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Summary:  A method for the efficient experimental validation of stochastic sensitivity analyses 

is proposed and tested using a smart system for vibration reduction. Stochastic analyses are 

needed to assess the reliability and robustness of smart systems. A model-based design of 

experiments allows the alignment of an experimental design with the results of a previous 

numerical sensitivity analysis. An exemplary system of structural dynamics is used to test the 

method. The case of active suppression of disturbing vibrations of a cantilever beam through 

active piezoelectric elements is considered. The observed target variables are the level of 

vibration reduction at the beam’s end and the location of the fundamental frequency under five 

uncertain system variables. Based on a numerical model of the piezoelectric beam a variance-

based sensitivity analysis is performed to determine each variable’s impact on the target 

variables. Ensuing from these numerical results, a model-based experimental design is 

established and the experiments are conducted. In comparison to a fully five-factor factorial 

experimental design the model-based approach reduced the experimental effort by 50%, 

without great loss of information.   
 

 

1 INTRODUCTION 

Looking for new promising approaches for solving technical problems, e.g., in the field of 

vibration reduction, the development of smart systems is becoming more prominent. A smart 

structure system is characterized by a structure-compliant integration of actuators and sensors 

on the basis of multi-functional materials such as piezoceramics. The resulting interactions 

between structural components, sensors, actuators, and control hinder the analysis of the 

system reliability. In order to factor in such interactions, statistical variation of the system 

variables needs to be considered in a numerical simulation. In Chapter 2, the proceedings of a 

variance-based sensitivity analysis are presented and performed on a smart beam structure. 

Variance-based sensitivity analyses serve as an example for such a numerical simulation. 

 

  

 



S. Ochs, S. Li, C. Adams, T.  Melz 

2 

 

In Chapter 3 a method for the experimental validation of the numerical results is presented. 

The methods of Design of Experiments (DoE) [1] can be used. But a quantitative experimental 

validation of the numerical results is difficult due to the random-based selection of simulation 

combinations in the stochastic analysis. Only a small amount of simulation combinations can 

be checked experimentally. Thus, the interactions also need to be confirmed with only a few 

simulation combinations. In contrast to the non-optimal experimental design, the model-based 

experimental design can be adapted to an expected model equation. The model-based 

experimental design allows an alignment of the study on the system behavior under 

investigation and, thus, offers the possibility of an efficient validation of the numerical results. 

 

2 VARIANCE-BASED SENSITIVITY ANALYSIS OF A PIECOELECTRIC BEAM 

2.1 Stochastic Sensitivity Analysis 

Diverse methods to explore the relationship between the input and output variables of a 

system are summarized under the term sensitivity analysis. It is generally differentiated 

between local and global techniques [2]. An essential feature of local sensitivity techniques is 

the observation of localized output variables of a system resulting from small changes in the 

input variables. The major disadvantage of these techniques lies in the sectionally limited 

insight and the associated lack of ability to identify interactions. Global methods of sensitivity 

analysis, however, assume no limitations of the considered area for the design variables. The 

sensitivity is quantified using the total values of the variables space. A corresponding approach 

relies on an analysis of variance for the observed output as a basis for assessing the sensitivity 

[3]. Where the scattering behavior of each design variable is determined by assigning a density 

function. The respective influence of the design variable Xi is calculated on the scattering 

behavior of the system and expressed by two sensitivity indices. The direct impact of a design 

variable Xi is expressed through the main effect  

𝑆𝑀𝑖
=

Var[E(𝑌|𝑋𝑖)]

Var[𝑌]
 , (1) 

where the variance generated by Xi, represented by the variance of the conditional expected 

value Var[E(Y|Xi)], is based on the total variance of the observed output variable Var[Y].  

The total effect  

𝑆T𝑖
= 1 −

Var[E(𝑌|𝐗−𝑖)]

Var[𝑌]
 (2) 

indicates the total influence of a design variable on the observed output and summarizes all 

effects of Xi, where X–i represents all influencing design variables without Xi. Variations that 

arise due to interactions are represented by the difference between the total and the main effect.  

The main effect of a variable can reach a value between 0 (no direct relationship) and 1 

(strong direct relationship). The total effect can be equal to or greater than the main effect. 

Equality between the main and the total effect of Xi indicate no interactions with X–i.  

For the considered smart system, both sensitivity indices are determined using a Monte 

Carlo simulation. The statistical estimators of Sobol‘ [4] and Jansen [5] are used to calculate 

the indices from the results of the Monte Carlo simulation. 



