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Summary: Resonant?L shunt circuits represent a robust and effective approachiézo-
electric damping, provided that the individual shunt citocomponents are calibrated accu-
rately with respect to the dynamic properties of the coragping flexible structure. The bal-
anced calibration procedure applied in the present analysibased on equal damping of the
two modes associated with the resonant vibration form ofsthecture. An important result
of the presented calibration procedure is the explicit ustbn of a quasi-static contribution
from the non-resonant vibration modes of the structure ve&ngle background flexibility pa-
rameter. This leads to explicit calibration expressionstf@ shunt circuit components and it is
demonstrated by a simple numerical example that the praeesdth correction for background
flexibility leads to both equal damping of the two modes afet¥e response reduction.

1. INTRODUCTION

Piezoelectric transducers are used in many different sfteeand industrial applications for
damping and control of the dynamic response of flexible stines [1]. Piezoelectric transduc-
ers are very versatile and may be used as for example adaetisor pairs in active control
schemes [1], as semi-active devices based on various swgteéchniques [2], or as passive
units in which the piezoelectric transducer is shunted taitalsle electric network [3, 4, 5].
Effective passive vibration damping of flexible structunesy be obtained by introducing reso-
nantR L shunt circuits, where an inductantend a resistanck forms an additional resonance
together with the inherent capacitanCeof the piezoelectric transducer [3, 4]. This resonance
can be synchronized with the structural frequency of thgetaxd vibration mode and thereby
effectively increase the damping level and reduce the tidmtamplitudes of the flexible struc-
ture, provided that the individual circuit components aaktrated appropriately [6].

The classic calibration procedures for the seftédsshunt circuit dates back to Hagood and
von Flotow [3], proposing both a frequency response cdiitimaand a pole-placement technique
based on a root-locus analysis. The frequency respondwatan for the paralleRL shunt
was shortly after proposed by Wu [4] and a summary of calienaechniques for both types of
RL shunt circuits is provided by Caruso [7]. Alternative cedition procedures have recently
been proposedin[8, 9, 10, 11].
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The original work by Hagood and von Flotow [3] demonstrates for R shunt damping
optimal frequency response calibration is in fact non+optiwith respect to a root-locus analy-
sis, while optimal pole placement corresponds to non-agtdyinamic amplification properties.
However, for the classic tuned mass absorber the fixed peiguéncy calibration is equivalent
to equal damping in the two modes associated with the tatg@beation form, as demonstrated
by Krenk [12]. Furthermore, the device damping is calibiateprovide an optimal combina-
tion of response reduction of the structure and limited giesyomotion. Exact equivalence
between equal modal damping and optimal response redwgtjpears to be a specific property
of the mechanical tuned mass absorber, and is thereforeinectlg available for the present
RL shunt circuit formats. However, as demonstrated in Krenktldagsberg [13] for general
control formats and in Hggsberg and Krenk [10] fof. shunt circuits the balanced calibration
technique with equal modal damping in fact also provideperoeduction of the frequency re-
sponse amplitudes. Thus, the balanced calibration proeasihere adopted for the calibration
of the shunt circuit components.

The performance of a resonant damping concept is very sengit even a small detun-
ing of the resonant filter parameters. However, the calitmatf resonant damping strategies
is typically based on an approximate single mode representaf the flexible structure dy-
namics, where the interaction with non-resonant vibratmmues is neglected. For mechanical
vibration absorbers this is often an adequate assumptitaulse mechanical absorbers with an
oscillating absorber mass operate with respect to absoloteon [14, 12]. This is different
for two-terminal piezoelectric transducers, which act loa dleformation of the structure. As
demonstrated in the following the efficiency of piezoeliecit L shunt circuit damping depends
very much on the precise parameter calibration and thusitheence from the residual non-
resonant vibration modes must be included in the calibmagxpressions for the shunt circuit
components. The inclusion of the influence from residualatibn modes by a quasi-static rep-
resentation has previously been suggested for calibrafioesonant active control strategies
[15] and tuned mass vibration absorbers [16], and this pi@adcs in the present case applied to
piezoelectricR L shunt circuit damping [17].

