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Summary: This study proposes a new concept of a smart damper to provide flag-shaped 
behavior using the combination of magnetic friction and rubber springs. The magnet 
provides energy dissipation due to friction, and the rubber springs with precompression 
contribute to increasing the recentering capacity of the damper. To verify their performance, 
dynamic tests of magnet frictional dampers and precompressed rubber springs were 
conducted. For this purpose, hexahedron neodymium (NdFeB) magnets and polyurethane 
rubber cylinders were used. In the dynamic tests, the loading frequency was varied from 0.1 
to 2.0 Hz. The magnets showed almost perfect rectangular behavior in the force-deformation 
curves, and the frictional coefficient of the magnets was estimated through averaging and 
regression. The rubber springs were tested with and without precompression. The rubber 
springs showed different loading path from the second cycle and residual deformation that 
was not recovered immediately. The precompressed rubber spring showed rigid-elastic 
behavior with hysteresis in the elastic region. The rubber springs showed greater rigid force 
with increasing precompression. Finally, this paper discusses the combination of rigid-
elastic behavior and friction to generate ‘flag-shaped’ behavior for a smart damper and 
suggests how to combine magnets and rubber springs to obtain flag-shaped behavior. The 
performance of the magnets and precompressed rubber springs was verified through 
analytical models.  

 
 
1 INTRODUCTION 

Dampers are used to dissipate input energy and reduce vibration of a system; thus, they are 
used in various fields. In civil engineering, they are mainly applied in the protection of 
bridges and buildings from seismic attacks [1]. In addition, they are used to control the 
vibration of structures induced by vehicles [2], human beings [3], or environmental loadings 
[4] There are several types of dampers, including fluid dampers, frictional dampers, and 
metallic dampers. The first type includes viscous, magnetorheolocial (MR) [5], [6], [7] and 
electrorheological (ER) dampers [8]; they use a special fluid to dissipate input energy. These 
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dampers cannot avoid the problems of aging and fluid leaking; thus, this increases the cost of 
maintenance for replacing the fluid. Conventional frictional dampers generally use 
mechanical friction provided by bolt tensions [9]. In these dampers, slight variation of bolt-
tension or the surface-condition of frictional material may reduce frictional force. These 
types of dampers provide excellent energy dissipation capacity; however, they do not provide 
recentering (or self-centering) capacity. Thus, structures or systems that incorporate them 
could be dislocated from the as-built location after an earthquake. To overcome this problem, 
smart dampers with a flag-shaped behavior have been introduced [10],[11]. 
   Dolce et al. (2000) proposed a smart damper using shape memory alloy (SMA) wires. They 
used martensitic and superelastic SMA wire to provide energy dissipation and recentering 
capacity, respectively. This damper successfully provides the flag-shaped behavior and 
recovers the displacement of structures without any dislocation. However, NiTi SMAs used 
in the Dolce’s study are very expensive in comparison with steel, and the components and 
design of the SMA damper are complicated. After Dolce’s study, several variations of smart 
dampers using mechanical friction and springs have been suggested, and they basically used 
the combination of energy dissipation and recentering group to realize smart behavior [12].  

There are two types of dampers depending on whether or not there is contacting between 
magnets and magnetic substances; that is contacting or non-contacting. In the non-contacting 
case, a conductor moves in a magnetic field and a magnetic drag force is generated. A 
specific type of damper using this principle is an eddy current damper [13],[14] mentioned 
that the eddy current damper has several advantages compared with other types of dampers; 
they have no mechanical contact and show high reliability, easy tuning capacity, and high 
thermal stability. However, the critical disadvantage of the eddy current damper is its 
relatively small damping force. Several studies of eddy current dampers have been conducted 
for the applications of structures. However, the provided damping forces in the studies were 
not strong enough for real structures. The damping ratio or damping force of an eddy current 
damper decreases exponentially with increasing distance between the magnet and conductor. 
Thus, to increase the damping force, the distance should be minimized. The extremity of 
minimization is contact; in other words, no gap between the magnet and conductor. In this 
case, frictional force develops between the magnet and conductor. [15] introduced a ball-
screw-type magnetic friction damper to generate damping force, and they obtained the typical 
frictional behavior of rectangular-shaped behavior. [16] suggested another type of magnetic 
friction damper using a rack and rare-earth magnets. This type of damper has a long stroke; 
however, frictional force depends on the vibrational frequency, and its behavior shape is not 
rectangular. In these two types of magnetic friction dampers, the friction is generated during 
the rotation of the magnets.  

