined variation. This means the control concept should be robust not only for the
referenced beam structure but also for the beam structure with small variations.

The numerical model of a smart beam structure has at least two parts, one is the finite
element (FE) model of the structure, and the other is its control strategy. Karagülle et al. [3]
explained a way to build the numerical model of a smart beam structure including the control
system by only use of the software ANSYS. The displacement of the beam’s end in the time
domain can indicate the performance of the control system under the instantaneous excitation.
But this way is inconvenient for a frequency response analysis, which can directly give an
impression of the vibration behavior of the beam in a wide frequency range. On the other hand,
MATLAB is widely used for the design of a control strategy [4, 5]. But the sizes of the FE
model matrices are too big, which makes the design of a control strategy almost impossible.
Rudnyi and Korvink [6] point out that a model order reduction can solve these problems. It
reduces the size of the structural matrices, which can be extracted from an FE model without
carrying out a harmonic simulation. The reduced matrices can be used in the control system.
Having this knowledge, the path used in this paper to build the numerical model of the smart
beam structure is shown in Figure 1.

Figure 1. The process chain of the numerical model building.

There are many different kinds of control concepts that can be used to reduce the beam
structure’s vibration. Lead control (LC) is one of the popular active damping controllers, which
can be used to compensate the beam structure’s vibration [7]. The Linear Quadratic Regulator
(LQR) and its extension, the Linear Quadratic Gaussian regulator (LQG), are very often dis-
cussed [8, 9] as a controller for a smart beam structure. Therefore, LC and LQR are chosen in
this project for further analysis.

Chapter 2 introduces the smart beam structure and shows the way to build its FE model in
the reduced state-space form. Chapter 3 focuses on the design process of the potential control
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concepts for the reference smart beam structure. Their performances are compared in Chapter 4
according to various criteria. The robustness of these control concepts is checked by varying
some structural parameters of the smart beam structure according to a factorial experiment
design, and the results are discussed in Chapter 5.

2. THE SMART BEAM STRUCTURE

A smart beam structure consists of a beam structure, at least a sensor, an actuator, and an
appropriate control strategy (Figure 2). The smart beam structure used in this project is an
aluminum beam, whose one side is clamped and whose other side is free. This beam is assumed
to be an Euler-Bernoulli beam, therefore, its deformation is based on the basic equation of
structural dynamics [10]. A vertical dynamic force at the free end of the beam acts as an
excitation for the beam structure. Piezoelectric ceramic patches are widely used as sensor or
actuator in a smart structure [3, 4, 11]. PIC 151, which is a type of the piezoelectric ceramic
with a high permittivity, a high coupling factor, and a high piezoelectric charge constant, is
chosen for this smart structure [12]. These two piezoelectric patches are collocated at the top
and the bottom of the beam and act separately as actuator and sensor. The sensor detects the
vibration of the beam and transfers the signal to the controller. Then the controller computes
the desired control signal and sends it to the actuator. The controller is designed to compensate
the beam’s vibration. The dimensional and material data of the reference smart beam structure
are listed in detail in Table 1.

Figure 2. The smart beam structure.
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beam actuator sensor
length L in mm 200 50 10
width W in mm 40 30 10

thickness T in mm 3 1 1
position SA in mm 10
position SS in mm 30
density ρ (kg/m3) 2700 7800 7800

Young’s modulus E (N/m2) 7 · 1010

Table 1. The dimensional and material’s data of the reference smart beam structure.

2.1 Finite element model

In this project, the FE model of the smart beam structure is built by use of the software
package ANSYS Workbench.

First the mechanic structure of the aluminum beam and the two piezoelectric patches is built
in ANSYS. The type of contacts between the piezoelectric patches and the beam is defined as
ideally bonded [13]. The element type for the beam is SOLID186, which is a three-dimensional
structural SOLID element. SOLID226, which is an element type for coupled field components,
is chosen for the piezoelectric patches [14]. Some pretests aimed to find out a proper size of the
elements are done. By comparing the simulation results of the beam structures, which the size
of the elements are set separately to be 0.002 m and 0.004 m, there are no differences.