2. THE ELECTROMECHANICAL SYSTEM

The performance of piezoelectri¢. shunt circuit damping relies on a precise balance
between the dynamics of the flexible structure and the @begtcuit. Thus, the present section
presents the electric and mechanical models, which arefasedlibration of the shunt circuit
parameters in the subsequent section.

2.1 The electric system

As shown in Figure 1(a) the piezoelectric transducer isri@sd by a time variable current
sourcei,(t) in parallel with a capacitanc€, see [18]. The corresponding series and parallel
configurations of a resonaftL shunt circuit are shown in Figures 1(b,c). The current flgwin
into the piezoelectric transducer must be equal to the sutieo€urrent in the current source
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Figure 1. Electric model of (a) piezoelectric transduced @) series or (c) parallét L shunts.

produced by the deformation of the piezoelectric transdaoe the current in the capacitor.
When integrating this current relation the following cliassharge balance equation is obtained,

q(t) = —bu(t) + Co(t) (1)

whereq(t) is the charge in the piezoelectric transdueét) is the deformation of the transducer,
while v(t) is the voltage across the transducer terminals. Thuspresents the electromechan-
ical coupling coefficient of the piezoelectric transducer.

2.1.1 Series shunt

For the series shunt circuit in Fig. 1b the voltage acrosscitwiit terminals is equal to
the sum of the voltage across the resistaR@nd inductancé., which leads to the following
relation between voltage(t) and charge(t),

(t) = — (R4(t) + Li(t)) (2)

Elimination of charge(¢) between (1) and (2) followed by division withC' gives the normal-
ized filter equation for the piezoelectric transducer witdedesRk L shunt circuit,

0
B(t) + 2Cwo(t) +w?o(t) = E(ii(t) + 2Cewe u(t)) (3)
The electric resonance frequengyand damping rati@, are in this filter equation defined as
1 C
e — T — ) 2 e — R - 4
= VIe “ VT @

It follows from (3) that the feedback to the filter equatiorthins case is comprised by a combi-
nation of the velocity and acceleration associated withrdmesducer deformation.
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2.1.2 Parallel shunt

In Fig. 1c the parallel connection of the resistaitand inductancé implies that the total
current in the circuit is equal to the sum of the current inititevidual circuit components. This
leads to the following relation between voltage and charge,

1. 1 ..

=0(t) + Zo(t) = —(t) (5)
Elimination ofq(¢) between (1) and (5) followed by division witti gives the normalized reso-
nant filter equation

i(t) + 2Cwd(t) +w?o(t) = gii(t) (6)

with frequency and damping parameters

1 1 /L
We = —— 2= —=1/= 7
VIO ‘ ()
Compared to the series shunt circuit the present equati(@) neceives pure acceleration feed-
back, and the filter damping rat{Q is inversely proportional to the circuit resistange

2.2 The mechanical system

The dynamics of the flexible structure is represented byaelis numerical model with the
equation of motion
Mii(t) + Ku(t) = wf(t) + f.(¢) (8)

In this equation the column vectaft) contains the degrees of freedom of the numerical model,
the mass matridI and stiffness matriX represent the inertia and elastic properties of the com-
bined structure, while the column vectf)(t) represents the external loading on the structure.
The first term on the right hand side of (8) represents therelaechanical force on the struc-
ture from the piezoelectric transducer, where the convigctiectorw defines the deformation

of the transducer as

u(t) = whu(t) 9
In the present case the electromechanical fgi¢gis represented in terms of the voltage),
ft) = —0u(t) (10)

with the electromechanical coupling coefficiérds scaling factor. It is seen that this electrome-
chanical force term in (8) vanishes fo(t) = 0, and the stiffness matriK in (8) therefore
represents the elastic stiffness of the structure with teegelectric transducer attached with
short-circuited electrodes.