In this paper, a new concept of smart damper will be proposed that using the friction of 
permanent magnets and pre-compressed rubber springs; the magnetic friction provides 
energy dissipation capacity and the pre-compressed rubber springs provide recentering 
capacity. For this purpose, a series of dynamic tests of magnetic friction dampers and pre-
compressed rubber springs were conducted. The smart damper will be explained by 
analytical models based on the experimental results of the two components. 

2 DYNAMIC TESTS OF MAGNETIC FRICTION DAMPER 

2.1 Magnetic friction damper 
In this study, hexahedron neodymium (NdFeB) magnets with dimension of 50 mm x 50 

mm x 25 mm (BxLxH) were used to provide magnetic friction (see Figure 1).  
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Figure 1 : Shape of the magnet 

 
To estimate the adhesive strength of the magnet due to magnetic force, a simple tensile test 

was conducted as shown in Figure 2.  
 
   

  
Figure 2 : Tensile test of the magnet 

 
The magnet was placed between two steel plates; on the upper plate, a load-cell was 

connected to measure tensile force. The average ultimate magnetic force of the magnet was 
measured as 0.8 kN; this force works as a normal force of friction. 

The magnetic friction damper developed in this study consists of two rectangular inner 
and outer tubes (see Figure 3).  

 

 Figure 3 : Shape of the magnetic friction damper in pull-out and push-in position 
 

The length of both tubes is 500 mm, and the thickness of the side plates is 5 mm. The 
outer dimensions of the inner tube are 65 mm x 75 mm (BxL), and the corresponding values 
of the outer tube are 80 mm x 90 mm. The inner one slides inward and outward through the 
outer one. The inner one is made of steel; thus, the magnet can be attached on the plate of the 
tube. However, the material of the outer tube is aluminum, which is a non-magnetic 
substance. The outer tube has three square holes in each side of the plate with dimensions of 
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51 mm x 51 mm (BxL); thus, a total of 12 holes are placed in the outer tube. The length of 
each side of the hole is larger by 1 mm than the width of the magnet. Each magnet is attached 
on the inner tube through the holes in the outer tube. When the inner tube is moving, the 
movement of the magnets is restricted by the outer tube; thus, sliding between the magnet 
and inner tube occurs, and friction accompanies by the sliding. A load-cell was mounted on 
the top of the inner tube to measure the pushing and pulling force of the damper.  

2.2 Dynamic tests 
Dynamic tests were performed based on the two parameters of loading frequency and 

number of magnets. The number of magnets represents the variation of normal force of 
friction, and it was varied from 2 to 12 with an increment of 2. This means that the minimum 
normal force was 1.6 kN, and the force increased to 9.6 kN with an increment of 1.6 kN. The 
loading frequencies were 0.1, 0.25, 0.50, 0.75, 1.0, and 2.0 Hz; the loading with 0.1 Hz 
represents quasi-static loading. The loading frequency was varied to investigate the 
sensitivity of the damper to vibrational frequency. Most civil structures such as bridges and 
buildings have a fundamental natural period in lateral vibration with a range of 0.5 to 1.0 sec. 
If they are equipped with isolation devices from ground motions, their lateral fundamental 
periods become longer while they may not exceed 5 sec. Thus, in the dynamic test, the 
minimum and maximum loading frequencies can be 0.2 and 2.0 Hz, respectively. The 
loading frequency of 0.1 Hz was assumed to be quasi-static case. Five cycles were loaded for 
each frequency. Based on the performance of the dynamic UTM (Universal Test Machine), 
the strokes were varied according to loading frequency; ±10 mm for 0.1-0.5 Hz, ±5 mm for 
0.75-1.0 Hz, and ±2 mm for 2.0 Hz. In the test set-up (see Figure 4), a displacement 
transducer was mounted on the top of the inner tube to measure the translational movement 
of the damper.  
 