Therefore, the size of the elements is determined to be 0.004 m. The structural damping is
defined according to the Rayleigh damping, which is a mass- and stiffness-proportional damp-
ing

∆ = αM + βK , (1)

where ∆ is the approximated structural damping, M is the structural mass matrix, K is the
structural stiffness matrix, α is the mass-proportional damping coefficient, and β is the stiffness-
proportional damping coefficient [15]. According to the ANSYS Help system[15], the mass
damping α represents the friction damping and can be ignored in most situations. Therefore, in
this case the mass damping is defined as α = 0. In an experimental simulation it is measured
that the whole structural damping ratio is about 5%. Then the corresponding stiffness value is
defined as β = 10−5.

After building the numerical model, the structural matrices M (the structural mass matrix),
K (the structural stiffness matrix), B (the input matrix), and C (the output matrix) can be ex-
tracted to describe the dynamic behavior of the whole structure in form of differential equations
[15].
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2.2 Model order reduction

This FE model aims at the system’s sensitivity analysis. According to the analysis’ re-
quirement it should be able to be built and simulated with more than thousands of small varied
structural parameters’ combination. Therefore, the duration of the model building and simula-
tion should be short. Moreover, the size of the structural matrices should also be small for the
control design. A good solution to meet both requirements is MOR. For this project, MOR for
ANSYS [6] based on the Krylov subspace method is chosen. The difficulty of MOR lies in the
definition of expansion points to overcome the singularity of the reduced matrices. According
to the results of some pretests two expansion points are defined at (−10,−105). The expanded
dimension at each point can be purposely defined. In this case 6 dimensions are expanded at
each point.

Then the reduced structural system can be described by

Mrq̈ + ∆rq̇ + Krq = Bru
y = Crq ,

(2)

where Mr, ∆r, Kr, Br, Cr are the reduced matrices of M, ∆, K, B, and C, respectively [6], q is
the state vector, u is the input vector, and y is the output vector. For this smart beam structure,
the input vector u is composed of the force at the beam’s end u1 and the actuator’s voltage u2.
The output vector y includes the displacement of the beam’s end y1 and the sensor’s voltage y2.
The vibration behavior of the beam structure based on the reduced matrices is checked by
comparing it with that of the non-reduced matrices. The two curves in Figure 3 show that they
are in excellent agreement.

Figure 3. The displacement of the reference smart beam structure.

5



S. Li, S. Ochs, T. Melz

The differential equation can also be transformed to the state-space form

ẋ = Assx + Bssu
y = Cssx + Dssu ,

(3)

with the state vector x =

[
q
q̇

]
, the input vector u =

[
u1
u2

]
, the output vector y =

[
y1
y2

]
, the

state matrix Ass =

[
0 I

−M−1
r Kr −M−1

r ∆r

]
, the input matrix Bss =

[
0

Br

]
, the output matrix

Css =
[
Cr 0

]
, and the feedthrough matrix Dss = 0. The smart beam structure’s control plant

in state-space form is shown in Figure 4. The whole system is a multiple input and multiple
output (MIMO) system.

Figure 4. The smart beam structure’s control plant in state-space form.

3. CONTROL CONCEPTS

Control concepts can be arranged in two groups. The first group consists of model-based
controllers including the LQR. The control plant of the structure should be known before design-
ing of the model-based controllers. The other group consists of non-model-based controllers,
e.g., LC, which require little information about the structure but only the natural frequency [1].
The designing process of these two controllers and their technical parameters especially for the
smart beam structure to reduce its vibration are explained in this chapter.
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3.1 Linear Quadratic Regulator

An LQR can be designed based on the state-space model according to the principle of the
state feedback (Figure 5).

Figure 5. Block diagram of the LQR applied to the smart beam structure.