The equivalent structural properties are convenientiytified from the frequency repre-
sentation of (8), which is obtained by introducing the hammaexponential representations
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u(t) = ue*t andf(t) = fe“t with angular frequency and frequency amplitudasandf. In
the absence of external loading the equation of motion (@)eawritten as

[K —w*M]u = wf (11)
The transducer deformatianis obtained by inverting the above relation,
u=wu= (wT[K —wM] ! w)f (12)

The inverse of the system matri K — w?M | can be represented in terms of the eigenvec-
torsuy, - - - ,u, and eigenfrequencies,, - - - ,w, of the corresponding generalized eigenvalue
problem in (11) associated with = 0. Introducing an eigenvector representation of the dis-
placement and force vector in (11) the dynamic flexibilitytrixecan be written as

n 2

— W uuT
[K_WQM] 1 - Zw2_Jw2 o ’ (13)

T .
s u; Ku;

The dynamic flexibility at the transducer location in (122nHollows in the form

n 2

1 w3 1
WT[K—wQM] W:sz—Jka ~ —w2k Zk (14)

J=1 j#r

where the modal parameters are associated with the mode gbejoru;/(w”u;) normalized
to unity over the transducer. Thus, the modal stiffnesssmasd load are defined as

u/Ku, u’Mu, u?
A — e R (t) = —L—f£.(¢ 15
J (WTuj)Q o Ty (WTllj)2 ) f]( ) WTuj ( ) ( )

In the latter expression in (14) only the resonant term withr is now retained in its frequency-
dependent form, while the remaining non-resonant termeegtaced by their equivalent quasi-
static solution. The last sum can thus be expressed difegtlige expansion in (14) far = 0,

WTK_lwzzi:i+ZL:ki+i (16)

The background flexibilityl / k, is therefore formed by the sum of the quasi-static flexipilit
of all the non-resonant modes. When introducing (14) ineehuation (12) the transducer
deformation is obtained in pure scalar form as

2

w 1 1
~ r —— — 17
" w?—kar+k0]f (7)

This relation connects the local deformatiorof the piezoelectric transducer and the corre-
sponding local piezoelectric forgé In the time domain the expression in (17) represents the
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local deformationu(t) as the sum of a resonant modal deformatiQ(¥) and an additional
quasi-static terny (¢) /ko. Thus, the solution in (17) can be written as

1
u(t) = unlt) + - f(¢) (18)
where modal deformatioa, (¢) follows from the classic modal equation

myiiy(t) + koue(t) = f(t) + f(f) (19)

associated with the normalized mode shape vagtdfw” u,.). The modal mass:,. and modal
load f,(t) are together with the modal stiffness defined by the general modal relations in
(15). In (19) the piezoelectric forcg(t) also constitutes the corresponding modal force due to
the particular normalization of the resonant mode.

3. EXPLICIT PARAMETER CALIBRATION

The calibration procedure of the present paper is basedeofothith-order characteristic
equation inv obtained by combining the frequency representation of tadahdynamic equa-
tion (19) with the corresponding filter equation in (3) foetkeries circuit or in (6) for the
parallel circuit. The influence of background flexibilitypfn the non-resonant vibration modes
is taken explicitly into account by the relation in (18). Tdadibration is based on the principle
of equal damping of the two modes associated with the el@ecbanical system, which is a
pole placement principle originally developed for the neatbal tuned mass damper in [12]
and recently applied to piezoelectritl. shunt circuit damping in [10, 17]. This section con-
structs the generic polynomial equation with equal modalgiag and presents the calibration
procedure based on direct parameter equivalence betweehanacteristic equations.