    
Figure 4 : Test set-up and shape of damper with the magnets 

 
 
The force-displacement curves of the magnetic friction damper are shown in Figure 5, where 
positive displacement represents pushing in and negative value does pulling out.  
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(d) 8 magnet 

 

(e) 10 magnet 

(f) 12 magnet 
Figure 5 : Force-displacement curves of the magnetic friction dampers 

 
As seen in Figure 5(a), for the first three tests of 0.1, 0.25, and 0.5 Hz, bands of frictional 
forces are observed. Then, the band-magnitude decreases with subsequent tests. It appears 
that the band was caused by the irregularity of the surface of the inner tube, on which the 
magnets slide. In the curves, a step is observed with the reversing stroke since there is a gap 
of 1.0 mm between the magnets and holes in the outer tube. The last observation is that there 
is a slope on the upper frictional lines, which are on pull-out phase. This was caused by the 
developed inertia force of the inner tube. This inertia force increases with increasing moving 
speed. The maximum moving speed of the damper is 20 mm/sec for the cases of 0.5 and 1.0 
Hz vibration. Thus, the slopes of the two cases are larger than those of the other cases. This 
influence of the inertia force will disappear if the damper is installed horizontally.  
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2.3 Frictional force and coefficient 
The frictional force of the damper is estimated as the average of the forces crossing the y-

axis in the force-displacement curves. In Figure 6, the variation of magnetic friction is shown 
according to frequency. 
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Figure 6 : Magnetic frictional force as a function of frequency 

 
The frictional coefficient μ  can be obtained from the estimated frictional forces using the 
following equation: 
 

NF μ=                                                             (1) 

 
where N is the normal force induced by magnetic force and F is the frictional force. The 
normal force can be obtained by multiplying the number of magnets by 0.8 kN which is the 
ultimate magnetic force of the magnet. The estimated frictional coefficients are shown in 
Table 1. 
 

 Frequency (Hz) 
No. Of Magnets 0.1 0.25 0.5 0.75 1.0 2.0 
2 0.431  0.519  0.519  0.513  0.581  0.569  

4 0.472  0.494  0.513  0.525  0.541  0.569  

6 0.506  0.477  0.500  0.513  0.517  0.496  
8 0.477  0.523  0.538  0.523  0.539  0.547  

10  0.513  0.529  0.534  0.525  0.525  0.508  

12  0.495  0.506  0.531  0.516  0.526  0.513  
Average 0.482  0.508  0.522  0.519  0.538  0.533  

Regression 0.496  0.512  0.529  0.520  0.528  0.519  
 

Table 1 : Frictional coefficients of the magnetic friction damper 
 

Figure 7 shows the average frictional coefficient as a function of frequency. The frictional 
coefficient increases until the frequency of 0.5 Hz; after that, it becomes stable. It appears 
that the relatively small value of 0.75 Hz is an experimental deviation. Figure 7 shows 
another estimated frictional coefficient using a linear regression between the normal and 
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frictional force. In Figure 6, the slopes of the regression represent the frictional coefficient. In 
the graphs in Figure 6, the x-axis is the number of magnets, which can be converted to the 
normal force by multiplying 0.8 kN. Thus, the frictional coefficient can be obtained by the 
slopes divided by 0.8. The result is shown in Table 1 and compared with the average 
frictional coefficient in Figure 7. 
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Figure 7 : Frictional coefficients from average and regression 

 
 The result of the regression shows relatively larger coefficients than the values from 

average with low frequencies under 0.5 Hz. However, in the high frequencies above 1.0 Hz, 
the trend is reversed. Based on the regression, the frictional coefficient increased sharply up 
to 0.5 Hz and then decreased smoothly until 2.0 Hz. It seems that the result of the regression 
is more reliable since the regression can straighten the measuring deviation. Therefore, the 
static frictional coefficient of the magnetic friction is assumed to be 0.496 of 0.1 Hz loading, 
which was assumed as quasi-static condition. The average value for other cases is 0.522, 
which is the kinetic frictional coefficient of the magnetic friction. 