S. Ochs, S. Li, C. Adams, T.  Melz 

 

3 

 

2.2 Mathematical Model of Piezoelectric Beam Dynamics 

The investigated system is a cantilever beam with a flat collocated piezoelectric sensor (S) 

and actuator (A) pair, as shown in Figure 1. Its properties are summarized in Table 1. 

 

Figure 1: Piezoelectric beam. 

The clamped beam is modeled as a EULER-BERNOULLI beam with a lateral load F(t) close 

to the free end of the beam. A mathematical model governing the motion of the piezoelectric 

cantilevered beam can be derived by using Hamilton’s principle and the assumed mode method 

[6, 7]. Only the eigenvalue problem of lateral vibration in z-direction w(x,t) is presented in this 

paper. The lateral displacement in z-direction 

𝑤(𝑥, 𝑡) = 𝚽(𝑥)𝐪(𝑡) = ∑ Φ𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

 (3) 

is separated into the spatial solution Φ(x) and the temporal solution q(t). The overall spatial 

solution is given by 

Φ𝑖(𝑥) = sinh(𝛽𝑖𝑥) − sin(𝛽𝑖𝑥) −
sinh(𝛽𝑖𝑙B) + sin(𝛽𝑖𝑙B)

cosh(𝛽𝑖𝑙B) + cos(𝛽𝑖𝑙B)
(cosh(𝛽𝑖𝑥) − cos(𝛽𝑖𝑥)) . (4) 

The values for the product βilB emerge from the zero crossings of the characteristic equation 

of a cantilever beam. For the first three eigenmodes they amount to β1lB = 1.8751; β2lB = 

4.6941; β3lB = 7.8548. The model is obtained by modal truncation taking only the beam’s first 

three modes of vibration into account. The second-order modal equation in z-direction is given 

by  

(𝜌BℎB𝑏B ∫ Φ𝑖
2(𝑥) d𝑥

𝑙B

0

+ 𝜌AℎA𝑏A ∫ Φ𝑖
2(𝑥)𝐻A d𝑥

𝑙B

0

+ 𝜌SℎS𝑏S ∫ Φ𝑖
2(𝑥)𝐻S d𝑥

𝑙B

0

) ⋅ 𝑞̈𝑖(𝑡) … 

+ (𝐸B𝐼B ∫ Φ𝑖
′′2(𝑥) d𝑥

𝑙B

0

+ 𝐸A𝐼A ∫ Φ𝑖
′′2(𝑥)𝐻A d𝑥

𝑙B

0

+ 𝐸S𝐼S ∫ Φ𝑖
′′2(𝑥)𝐻S d𝑥

𝑙B

0

) ⋅ 𝑞𝑖(𝑡) 

= Φ𝑖(𝑥𝐹)𝐹(𝑡) −
1

2
(ℎB + ℎA)𝑏A𝐸A𝑑31,A𝑉A(𝑡) ∫ Φ𝑖(𝑥)𝐻A

′′ d𝑥

𝑙B

0

 , 

(5) 
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where VA(t) is the voltage applied to the piezoelectric actuator.  

Since the actuator and sensor are not attached over the entire length of the beam, their 

positions need to be considered by means of Heaviside functions  

𝐻A = 𝐻(𝑥 − 𝑎A) − 𝐻(𝑥 − 𝑎A − 𝑙A) (6) 

and  

𝐻S = 𝐻(𝑥 − 𝑎S) − 𝐻(𝑥 − 𝑎S − 𝑙S) . (7) 

The structural damping of the model is defined according to the Rayleigh damping, which 

is a mass- and stiffness-proportional damping. The coefficients of the Rayleigh damping 

correspond to a damping ratio of 1.5%, which was analyzed in experimental studies. Finally, 

the second-order modal equation is converted into a first-order state-space form to link the 

model with a controller. 
 