3.1 Complex root analysis

Figure 2 shows the desired trajectories of the two completsro,; andw, with positive
real part of the corresponding fourth-order characteristjuation. The two associated vibra-

wo

Wy

Im[w]

0 wo
Relw]

Figure 2. Complex root trajectories with circles indicgtsolutionsu, , wo.
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tion modes will have equal damping ratiadf andw, lie on the same line containing the origin
of the complex plane, as illustrated in the figure. This implihat the roots; andw, are in-
verse points with respect to a circle with radius This desirable condition can be expressed
asw,/wy = wp/w;, Wwhere the asterisk denotes the complex conjugate. As denated in [12]
this reciprocal relation implies a particular form of theifth-order polynomial equation, which
governs the complex-root solution illustrated in Fig. 2. eThaximum damping of the individ-
ual modes is obtained at the bifurcation paipt where the two complex roots meet. However,
at this bifurcation point the two angular frequencies ofrtiaes are identical{ = w-), which
implies constructive interference of the two vibrationnfiarand thereby an undesirable single
peak in the dynamic response amplification, as illustratef8, 12]. It has been thoroughly
demonstrated in [12] that an optimal balance between taeatt damping ratio and a suitable
separation of the vibration frequencies to avoid interieeeis obtained by the two roots indi-
cated by the circles in Fig. 2. By construction it can be showat these complex roots are
solutions to the generic equation

wh — (2+4€Y) wiw? + wy — 2iV26wew (W —wi) = 0 (20)

where( is the single remaining system parameter governing thenatike damping level. The
special property of equally damped modes is equivalent fwogimg a balance between the
cubic and linear terms in (20), whereby they cancel at theregice frequencyw,. This is the
basis of the parameter calibration consider in the follg/xsnbsections.

The parameter values of interest in connection with coranol damping of structures cor-
respond to the part in figure 2, where the raotandw, are inverse points in the circle. In this
part of the solution interval the two complex roots have thref

Wi = |w1,2|( V1=¢*+ ZC) (21)

where( is the common damping ratio of the two vibration modes asgediwith the targeted
resonance of the structure. A simple expression for the hrdadaping ratio¢ in terms of the
system parametef can be obtained by using the fact that the coefficient of theccierm in
(20) is the sum of the four roots [12]. When using the spegiaimetry properties of the four
roots the following approximate expression is obtainedtiercommon damping ratio

~ 1\/2¢ (22)

This approximate expression can be used to determine thensysrametef with respect to a
desired damping rati¢ and subsequently choose the piezoelectric transduceradibdate the
shunt circuit components to achieve the desired level ofahdamping.

3.2 Calibration of shunt circuit parameters

The calibration procedure is formulated in terms of the nhoelsponse.,.(t) described by
the modal equation of motion derived from (19),

i (1) + whur(t) = wiom (£ + £(0)) (23)
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This equation determines the modal displacemg(t) and is therefore combined with a local
equation for the transducer forgét) with feedback from the local deformation of the trans-
duceru(t), which is represented by (18) and includes the effect of tpamknd flexibility via
the termf(t) /ko.

3.2.1 Series shunt circuit

In the case of the serid8L shunt circuit the governing equation (3) relates the veltgg)
and the local deformation of the transdueét). Whenu(¢) is expressed in terms of the modal
displacement.,.(¢) by (18) and the transducer force is introduced by the redatio) = —0v(t),
the following second order differential equation is obéain

(14 w0 (F(8) + 26 f(0) + @2 f(1) = — ko (in(t) +2in(t)) (24)

where the electromechanical coupling relative to the metitihess and the background stiff-
ness are defined as

62 62
T Ck 0 ™7 Ch
The dynamic equations (23) and (24) are now expressed inrdggigncy domain, and the
natural vibration frequencies therefore follow from the associated characteristic équat

(25)

Koy

w? wiw? 1+ kK + Ko o

s _ (1 ) 2 2) er_2-ee<2 >:O
w (( + Ky 4 Ko)wy + W 1+/{0+1+/{0 iowew (w T W
(26)

The calibration procedure consists in establishing edgmae between this characteristic equa-
tion and the generic equation in (20).
The first step is to identify the reference frequengyboth from the ratio between the

coefficients to the linear and cubic terms and directly fromdonstant term. Elimination af,
between these two solutions then gives the filter frequesacy a

WP = (14 K + Ko)? W? 27)
1+ Ko

It is seen from this relation that the shunt circuit frequesacis always larger than the resonant

modal frequencw, of the structure.