3 PRECOMPRESSED RUBBER SPRING 

3.1 Material and test set-up 
This study used a rubber cylinder with an inner hole at the center, and its dimensions are 

shown in Figure 8.  

 
Figure 8 : Shape and dimension of the rubber cylinder 

 
The cylinder is made of polyurethane rubber, whose durometer hardness is 95A , which is 

much higher than that of natural rubber [17]; the range of durometer hardness for natural 
rubber varies from 50A to 70A. In general, higher hardness rubber shows a higher Young’s 
modulus. Thus, polyurethane rubber can be used to make a stiffer spring than natural rubber 
if they have the same shape and dimension. In addition, polyurethane rubber has much higher 
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resistance to environmental attacks than natural rubber.  
   To conduct dynamic tests of uncompressed and precompressed rubber springs, a special 

test set-up was devised (see Figure 9).  

 
Figure 9 : Test set-up for dynamic tests of the rubber spring 

 
Two steel plates were connected by four shafts and bolts. A rubber spring was placed 

between the two plates. Two sole plates with two shafts were inserted into the inner hole at 
the top and bottom of the rubber spring. To achieve precompression, at the rubber spring was 
first pressed by an actuator and then held by bolts. A displacement transducer was placed 
between the steel plates to measure the deformation of the rubber spring. A load cell was 
connected at the top of the rubber spring to measure the loading force. The same test machine 
used for the magnetic damper was also used for the dynamic loading tests.  

3.2 Dynamic tests of rubber springs without precompression 
For the tests of rubber springs without precompression, the loading frequency followed the 

same variation as that for the magnetic damper of 0.1, 0.25, 0.5, 0.75, 1.0, and 2.0 Hz. The 
frequency of 0.1 Hz represents a quasi-static test of the rubber spring. The stroke varied 
according to the loading frequency, that is, 15 mm for 0.1, 0.25, and 0.5 Hz; 10 mm for 0.75 
Hz; 5 mm for 1.0 Hz; and 2 mm for 2.0 Hz because of the limit of the maximum speed of the 
actuator. A total of five cycles were loaded for each test.  

  

3.2.1 Hysteretic behavior in compression 
Hysteretic behaviors of force and deformation for the rubber springs without 

precompression are shown in Figure 10 according to loading frequency. For the quasi-static 
test of 0.1 Hz loading frequency, several features are observed in Figure 10(a). First, a 
significant residual deformation remains at zero force during unloading in the first cycle, and 
a part of it was recovered before the second loading. However, the other remained as a 
deformation-set without recovery. Thus, the second cycle started at a location that deviated 
from the first cycle. Second, softening behavior occurred from the second cycle, which 
showed smaller force in the loading path than the first cycle at the same deformation. In 
Figure 10(a), the apparent softening is shown because of the deformation-set.  
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Figure 10 : Cyclic force-deformation curves of rubber springs without precompression 
 
 