symbol description value unit 

lB length of beam 200 mm 

hB thickness of beam 3 mm 

bB width of beam 40 mm 

ρB density of beam 2700 kg/m3 

EB Young’s modulus of beam 70 GPA 

IB moment of inertia of beam 90 mm4 

lA length of piezoelectric actuator 50 mm 

hA thickness of piezoelectric actuator 0.8 mm 

bA width of piezoelectric actuator 30 mm 

aA position of piezoelectric actuator 15 mm 

ρA density of piezoelectric actuator 7800 kg/m3 

EA Young’s modulus of piezoelectric actuator 62.1 GPA 

IA moment of inertia of piezoelectric actuator 1.28 mm4 

d31,A piezoelectric constant of actuator –1.8⋅10–10 m/V 

lS length of piezoelectric sensor 10 mm 

hS thickness of piezoelectric sensor 0.5 mm 

bS width of piezoelectric sensor 10 mm 

aS position of piezoelectric sensor 35 mm 

ρS density of piezoelectric sensor 7800 kg/m3 

ES Young’s modulus of piezoelectric sensor 66.7 GPA 

IS moment of inertia of piezoelectric sensor 0.104 mm4 

d31,S piezoelectric constant of sensor –2.1⋅10–10 m/V 

aF position of lateral load 0.95⋅lB mm 

𝜁 structural damping ratio 1.5 % 

Table 1: Characteristic data of the piecoelectric beam. 
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2.3 Control Design 

The vibration suppression method Positive Position Feedback (PPF) is implemented to 

control the vibrations of the beam. PPF control was introduced by Goh and Caughey [8]. It 

consists of a second-order compensator; thus, it is not sensitive to spillover. Based on the fact 

that the position-proportional measurement is positively fed into the compensator and the 

signal from the compensator, magnified by a gain, is positively fed back to the structure the 

term ‘positive position’ is defined. This property makes the PPF controller very suitable for 

collocated actuators and sensors.  

The advantage of the PPF controller is that the damping of a specific frequency band can be 

increased. However, one PPF controller can suppress only one mode at a time. Hence, only the 

vibration suppression of the beam’s first mode (fundamental frequency) is presented in this 

paper. The charge generated in the piezoelectric sensor due to the deformation is calculated 

according to Preumont [9] 

𝑄S(𝑡) =
𝐸S𝑑31,S(ℎB + ℎS)𝑏S

2
(𝑤′(𝑥 = 𝑎S + 𝑙S, 𝑡) − 𝑤′(𝑥 = 𝑎S, 𝑡)) . (8) 

A charge amplifier, which is connected to the piezoelectric sensor, converts the charge at 

the input of the amplifier to a voltage at the output. The sensor’s voltage 

𝑉S(𝑡) =
𝑄S(𝑡)

𝐶f
 (9) 

is the input of the PPF controller and VA(t) is the calculated output. Here, Cf represents the 

capacitance of the charge amplifier. The transfer function in the Laplace domain that describes 

the operation of the PPF compensator is 

𝐶(𝑠) =
𝑔c𝜔c

2

𝑠2 + 2𝜍c𝜔c𝑠 + 𝜔c
2

   , (10) 

where ωc is the compensator’s circular frequency, ςc is the compensator damping coefficient, 

and gc is the feedback gain coefficient. All properties of the compensator and the charge 

amplifier are summarized in Table 2. 

 

symbol description value unit 

ωc compensator circular frequency 2𝜋 ⋅ 60 1/s 

ςc compensator damping coefficient 0.5 - 

gc feedback gain coefficient 0.9 s2 

Cf capacity of charge amplifier 1 nF 

Table 2: Characteristic data of the PPF compensator and the charge amplifier. 

2.4 Numerical Results of a Monte Carlo Simulation 

Five design variables are selected for the stochastic analysis: the length of the beam lB, the 

positions of the piezoelectric elements aA and aS, the position of the lateral load aF, and the 

feedback gain coefficient gc. The scattering behavior of the design variables is characterized 

by specified density functions; therefore, uniform distributions between upper and lower limits 

are chosen. These limits are summarized in Table 3.  
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symbol description lower limit upper limit unit 

  X1 = lB length of beam 195 205 mm 

  X2 = aA position of piezoelectric actuator 7 23 mm 

  X3 = aS position of piezoelectric sensor 27 43 mm 

  X4 = aF position of lateral load 0.85⋅lB 0.95⋅lB mm 

  X5 = gc feedback gain coefficient 0.8 0.9 s2 

Table 3: Lower and upper limits of the uniform distributions. 

It is expected that the variables X1, X2, X3, and X5 have a direct impact on the system behavior 

because they affect the action of the PPF controller. The position of the force X4 has no 

importance for the control of the fundamental frequency; therefore, no influence should be 

determined from the Monte Carlo simulation. Furthermore, the Monte Carlo simulation should 

show whether interactions between the design variables affect the system behavior. 

Figure 2 exemplifies the transfer function between velocity and load of the free beam end 

for the passive system without PPF control and the active system with PPF control.  

 

Figure 2: Schematic diagram of the transfer function between velocity and load of the free end of the beam. 

The implemented single mode PPF controller produces a significant reduction of vibration 

at the tuned mode. The other modes are not affected. The level of resonance amplitude 

reduction Y1 and the offset of the fundamental frequency Y2 are considered as output variables 

of the system.  