The second step in the calibration procedure determinedaimping property of the shunt
circuit, represented by the filter damping paraméterFirst . is determined in terms of the
generic parameteérby comparing the coefficients of the cubic terms in (20) ar&].(Biowever,
the parametef also follows by comparing the coefficients of the quadragrots. Elimination
of £ between these two solutions directly determines the opfittex damping ratio as

Ky

1
2 (14 ko) (1 + iy + ro) (28)
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An estimate of the corresponding modal damping ratiis obtained by substitution of the
derived expression faf into the approximation (22). This gives the following rébatbetween
the damping ratio and the electromechanical coupling @eii
1 &,

2N_
C o 81-'-:‘10

(29)

where presence of background flexibility via the paramegeeduces the damping attained for
a given generalized electromechanical coupling coeffictgn

3.2.2 Parallel shunt circuit

For the parallel? L shunt circuit the voltage is governed by (6) and then repldnethe
transducer force via the relatigift) = —6v(t). Furthermore, the transducer deformatidn)
is again eliminated by (18) and the resulting filter equatian therefore be written as

(14 ko) f(t) + 2w f(t) + w2 f(t) = —ky iy i (t) (30)

In this case the frequency equations corresponding to (88)(a0) are combined, and the
corresponding fourth-order characteristic equatios is obtained as

2 2 92 .
4 2 2y W Wy 2iCewe 2 2
—((1+ &, + + ) + — - =0 31
w <( Kr + Ko)w; + w: T o Tt no 1 How (w wr) (31)

This equation is rather similar to (26) for the case of a sekié shunt circuit, the only differ-
ence occurring in the last term. Again the ratio betweenitieal and cubic terms identifies.
And sincewy is also determined by the constant term in (21) eliminatibwpbetween these
two solutions gives the filter frequency

w? = (1+ Ko)w? (32)

The damping parametér is given in terms of by comparing the coefficients of the cubic term,
while ¢ also follows from the quadratic terms. Again eliminatior¢dfetween these solutions
gives the optimal damping parameter,

2= 3k (33)

Finally, the attainable modal damping ratio can be estichéite the approximation in (22),
where¢ has been determined in connection with the derivatiog. o (33). It turns out that
the modal damping rati¢ in the present case is identical to the expression (29) mddeor the

series shunt circuit.

3.3 Design procedure

The design expressions in the previous subsection are giveformat where the general-
ized electromechanical coupling coeffici#if C is assumed known and the shunt circuit com-
ponents are then determined. However, the common soludraihé estimate of the attainable
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Table 1. Calibration of2 L shunt circuit components.

LC’wE RCw,
. 1 r
Se”es: i L
(14 ko + kr)? (14 Ko+ kr)3
1 1
Parallel: -
1+ Ko ZHT(]. + H())

modal damping ratio in (29) suggests that the electromecalproperties of the piezoelectric
transducer may initially be chosen based on a desired Iéwteeanodal damping@ges Thus,
the procedure is conveniently reversed so that it initiaijains an optimal value ¢f /C based
on the desired modal damping ratjgs and then determines the inductaricand resistance
R based on the properties of the chosen piezoelectric traesdliherefore, the desired modal
damping ratialges IS conveniently assumed given, while the background fleéwlzoefficient
Ko is expressed in terms of the modal flexibility coefficientasx, = (k,./ko)r,. Hereby, the
expression for the modal damping ratio in (29) can be ingdetegive the design formula

8C§ES

Ky = 34
1- 8(/%/%0){385 ( )
and the actual electromechanical coupling parameter thikwis from (25a) as
2
% = K, k, (35)

It is worth noting that the introduction of the backgroundiltelity parameters, actually leads
to a larger design value of the electromechanical couplogfficient. The shunt circuit com-
ponentsL and R can finally be determined via the respective expressionth&optimal filter
parameterss, and (.. The explicit design expressions for the shunt circuit congmts are
summarized in Table 1 for both the series and parailelshunt circuits.