In the first loop in Figure 10(a), there is a gap of 0.5 mm initially. This was caused by 
imperfect contact between the steel plate and the rubber spring; therefore, this gap should be 
removed from the behavior of the rubber spring. Thus, the compressive deformation of the 
rubber spring in the first loop was 14.1 mm, which corresponds to a strain of 21.7%. In the 
unloading path, the rubber spring did not recover all compressive deformation and there was 
a residual deformation of 2.5 mm. Before the second reloading, the deformation of 1.0 mm 
was recovered during the unloading. However, the other deformation of 1.5 mm, which is 
2.3% strain, was not recovered during the test; it would take a time to recover this 
deformation, which acts like a gap for the next cycles from the second one. Thus, the second 
loading path began from the deformation of 1.5 mm, and the unloading path touched the 
deformation of 2.5 mm. Because of this, the maximum force of the cycles after the first one 
at a given deformation became smaller than that of the first cycle. The residual deformation 
of 1.2 mm for the second cycle was almost recovered during the unloading. However, 
continuous softening behavior occurred a little at a time after the second cycle. For the 
dynamic loadings of 0.25 and 0.5 Hz, the residual deformations of the first cycles were 2.5 
mm, respectively, which is equal to that of the quasi-static loading. In addition, the recovered 
deformation and deformation-set of the first cycle unloading for both tests were 1.0 and 1.5 
mm, respectively. Thus, it appears that the dynamic loading tests did not change the residual 
deformation, recovered deformation, and deformation-set, although their loading paths 
differed from that of the quasi-static test.  

3.2.2 Damping effect 
The rubber spring showed hysteretic behavior for a cyclic loading, and the energy 

dissipation due to hysteresis helped increase the energy-dissipation capacity of the damper. 
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Thus, the equivalent damping ratios for the first and next hysteresis of the rubber springs are 
calculated using the following equation [18]: 

E

D

E
E

π4
1ξ =                                                             (1) 

 
where DE and EE  are the dissipated and elastic energy for a hysteresis.  
Table 2 shows the damping ratios for the first cycle of the springs according to the loading 
frequency compared with those of the second cycle. 
 

Frequency Non-
precompression 

Precompression of 
 5 mm 

Precompression of 
 10 mm 

 1st cycl. 2nd cycl. 1st cycl. 2nd cycl. 1st cycl. 2nd cycl. 
0.1 Hz 4.72% 2.80% 3.33% 2.29% 1.90% 1.36% 
0.25 Hz 3.67% 2.72% 3.41% 2.53% 1.90% 1.50% 

0.5 Hz 3.79% 2.82% 3.38% 2.66% 2.11% 1.67% 

0.75 Hz 4.44% 3.22% 3.47% 2.70% 2.28% 1.81% 

1.0 Hz 4.68% 3.43% 3.67% 2.73% 2.29% 1.81% 
2.0 Hz 3.51% 2.86% 2.50% 2.07% 1.60% 1.32% 

Table 2 : Damping ratios of the rubber springs 
 

 For the first three frequencies of 0.1, 0.25, and 0.5 Hz, which have the same amplitude, the 
quasi-static loading case showed a relatively large damping ratio in the first cycle compared 
to the other two dynamic loading cases. However, for the second cycle, they showed almost 
the same damping ratio. Thus, it appears that the rubber spring showed a stable damping ratio 
from the second cycle, even with dynamic loading. For the next three high loading 
frequencies, the damping ratios increased in comparison with those for the first two dynamic 
loading frequencies. This was caused by the small amplitudes of the three high frequency 
cases. For the rubber spring, all damping ratios were smaller than 5% and much smaller than 
that of the magnetic friction of 63.6%. Thus, the damping of the rubber spring did not have 
significant influence on dissipating energy in the system. In addition, the damping ratios for 
the second cycles were too small to significantly reduce the vibration. 

3.3 Dynamic tests of rubber springs with precompression 

3.3.1 Effect of precompression 
The typical cyclic behavior of the rubber spring is shown schematically in Figure 11. As 

mentioned previously, the residual deformation after the first cycle is recovered partially, and 
the other residual deformation is a set of deformation for the next cycles. For the rubber 
spring, there are three possible cases of precompression. 
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Figure 11 : Effect of precompression in the rubber spring 

 
 First, when the amount of precompression is smaller than the deformation set 1Δ , the second 
cycle begins with a gap because of the set. In this case, the hysteretic behavior of the rubber 
spring is similar to that of an uncompressed one. In the second case, the precompresion is 
located between deformation 1Δ  and 2Δ . In this case, the deformation set is removed by the 
precompression. Thus, the hysteretic behavior begins without any gap and shows a rigid 
behavior from the base to the first or second loading path. In the third case, the 
precompression exceeds the residual deformation 2Δ such as the case of ⓒ in the figure, and 
the behavior shows a rigid behavior up to the first loading path. Then, the unloading stops 
with the remaining force, and the curve goes up to the second loading path rigidly. Then, the 
curve follows the second loading path. Therefore, in this case, the hysteretic curves do not 
touch the base of zero force. The most desirable case among the three is the third one; the 
case of ⓒ in Figure 11. The remaining force in this case can be used to increase the 
recentering or self-centering capacity of the damper. 