The sensitivity analysis is performed using the method presented in Section 2.1. The sample 

for the corresponding Monte Carlo simulation is created with Sobol’ sequences with a sample 

size of N = 20000. The calculated main and total effects to the outputs Y1 and Y2 are shown in 

Figure 3. The individual columns stand for the respective main and total effect of a design 

variable per output. The sum of all main effects of an output is 1.  
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Figure 3: Calculated main and total effects of the design variables to the outputs. 

The feedback gain coefficient X5 has the highest impact on the amplitude reduction Y1. 

Moreover, the positions of the piezoelectric elements X2 and X3 have an influence, but not in 

the same order as the gain coefficient. As expected, the influence of the position of the lateral 

load X4 is very low, because it does not affect the quality of the PPF control. 

The analysis of the first resonance frequency offset Y2 shows a different behavior. The 

length of the beam X1 has the highest impact. The influence of the other variables is very low. 

The numerical analysis also demonstrates that no strong interactions appear in both output 

variables. The correctness of these results will now be confirmed by an experimental 

validation. The required approach is described in the next chapter. 

 

3 EXPERIMENTAL VALIDATION OF STOCHASTIC SENSITIVITY ANALYSES 

3.1 Model-based Experimental Design 

In principle, the methods of DoE [1] are suitable for the experimental validation of the 

numerical sensitivity analysis, because interactions can be detected with most designs. 

According to the classical approach of DoE either factorial or fractional factorial (non-optimal) 

designs can be used. Furthermore, a model-based design of experiments, also called optimal 

design, allows the alignment of an experimental design with the results of a previous numerical 

sensitivity analysis. Thus, the number of necessary experiments can be reduced, compared to 

the non-optimal design. Various statistical criteria are available to optimize the experimental 

design. In this work, the D-optimality criterion is used [10], which seeks to maximize the 

determinant of the information matrix 𝐗T𝐗 of the design where X is the matrix of the design 

variables. A D-optimal design is not generated with a fixed pattern, but constructed iteratively 

so that the determinant of the information matrix is maximized. This process is carried out with 

a coordinate exchange algorithm [11]. 

Under the assumption of a linear system behavior (theory of EULER-BERNOULLI) the 

consideration of two levels per variable is acceptable. The upper and lower limits of the 

numerical analysis (Table 3) denoted with (+) and (–) are used for these two levels. A five-

factor factorial experimental design with 25 = 32 simulation combinations would be necessary. 

But the results of the numerical analysis in Section 2.4 shows that no strong interactions appear 

in both outputs. Hence, interactions of higher order do not need to be considered. 
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The use of a D-optimal experimental design would require only 16 simulation combinations 

(SC) as listed in Table 4. With this design, the second-order interactions can be analyzed to 

confirm the results of the numerical analysis. Higher order interactions are not considered 

because they are not probable. In contrast to a five-factor factorial experimental design the 

model-based approach reduced the experimental effort by 50%, without great loss of 

information.  
 

SC X1 X2 X3 X4 X5 SC X1 X2 X3 X4 X5 

1 (–) (–) (+) (–) (–) 9 (+) (–) (–) (–) (–) 

2 (–) (+) (–) (–) (–) 10 (+) (+) (+) (–) (–) 

3 (–) (–) (–) (–) (+) 11 (+) (–) (+) (–) (+) 

4 (–) (+) (+) (–) (+) 12 (+) (+) (–) (–) (+) 

5 (–) (–) (–) (+) (–) 13 (+) (–) (+) (+) (–) 

6 (–) (+) (+) (+) (–) 14 (+) (+) (–) (+) (–) 

7 (–) (–) (+) (+) (+) 15 (+) (–) (–) (+) (+) 

8 (–) (+) (–) (+) (+) 16 (+) (+) (+) (+) (+) 

Table 4: Simulation combinations (SC) of the optimal experimental design. 

3.2 Experimental Setup 

A test bench is set up to check the usability of the optimal experimental design for the 

validation of numerical sensitivity indices. It is shown in Figure 4.  