As an optimal control LQR seeks a linear state feedback with constant gain

u = −Gx (4)

to ensure the following quadratic cost function J is minimized

J =

∫
(xTQx + uTRu)dt , (5)

with suitably chosen matrices Q and R. The rule to choose Q and R is: Q must be positive semi-
definite, while it implies that some of the states may be irrelevant for the design of the controller,
meanwhile R must be positive definite as it expresses that any control has a cost. With suitable
chosen matrices Q and R, the matrix S in the Riccati equation (6) can be calculated, and that
means the optimal G in the LQR is also found out according to Equation (7)

AT
ssS + SA − (SBss)R−1(BT

ssS) + Q = 0 (6)

G = R−1BT
ssS . (7)

The structure matrices Ass and Bss are exported from ANSYS via MOR for ANSYS. As the
smart beam structure has two inputs, the force at the beam’s end u1 and the actuator’s voltage
u2, so the matrix Bss is a matrix with two columns. According to the block diagram (Figure 5)
this controller computes the desired control signal according to the sensor’s signal. Hence, only
the second input, which means not the whole matrix of Bss but just the second column of the
matrix Bss, is needed for the controller’s design in Equations (6) and (7). As the actual output of
the system is used as the control variable, Q is defined as Q = CT

r Cr. By carefully testing it is
found out that by choosing R = 104 the reference smart beam’s vibration can be compensated
better than with other settings.
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3.2 Lead Control

As already mentioned, the LC belongs to the non-model-based control concepts. A structure
with a collocated, dual actuator/sensor pair can be actively damped with an LC [1]

H(s) = g
s+ z

s+ p
(8)

with p� z.
Figure 6 shows the block diagramm of the LC. This controller produces a phase lead in the

frequency band between the zero z and the pole p with an amplification g. As the result, all the
modes z < wi < p are actively damped. Therefore, the pole p must be set to be bigger than the
zero z.

Figure 6. Block diagram of the LC applied to the smart beam structure.

The MATLAB Simulink Control Design Toolbox is used in the project to find out the optimal
setting of the parameters g, z, and p. By the trial moving the pole or the zero position in the
toolbox, it is found out that, when g = 3.85, z = 6, and p = 19664, the vibration at the beam’s
end is optimally compensated.

4. COMPARISON FOR THE REFERENCE SMARTN BEAM STRUCTURE

In this chapter the performances of these two controllers for the reference smart beam struc-
ture are compared in the frequency domain according to the Bode-diagram and also in the time
domain by checking its step response.

4.1 Bode diagram amplitude gain

The Bode diagram’s magnitude plot expresses the amplitude gain, which in this project is the
displacement of the beam’s end in meters. The frequency response of the smart structure with
and without the controller is illustrated in the same Bode diagram (Figure 7). By comparing
the two lines it can be directly determined, if the controller can compensate the vibration at
the beam’s end. From Figure 7 it can be observed that no matter with which controller, the
first peak of the solid line is always sharper than the peak of the dashed line. That means both
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controllers perform well and the vibration of the beam’s end at the first resonance frequency
can be compensated.

(a) LQR. (b) LC.

Figure 7. Bode diagram of the reference smart beam structure.

Two criteria are used in this project to compare the performances of the two controllers. The
first criterion is the vibration reduction percentage at the first resonance frequency

∆y1,1 =
(y1,1,no − y1,1,c)

y1,1,no
× 100% , (9)

where y1,1,no is the displacement of the beam’s end (y1) at the first resonance frequency f1
without a controller, and y1,1,c is the displacement of the beam’s end (y1) at the first resonance
frequency f1 with a controller (see also Figure 7(a)). The second criterion is the offset of the
first resonance frequency ∆f1 (see also Figure 7(b)).

The smart beam structure with LQR can reduce 92.3% of the vibration (corresponding to
22.3 dB) at the first resonance frequency f1. This vibration reduction percentage is 96.7%
(corresponding to 29.7 dB) when the structure is connected with the LC. But the vibrations at the
second f2 and the third resonance frequencies f3 are almost the same as those without controller.
LC as an active damping controller that can change the structural vibration’s behavior. In this
case, the first resonance frequency f1 of the reference smart beam structure with LC is shifted
by ∆f1 = 5.3 Hz.