3.3.2 Cyclic behavior under precompression 
Two tests were conducted with variation of precompression to 5 and 10 mm. The strokes 

for the tests and the precompression were controlled to be equal to the strokes of the 
corresponding non-compression tests. For example, the stroke for the 0.1 Hz test with 5 mm 
precompression was 10 mm; thus, the summation of 5 and 10 mm became 15 mm. The stroke 
for the 0.1 Hz with 10 mm precompression was 5 mm; thus, the total became 15 mm. The 
hysteretic behavior of the precompressed rubber springs was rigid initially. Then, hardening 
behavior was caused by the additional compression (see Figures 12).  
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Figure 12. Hysteretic curves of rubber springs with precompression 5mm and 10mm 

 
The hysteretic loops were stabilized from the second cycle. However, the rigid force 
decreased after the first cycle. This was caused by the residual deformation explained above. 
The rigid force for the second cycle recovered because of deformation recovery. However, 
the rigid force of the second cycle is smaller than that of the first cycle because of the 
deformation set described in the previous section. Therefore, the rubber spring can return to 
the original location using the precompressing technique. The precompressed rubber springs 
showed typical flag-shaped behavior, which is usually observed in smart materials, such as 
shape memory alloys. In flag-shaped behavior, the first rigid behavior assists the recentering 
capacity of damper, and the hysteresis on the rigid part provides additional damping.  

For the case of 5 mm precompression, the initial rigid force is reduced approximately by 
50% after unloading of the first cycle. The rigid force for the second loading path is 66% of 
the first rigid force of the loading path. For the case of 10 mm precompression, the 
corresponding values are 83% and 89%, respectively. Based on the above result, it appears 
that the reduction ratio of the rigid force due to the hysteresis is reduced with an increasing 
amount of precompression. The second cycle behavior should be used for a conservative 
design.  
   The effective stiffnesses of the loading hysteretic loops for the first and second cycles were 
estimated (see Figure 13). In the figure, the subscripts of 1 and 2 represent the first and 
second cycle, and the second subscripts represent the amount of precompression. The 
stiffness was estimated as the slopes from the rigid force at the origin to the end point of the 
loop. For the uncompressive case, the stiffnesses of the first cycle for the first four loading 
frequencies were stable as 0.97 kN/mm. For the loading frequencies of 1.0 and 2.0 Hz, the 
stiffnesses increased to 1.15 and 1.39 kN/mm, respectively. 
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Figure 13 : Effective stiffness of loading paths for the precompressed rubber springs 

 
The strokes of the two cases were shorter than those of the other cases; this produced 
relatively high effective stiffness. The rubber springs showed stiff behavior at first and then 
softening behavior. Thus, the effective stiffness increased with a relatively small stroke. The 
results indicate that the loading effective stiffness of the rubber spring without 
precompression does not vary according to loading frequency. However, for the 
precompressed rubber springs, the loading stiffness increased with high loading frequency. 
The increment ratio of stiffness for the 10 mm precompression case was larger than that for 
the 5 mm precompression case. All stiffnesses of the precompressed rubber springs were 
higher than those of the uncompressed one. In particular, the dynamic stiffnesses were higher 
than those of the quasi-static loading case. The stiffnesses for the second cycles were a little 
higher than those of the first cycles. Therefore, it was determined that, for the precompressed 
rubber springs, the loading stiffness becomes higher with more precompression and high 
loading frequency. 