4. DAMPING OF FLEXIBLE STRUCTURE

The purpose of this final example is both to illustrate thecigfficy of the balanced cali-
bration procedure with equal modal damping properties anglarticular to demonstrate the
importance of including the effect from non-resonant vilmamodes via the background flex-
ibility parameterx,.

4.1 Beam with piezoelectric transducer

Figure 3 shows two identical piezoelectric transducersgadasymmetrically on a cantilever
beam. The two piezoelectric transducers are convenigetydd as a single transducer couple

10
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with effective piezoelectric and shunt circuit parametéree beam is discretized by 10 finite
beam elements and the pair of piezoelectric transducessisreed to exactly occupy the fourth
element. The total contribution to the bending stiffnessrfithe transducer couple with short-
circuit electrodes i1, = $FI, whereE] is the beam bending stiffness. The stiffness matrix
is therefore given as

K = K, + EL,ww" (36)

whereK, is the stiffness matrix of the beam without piezoelectramtiducers, while the con-
nectivity vectorw defines the change in rotatidnp, = ¢, — 3 = w’u across the transducer
element. Finally, the mass of the transducer couple in mbded in the mass matrixI.

The piezoelectric transducers are connected to individisginant shunt circuits with iden-
tical resistance? and inductancd.. As demonstrated in (34) and (35) the dimensions and
properties of the piezoelectric transducer are convelgiehbsen or estimated so that a desired
value of the modal damping ratio = (4 iS Obtained for the resonant vibration mode of the
structure. The results from the calibration procedure aesgnted in Table 2 for the series
shunt circuit and in Table 3 for the parallel shunt circuibr Both shunt circuit configurations
the calibration is conducted the desired damping rafigs= 0.02 and 0.04. These results
are summarized in the top half of each table, while the bottathpresents the corresponding
results forxy = 0 without correction for background flexibility.

4.2 Root locus analysis

The last column in each of the Tables 2 and 3 gives the dampiigsrfor the two modes
associated with the first vibration form of the beam struetdihe damping ratio is determined
as¢ = Im|w]/|w|, where the complex-valued natural frequenag governed by the eigenvalue
problem constituted by the homogeneous form of the strataguation of motion (8) together
with the filter equation in (3) and (6) for the series and patahunt circuits, respectively. The
results for the damping ratio in the top half of both tablesvshhat the two damping ratios
are virtually identical and equal to the correspondingmeksvaluely.s. This demonstrates that
equal modal damping is obtained when using the present ¢cedacalibration procedure with
correction by the non-vanishing background flexibilityttare:,. In the bottom half of the tables
without correction for background:¢ = 0) the equal modal damping property is not retained.

zs3 X4

Je
¥3 /* *>904 +

K a -k
BN 4a BN

BN 10a K

Figure 3. Beam with nodal displacementand rotationp; and piezoelectric transducer pair.

11
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Table 2. Complex root analysis: Serigg. shunt circuit.

Cdes

Ky

Ko

LCw?

T

RCw,

Le (o ¢

Wy

0.02

0.04

0.0033

0.0151

0.0403

0.1834

0.9551 0.0765

0.8238 0.1326

0200
0200

0400
0399

1.0232 0.039%'

1.1018 0.073@'

0.02

0.04

0.0032

0.0128

0.0000

0.0000

0.9936 0.0796

0.9749 0.1570

0290
0118

0715
0143

1.0032 0.039%'

1.0128 0.079%'

In fact, the damping ratio from the first eigenvalue becoredarge, while the damping ratio
from the second eigenvalue is reduced, which consequesdlyces the effective damping of
the resonant structure.