4.2 Step response

The step response of the smart beam structure with various controllers is checked to ensure
if the smart structure is stable under a step force at the beam’s end u1 = 1 N (Figure 4). The
settling time ts and the response’s final value Ms of these two controllers are compared. The
settling time ts presents the duration until the system is stable. The response’s final value Ms
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indicates the accuracy of the controller. The step response of the reference smart beam structure
with both controllers is illustrated in Figure 8.

(a) LQR. (b) LC.

Figure 8. Step response of the reference smart beam structure.

From Figure 8 it can be determined that both controllers lead to a stable state. By comparing
the settling time ts of both controllers it can be found that the LC compensates the vibration
faster than the LQR. The structure with LC needs only 0.11 s to settle the vibration in the range
of ±10% of the final value Ms. But the structure with LQR needs 0.20 s, almost twice as long
as the structure with LC. The response’s final values Ms of both structures are almost identical.

All the compared data are listed in Table 2. The ∆f1 describes the offset of the first reso-
nance frequency, but it is not a critical point to judge the controllers. Therefore, by the following
robustness analysis of the controllers only the other three criteria are used to compare the per-
formance of the two controllers.

LQR LC
∆y1,1 in % 92.3 96.7
∆f1 in Hz 0.4 5.3
ts in s 0.20 0.11

Ms in mm −0.30 −0.30

Table 2. Comparison of the controllers according to the criteria.

5. THE CONTROLLERS’ ROBUSTNESS ANALYSIS

As the design of the control concepts is regarding to a stochastic simulation for sensitivity
analysis of the smart beam structure, the robustness of the control concepts must be checked to
ensure that the controller does not only work for the reference structure but also for the struc-
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tures with small parameter variations. The robustness analysis is done according to a factorial
experiment design.

5.1 The factorial experiment

In a stochastic simulation the geometric or material’s parameters of the smart beam struc-
ture are randomly varied in a predetermined range. It is not feasible to check if the controller
is working properly for all these varied structures. Instead of checking for every simulation
combination in a stochastic simulation a statistic simulation is carried out by combining the
minimum (−), the midpoint (0), and the maximum (+) of each varied parameter. But if all
the geometric or material’s parameters of the smart beam structure are varied, the simulation
combinations are still too many to carry out. Han [16] did a sensitivity analysis of a very sim-
ilar smart beam structure based on its analytical model. According to his sensitivity analysis
result, the beam’s length LB, the beam’s thickness TB, and the actuator’s position SA have more
influence on the beam’s vibration than the other parameters. Hence, these three parameters are
chosen as the designed factors to check the controllers’ robustness and the other parameters are
held constant as for the reference smart beam structure (Table 1). Table 3 shows the design
factors’ three varied levels. Therefore, 33 = 27 simulation combinations (SC) are simulated in
this experiment (Table 4).

(−) (0) (+)
LB in m 0.1950 0.2000 0.2050
TB in m 0.0025 0.0030 0.0035
SA in m 0.0080 0.0100 0.0120

Table 3. The design factors’ values at each level.

SC LB TB SA SC LB TB SA SC LB TB SA

1 (−) (−) (−) 10 (−) (−) (0) 19 (−) (−) (+)
2 (0) (−) (−) 11 (0) (−) (0) 20 (0) (−) (+)
3 (+) (−) (−) 12 (+) (−) (0) 21 (+) (−) (+)
4 (−) (0) (−) 13 (−) (0) (0) 22 (−) (0) (+)
5 (0) (0) (−) 14 (0) (0) (0) 23 (0) (0) (+)
6 (+) (0) (−) 15 (+) (0) (0) 24 (+) (0) (+)
7 (−) (+) (−) 16 (−) (+) (0) 25 (−) (+) (+)
8 (0) (+) (−) 17 (0) (+) (0) 26 (0) (+) (+)
9 (+) (+) (−) 18 (+) (+) (0) 27 (+) (+) (+)

Table 4. The level of each parameter of the 27 simulation combinations (SC).
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5.2 Results and discussion

According to the full factorial experiments’ plan in Table 4, 27 smart beam structures are
simulated. Each structure is successively connected with the two controllers without changing
the controllers’ parameters. The influences of the three beam’s parameters and the controllers
are compared in this subsection according to the three criteria ∆y1,1, ts, and Ms.

