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Summary: ResonantRL shunt circuits represent a robust and effective approach topiezo-
electric damping, provided that the individual shunt circuit components are calibrated accu-
rately with respect to the dynamic properties of the corresponding flexible structure. The bal-
anced calibration procedure applied in the present analysis is based on equal damping of the
two modes associated with the resonant vibration form of thestructure. An important result
of the presented calibration procedure is the explicit inclusion of a quasi-static contribution
from the non-resonant vibration modes of the structure via asingle background flexibility pa-
rameter. This leads to explicit calibration expressions for the shunt circuit components and it is
demonstrated by a simple numerical example that the procedure with correction for background
flexibility leads to both equal damping of the two modes and effective response reduction.

1. INTRODUCTION

Piezoelectric transducers are used in many different scientific and industrial applications for
damping and control of the dynamic response of flexible structures [1]. Piezoelectric transduc-
ers are very versatile and may be used as for example actuator/sensor pairs in active control
schemes [1], as semi-active devices based on various switching techniques [2], or as passive
units in which the piezoelectric transducer is shunted to a suitable electric network [3, 4, 5].
Effective passive vibration damping of flexible structuresmay be obtained by introducing reso-
nantRL shunt circuits, where an inductanceL and a resistanceR forms an additional resonance
together with the inherent capacitanceC of the piezoelectric transducer [3, 4]. This resonance
can be synchronized with the structural frequency of the targeted vibration mode and thereby
effectively increase the damping level and reduce the vibration amplitudes of the flexible struc-
ture, provided that the individual circuit components are calibrated appropriately [6].

The classic calibration procedures for the seriesRL shunt circuit dates back to Hagood and
von Flotow [3], proposing both a frequency response calibration and a pole-placement technique
based on a root-locus analysis. The frequency response calibration for the parallelRL shunt
was shortly after proposed by Wu [4] and a summary of calibration techniques for both types of
RL shunt circuits is provided by Caruso [7]. Alternative calibration procedures have recently
been proposed in [8, 9, 10, 11].



Jan Høgsberg, Steen Krenk

The original work by Hagood and von Flotow [3] demonstrates that forRL shunt damping
optimal frequency response calibration is in fact non-optimal with respect to a root-locus analy-
sis, while optimal pole placement corresponds to non-optimal dynamic amplification properties.
However, for the classic tuned mass absorber the fixed point frequency calibration is equivalent
to equal damping in the two modes associated with the targeted vibration form, as demonstrated
by Krenk [12]. Furthermore, the device damping is calibrated to provide an optimal combina-
tion of response reduction of the structure and limited absorber motion. Exact equivalence
between equal modal damping and optimal response reductionappears to be a specific property
of the mechanical tuned mass absorber, and is therefore not directly available for the present
RL shunt circuit formats. However, as demonstrated in Krenk and Høgsberg [13] for general
control formats and in Høgsberg and Krenk [10] forRL shunt circuits the balanced calibration
technique with equal modal damping in fact also provides proper reduction of the frequency re-
sponse amplitudes. Thus, the balanced calibration procedure is here adopted for the calibration
of the shunt circuit components.

The performance of a resonant damping concept is very sensitive to even a small detun-
ing of the resonant filter parameters. However, the calibration of resonant damping strategies
is typically based on an approximate single mode representation of the flexible structure dy-
namics, where the interaction with non-resonant vibrationmodes is neglected. For mechanical
vibration absorbers this is often an adequate assumption because mechanical absorbers with an
oscillating absorber mass operate with respect to absolutemotion [14, 12]. This is different
for two-terminal piezoelectric transducers, which act on the deformation of the structure. As
demonstrated in the following the efficiency of piezoelectric RL shunt circuit damping depends
very much on the precise parameter calibration and thus the influence from the residual non-
resonant vibration modes must be included in the calibration expressions for the shunt circuit
components. The inclusion of the influence from residual vibration modes by a quasi-static rep-
resentation has previously been suggested for calibrationof resonant active control strategies
[15] and tuned mass vibration absorbers [16], and this principle is in the present case applied to
piezoelectricRL shunt circuit damping [17].

2. THE ELECTROMECHANICAL SYSTEM

The performance of piezoelectricRL shunt circuit damping relies on a precise balance
between the dynamics of the flexible structure and the electric circuit. Thus, the present section
presents the electric and mechanical models, which are usedfor calibration of the shunt circuit
parameters in the subsequent section.