3.3.3 Damping effect 
The damping ratios for the precompressed rubber springs are shown in Table 2. The 

average damping ratios of the first and second cycle for the 5 mm precompression case were 
3.45% and 2.58%, respectively. The corresponding values for the 10 mm precompression 
case were 2.1% and 1.63%, respectively. For the non-precompression case, the values were 
4.26% and 3.0%. Thus, it is observed that more precompression produced a smaller damping 
ratio. In addition, the damping ratios for the precompression cases seem to be stable in 
relation to the loading frequency. 

4. SMART DAMPER 

4.1 A new concept of a smart damper 
Smart dampers for civil structures should provide sufficient energy dissipation as well as 

recentering capacity, which are seriously required for the seismic protection of structures. For 
this purpose, in general, two types of elements are combined; the first one is an element to 
provide recentering and the other is for damping. Previously, linear elastic and hysteretic 
damping were combined, but the combination left residual deformation. With increasing 
damping, the residual deformation increases. To overcome this problem, the damping 
element should be combined with the rigid-elastic element as shown in Figure 14. 
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Figure 14 : Smart behavior with combination of rigid elastic behavior and friction 

 
 If the rigid force F1 is greater than the damping force Fy, the combined behavior returns 

to the original location with some remaining force; this behavior is called ‘flag-shaped’. The 
critical rigid force is equal to the damping force. Then, the behavior is restored to the origin 
with zero force and zero residual deformation. However, the rigid force is smaller than the 
damping force, and there is residual deformation after unloading.  
The combination of magnetic friction and a precompresssed rubber spring provides the 
functions of a smart damper, such as recentering capacity and sufficient damping to dissipate 
energy. A schematic drawing of the smart damper is shown in Figure 15. 

Magnet

Piston

Pre-compressed rubber spring

Clinder

 
Figure 15 : A smart damper using combination of magnetic friction and precomressed rubber springs 

 
 A piston attached by magnets is located at the center, and two rubber springs are placed 
beside it. The precompression of the two rubber springs is introduced by driving the bolts at 
the end of the damper; the movement of the springs is blocked by the projecting parts of the 
cylinder. When the shaft is moving in a direction, friction is generated, and one of the two 
rubber springs is compressed. When it is moving in the other direction, the other spring is 
compressed. 

4.2. Analytical model of the smart damper 
In the precompressed rubber spring, the loading and unloading rigid forces (F2 and F1) are 

different. Thus, the unloading rigid force F1 should be greater than the frictional force Fy, and 
then the damper will be placed back at the original location. This combination of a rubber 
spring and magnetic friction is illustrated in Figure 22 When F1 is larger than Fy, the damper 
returns to the original place with the remaining force of F1-Fy. Nine types of force-
combinations are modeled using the OpenSEES program [19], which is generally used for 



First A. Author, Second B. Author, Third C. Author 

16 
 

the seismic nonlinear time-history analyses of civil structures. For the model, two elements 
are used with parallel combination; the first element is ‘Self-centering’ element for 
recentering, which shows bilinear and elastic unloading, and the second one is ‘Steel 01’ 
element for energy dissipation, which shows bilinear plastic behavior. Figure 16 illustrates 
the behaviors of the elements including the combined behavior of the two elements.  

 
Figure 16 : Combined behavior of precompressed rubber springs and magnetic friction 

 
In the figure, E0 and k1 are initial stiffnesses of the two elements, and bE0 and k2 are their 

second stiffnesses, where b is strain-hardening ratio. ∆1 and ∆2 are the deformations for 
initial elastic limit. In the combined behavior, the strength and stiffness depend on those of 
the two elements. In the models, the frictional force is fixed as 5.0 kN, and the unloading 
rigid force F1 varies as 10, 5, and 2.5 kN; the first one is greater than the friction; the second 
one is equal to the friction; and the third one is less than the friction. The differences  F 
between F1 and F2 have three cases of 5, 2.5, and 0. Table 3 illustrates the combination of the 
forces. 