From Table 4 it can be found that there are 9 SCs (SC 1, 4, 7, 10, 13, 16, 19, 22, and 25) that
are set at the low level of LB. Then the average influence of LB at the low level on the criterion
∆y1,1 is the average of the ∆y1,1 of these 9 SCs. Similarly the average of the influence of the
other parameters TB and SA at other levels can be calculated. The results are plotted in Figure 9.
It shows the varying tendencies of the criterion ∆y1,1 by changing the levels of parameter LB.

(a) LQR (b) LC

Figure 9. The average of vibration reduction percentage ∆y1,1 at the first resonance frequency
f1 on different levels of LB, TB, SA.

From Figure 9 it can be observed that the varying tendencies of the criterion ∆y1,1 are not
linear. The minimum of the average of the criterion ∆y1,1 on each level of each parameter with
both controllers is still larger than 87%, which means that both controllers can compensate the
beam’s vibration very well for all the SCs (Table 4). But comparing Figures 9(a) and 9(b) shows
that the LC controller has a greater compensatory effect with a smaller variance than the LQR
controller.

In a similar way the average of the other two criteria, ts and Ms, of the SCs, which the three
beam’s parameters at each level is calculated and plotted in Figures 10 and 11.
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(a) LQR (b) LC

Figure 10. The average of the step response time ts on different levels of LB, TB, SA.

(a) LQR (b) LC

Figure 11. The average of the step response final value Ms on different levels of LB, TB, SA.

By comparing the results of the criteria ts and Ms (Figures 10 and 11) it can be found that
the position of the actuator SA has more influence than the beam’s length LB or the beam’s
thickness TB on the settling time of the step response ts and the step response’s final value Ms.
The varying tendencies of ts and Ms by changing the LB and TB are the same: The values of
ts and Ms are enlarged when the LB or TB are varied from the low level to the high level. In
contrast, the values of ts and Ms are diminished when the SA is varied from the low level to
the high level. In general no matter on which level, no matter which controller is used, the
maximum of the ts is smaller than 0.27 s and the maximum of the Ms is smaller than 0.56
mm, which means both controllers are stable and robust in this variation range. However, by
detailed comparison between Figures 10(a) and 10(b) it can be confirmed that the LC controller
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answers the step excitation faster than the LQR controller. It needs about half the time the LQR
controller needs.

Based on the numerical simulations’ results of these 27 simulation points it can be concluded
that the LC controller with higher compensation speed and better compensation ability is better
than the LQR controller .

6. SUMMARY

This paper explains the numerical model building process of a smart beam structure. Based
on the smart beam structure, two different controllers are designed in order to reduce the beam’s
vibration. The performances of both controllers are compared in the frequency domain accord-
ing to the Bode diagram and also in the time domain by checking the step response. By the
comparison of these two controllers for the reference smart beam structure it is found out that
the LC with higher compensation speed and better compensation’s ability is better than the
LQR. As the controller’s design aims for the sensitivity analysis of the smart structure, the
controller should be robust when the structure is slightly varied. A numerical experiment is
done to check the robustness of these two controllers by varying three parameters of the beam’s
structure in three levels and it is found out that both controllers are robust. By comparing the
three criteria ∆y1,1, ts, and Ms it is found out that the LC controller has a greater compensatory
effect with a smaller variance than the LQR controller. Moreover, all the results discussed in
this paper are numerical simulation results and they should be validated in experimental simu-
lations. The LQR controller is designed based on a complete state’s feedback. But the complete
state vector cannot be measured in the experimental simulation. Therefore, by using the LQR
controller in the experimental simulation an observer is needed to estimate the complete state
vector. In conclusion, the LC controller performs better for the smart beam structure and it is
recommended to be used for the following sensitivity analysis of the smart structure.
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