4.3 Frequency response analysis

Figure 4 shows the frequency amplitude of the transversmaon «;, of the cantilever
beam in (a,b) and the amplitude of the piezoelectric fgfce —60v in (c,d). The results are
obtained from the frequency representation of the equafiomotion (8) with the transverse tip
force introduced by the load vectfir = [0 ..., f.,0]% and the corresponding filter equation
(3) or (6). Because the dynamic tip motion amplitude is ndized by the corresponding static
deflectionugip the curves in Fig. 4(a,b) represent the so-called dynamidlification, while
the force in Fig. 4(c,d) is normalized by the modal lodddefined in (15c). Each of the sub-
figures in Fig. 4 contain curves for the desired modal dampatios (4. = 0.02 and 0.04, as

Table 3. Complex root analysis: ParalleL. shunt circuit.

Coes  Fir ko LCw? 1/(RCuw,) Z— Ce ¢
.0200
0.02 0.0033 0.0403 0.9613 0.0832 1.0200 0.040% 0200
.0400
0.04 0.0151 0.1834 0.8450 0.1893 1.0878 0.087(8 0399
.0276
0.02 0.0032 0.0000 1.0000 0.0800 1.0000 0.040(8 0117
.0601
0.04 0.0128 0.0000 1.0000 0.1600 1.0000 0.080(8 0142

12
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(@) 40 (b) 40
30 30
o o
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= 2 —= 20
s =
10 10
0 0
0.9 1 11
w/wy
(c) 2 (d) 2
15 a 15
I\
w5 w5
>~ 1 >~ 1
~ ~
0.5 05
0

w/w, w/wy
Figure 4. (a,b) Dynamic amplification and (c,d) force amyalé for (a,c) series and (b,d) parallel
RL shunt circuit.

also considered in Table 2. The solid curves represent gsewdh correction for background
flexibility, while the dashed curves represent the corradpa case with, = 0. It is observed
that the solid curves in Fig. 4 show both the desired redndtighe vibration amplitude of the
structure and the entirely flat plateau in the magnitude efpilezoelectric force. For both the
series (a,c) and the parallel (b,d) shunt circuits the dhsheves exhibit a significant detuning
because of the absence of the correction for backgroundiliexi( o = 0). For the double
peak plateau of the dynamic amplification in Fig. 4(a,b) #fepeak is lowered, while the right
peak has become larger. This corresponds well with the wbdéoss of equal modal damping
discussed in the previous subsection and illustrated bsethéts in the bottom rows:{ = 0) of
Table 2. For the present transducer location it is foundttfeincrease in vibration amplitude is
approximately 50% compared to the calibration case wherejthorrection has been included.

5. CONCLUSIONS

The design of piezoelectri® L shunt circuits is commonly based on a single mode rep-
resentation of the structural response, whereby the elaeirhanical system is governed by
two coupled scalar equations: The modal equation of moti@hthe corresponding electric
filter equation. Although the electromechanical propertéthe piezoelectric transducer have
been be determined accurately, the assumed single modssegpation is an approximation,

13
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which may result in significant detuning of the actual systémthe present paper the trans-
ducer deformation is approximated by the resonant part fremargeted vibration mode and a
quasi-static contribution from the remaining non-resanération modes. This representation
introduces an additional background flexibility parametgmwhich modifies the coefficients of
the electric filter equation. As demonstrated the presehtsedackground flexibility param-
eter is easily taken into account by the proposed balandédatat#éon procedure because it is
based on full equivalence between the characteristic moseind the desired generic equation
with implied equal modal damping. The presented balanckiration procedure with explicit
correction for background flexibility comprises equal miatemping, effective reduction of the
dynamic amplification, no peak in the frequency dependentfamplitude, and explicit design
expressions for the system parameters. The accuracy afahisation procedure is illustrated
by a numerical example, which initial shows that the presevicthe background flexibility
parameter leads to a reduction in both inductance and aesist compared to the calibration
expressions withey = 0. Furthermore, it is seen that the property of equal modalpdagn
requires this correction for background flexibility, anctive case without correctiom{ = 0)
the desired flat plateau of the double peaks in the dynamidiffcapon is lost.
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