    
Fy  5 

F1 
10 

(F1 > Fy) 
5 

(F1 = Fy) 
2.5 

(F1 < Fy) 
∆F 5 2.5 0 5 2.5 0 5 2.5 0 
F2 

(=F1+∆F) 15 12.5 10 10 7.5 5 7.5 5.0 2.5 
Table 3 : Combination of forces in analytical models of smart dampers 

 
Figure 17 shows hysteretic curves for the nine types of analytical models.  
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Figure 17 : Analytical models of the smart dampers varying with the rigid forces 

 
It is noticeable that the loading rigid force of the rubber spring does not influence the 

recentering capacity of the damper. However, if the difference  F is larger, the damping 
increases. The results also indicate that the recentering capacity is controlled by the 
unloading rigid force in comparison with the friction 
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4.3. Discussion of application 
[10] developed a smart damper that combines martensite and austenite shape memory alloy 

(SMA) wires. The martensite SMA wires provide energy dissipation, while the austenite 
SMA wires generate recentering capacity. With this combination, if the low stress plateau of 
the austenite SMA is higher than the transformation stress of the martensite SMA, the device 
is recentered without residual deformation after unloading. The concept of the damper 
proposed in this study is very similar to that of Dolce. However, Dolce’s SMA wire damper 
is relatively expensive since SMA materials are much more expensive than steel and rubber. 
Thus, the damper with rubber springs and magnets could be manufactured and provided 
cheaply. If permanent magnets are used, the damper would be a passive type. However, if 
electronic magnets are used, the damper would be an active type since the magnetic friction 
can be activated following the clue of vibration in a system. In addition, the electronic current 
can be controlled according to the magnitude of vibration in a system; in this case, the 
damper would be adaptive. Therefore, the damper with rubber springs and magnetic friction 
could be a smart, cheap, and effective option for various applications. 

5. Conclusion 
This study proposed a new concept of a smart damper using precompressed rubber springs 
and magnetic friction. Dynamic tests of magnetic frictional dampers and precompressed 
rubber springs were separately conducted. For the tests, permanent magnets having an 
ultimate adhesive force of 0.8 kN were used. The magnetic friction showed exactly the same 
behavior as other mechanical frictions; they showed almost perfectly rectangular behavior. 
The frictional coefficient of the magnets was estimated using an averaging method or linear 
regression according to the loading frequency. The two methods resulted in similar 
coefficients, but the regression method seems to be more reliable than the simple averaging 
method. The frictional coefficient of the magnets increased up to the loading frequency of 
0.5 Hz and then became stable. Thus, the dynamic coefficients were larger than the static or 
pseudostatic coefficient. The overall average frictional coefficient of the magnet was 0.522. 
In the test of the rubber springs, a cylinder with a hole at the center made of polyurethane 
rubber was tested. In the test without precompression, the rubber spring showed hysteretic 
behavior, and the first cycle did not coincide with the subsequent cycles, which showed 
almost the same path. This was caused by the unrecovered residual deformation of the 
rubber spring when it was reloaded. The loading paths according to the loading frequency 
followed the same path except for the case of 0.1 Hz. When the rubber spring was 
compressed before the test, the spring showed rigid force as expected. The rigid force 
increased with more precompression in the rubber spring. In these tests, the first cycle was 
different from the subsequent cycles because of unrecovered residual deformation. The rigid 
force of unloading was smaller than that of loading; because of the unrecovered residual 
deformation. Thus, the rubber springs with precompression showed flag-shaped behavior 
thus provided recentering capacity and damping. The stiffness of the precompressed rubber 
spring increased with increasing loading frequency for both loading and unloading paths.  
To embody a smart damper, the magnetic friction and the precompressed rubber springs are 
combined; in this combination, the magnets provide energy dissipation and the springs 
provide recentering capacity. For this purpose, the rigid force of unloading should be larger 
than the frictional force. Then, the damper would return to its initial place without any 
residual deformation and provide sufficient damping. This concept was proved using 
analytical models of the OpenSEES program. The rigid force of the loading path increased 
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damping but did not influence the recentering capacity, which was controlled by the rigid 
force of the unloading path.  
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