 

Figure 4: Experimental configuration (view from top. 
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Various beams consisting of aluminum and piezoelectric elements are fabricated for the 

experimental studies, such as those described in the experimental design (Tables 3 and 4). The 

used piezoelectric materials are PIC151 for the sensor and PIC255 for the actuator. The 

piezoelectric materials are bonded to the beam with an adhesive film. The beam is clamped 

with two thick steel brackets bolted to a heavy block of steel. Real-time active vibration 

suppression is implemented using a dSPACE digital control system. The block diagram of the 

PPF control system, built in Simulink, is converted to C-code, which is then compiled and 

implemented on the dSPACE hardware to achieve real-time simulation and control. The lateral 

load is simulated by a force impulse with an electrodynamic shaker. The impact is recorded 

with a force sensor and the velocity is measured with a laser vibrometer, whose laser beam is 

directed to the end of the piezoelectric beam.  

3.3 Experimental Validation 

In this section, numerical (n) and experimental (e) response functions for the passive system 

without PPF control and the active system with PPF control are compared, followed by an 

experimental validation of the numerical sensitivity indices.  

The challenge in the experimental validation of numerical results lies in ensuring identical 

boundary conditions. A stiff connection of the electrodynamic shaker to the beam would affect 

the system behavior of the piezoelectric beam. Therefore, the beam system is excited by a force 

impulse. The response of the smart beam (SC 16) to a force impulse of 3 N at 0.1 s is shown 

in Figure 5. The numerically calculated system response is illustrated in the left diagram. The 

decay time of the active system is reduced by 85%, compared to the uncontrolled system, due 

to the damping introduced by the PPF controller. The numerically calculated system behavior 

is consistent with the real system behavior, as shown in the left diagram of Figure 5. 

 

Figure 5: Impulse response function (SC 16), with a load F = 3 N, calculated numerically (n) on the left, 

measured experimentally (e) on the right.  

There is also excellent agreement between the experimental and the numerical values for 

the fundamental frequency as shown in Figure 6. 
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Figure 6: Impulse transfer function between velocity and load of a beam with the simulation combination SC16, 

calculated numerically (n) on the left, measured experimentally (e) on the right. 

The experimental sensitivity indices are not calculated like the numerical indices in Section 2.1. 

The number of simulation combinations is insufficient. In a two-level factorial design the effect  

𝐸𝑋𝑖
= 𝑌̅𝑋𝑖

+ − 𝑌̅𝑋𝑖
−   (11) 

of a variable Xi is defined as the change in response Y produced by a change in the level of that 

variable averaged over the levels of the other variables. Thus, the effect of X1 is calculated as 

the average of the results of SC 9−16 less the average of the results of SC 1−8. The effect 

index  

𝐸̂𝑋𝑖
=

|𝐸𝑋𝑖
|

∑ |𝐸𝑋𝑖
|5

𝑖=1

   (12) 

is based on the sum of all absolute effects for comparison with the calculated main effect SM 

of the numerical simulation. All calculated sensitivity indices 𝑆Mi
 and 𝐸̂𝑋𝑖

 of the design 

variables to the outputs Y1 and Y2 are shown in Figure 7. 

 

Figure 7: Comparison of the calculated main effects of the design variables to the outputs. 

For output Y1 the calculated indices closely match. In the experiment, however, an influence 

of the position of the load X4 is demonstrated, which was not recognized in the numerical 

simulation. This influence can also be seen in the results for output Y2. The large influence of 

the length of the beam X1 on the amplitude reduction Y2 cannot be confirmed in the experiment. 
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Instead, a much larger impact of the feedback gain coefficient X5 is identified. 

In Section 2.4 the results of the numerical analysis shows that no strong interactions appear 

in both outputs. To verify this results, the effects of interactions Xij can be calculated similarly 

to Equation (11) from the experimental data. The results for Y1 are shown in Figure 8. 

 

Figure 8: 2nd order interaction effects to the output Y1. 

Expectedly, interaction effects can be seen. The comparison with Figure 7 shows that some 

interactions have a similar magnitude to the design variables; thus, they cannot be ignored. In 

a further experiment it will be analyzed whether in addition to the second-order interactions 

even higher order interactions exist. For this a full factorial design will be incorporated. It will 

only be necessary to test 16 additional simulation combinations, as the results of the optimal 

design can be reused. 

 

4 CONCLUSIONS 

A method for the efficient experimental validation of stochastic sensitivity analyses is proposed 

and tested using a smart system for vibration reduction. It is shown that the methods of DoE 

are suitable for the experimental validation of numerical sensitivity indices. A quantitative 

experimental validation of the numerical results is difficult due to the random-based selection 

of simulation combinations in the stochastic analysis. Only a small amount of simulation 

combinations can be checked experimentally. A model-based design of experiments, also 

called optimal design, allows the alignment of an experimental design with the results of the 

previous numerical sensitivity analysis. Thus, the number of necessary experiments can be 

reduced, compared to the non-optimal design. 
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