2.1 The electric system

As shown in Figure 1(a) the piezoelectric transducer is described by a time variable current
sourceip(t) in parallel with a capacitanceC, see [18]. The corresponding series and parallel
configurations of a resonantRL shunt circuit are shown in Figures 1(b,c). The current flowing
into the piezoelectric transducer must be equal to the sum ofthe current in the current source
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Figure 1. Electric model of (a) piezoelectric transducer, and (b) series or (c) parallelRL shunts.

produced by the deformation of the piezoelectric transducer and the current in the capacitor.
When integrating this current relation the following classic charge balance equation is obtained,

q(t) = −θu(t) + Cv(t) (1)

whereq(t) is the charge in the piezoelectric transducer,u(t) is the deformation of the transducer,
while v(t) is the voltage across the transducer terminals. Thus,θ represents the electromechan-
ical coupling coefficient of the piezoelectric transducer.

2.1.1 Series shunt

For the series shunt circuit in Fig. 1b the voltage across thecircuit terminals is equal to
the sum of the voltage across the resistanceR and inductanceL, which leads to the following
relation between voltagev(t) and chargeq(t),

v(t) = −
(

Rq̇(t) + Lq̈(t)
)

(2)

Elimination of chargeq(t) between (1) and (2) followed by division withLC gives the normal-
ized filter equation for the piezoelectric transducer with aseriesRL shunt circuit,

v̈(t) + 2ζeωev̇(t) + ω2
e v(t) =

θ

C

(

ü(t) + 2ζeωe u̇(t)
)

(3)

The electric resonance frequencyωe and damping ratioζe are in this filter equation defined as

ωe =
1√
LC

, 2ζe = R

√

C

L
(4)

It follows from (3) that the feedback to the filter equation inthis case is comprised by a combi-
nation of the velocity and acceleration associated with thetransducer deformation.
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2.1.2 Parallel shunt

In Fig. 1c the parallel connection of the resistanceR and inductanceL implies that the total
current in the circuit is equal to the sum of the current in theindividual circuit components. This
leads to the following relation between voltage and charge,

1

R
v̇(t) +

1

L
v(t) = −q̈(t) (5)

Elimination ofq(t) between (1) and (5) followed by division withC gives the normalized reso-
nant filter equation

v̈(t) + 2ζeωev̇(t) + ω2
e v(t) =

θ

C
ü(t) (6)

with frequency and damping parameters

ωe =
1√
LC

, 2ζe =
1

R

√

L

C
(7)

Compared to the series shunt circuit the present equation in(6) receives pure acceleration feed-
back, and the filter damping ratioζe is inversely proportional to the circuit resistanceR.

2.2 The mechanical system

The dynamics of the flexible structure is represented by a discrete numerical model with the
equation of motion

Mü(t) + Ku(t) = wf(t) + fe(t) (8)

In this equation the column vectoru(t) contains the degrees of freedom of the numerical model,
the mass matrixM and stiffness matrixK represent the inertia and elastic properties of the com-
bined structure, while the column vectorfe(t) represents the external loading on the structure.
The first term on the right hand side of (8) represents the electromechanical force on the struc-
ture from the piezoelectric transducer, where the connectivity vectorw defines the deformation
of the transducer as

u(t) = w
T
u(t) (9)

In the present case the electromechanical forcef(t) is represented in terms of the voltagev(t),

f(t) = − θv(t) (10)

with the electromechanical coupling coefficientθ as scaling factor. It is seen that this electrome-
chanical force term in (8) vanishes forv(t) = 0, and the stiffness matrixK in (8) therefore
represents the elastic stiffness of the structure with the piezoelectric transducer attached with
short-circuited electrodes.

The equivalent structural properties are conveniently identified from the frequency repre-
sentation of (8), which is obtained by introducing the harmonic exponential representations
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u(t) = ueiωt andf(t) = feiωt with angular frequencyω and frequency amplitudesu andf . In
the absence of external loading the equation of motion (8) can be written as

[K− ω2
M ]u = wf (11)

The transducer deformationu is obtained by inverting the above relation,

u = w
T
u =

(

w
T [K− ω2

M ]−1
w

)

f (12)

The inverse of the system matrix[K − ω2
M ] can be represented in terms of the eigenvec-

torsu1, · · · ,un and eigenfrequenciesω1, · · · , ωn of the corresponding generalized eigenvalue
problem in (11) associated withf = 0. Introducing an eigenvector representation of the dis-
placement and force vector in (11) the dynamic flexibility matrix can be written as

[

K− ω2
M

]−1
=

n
∑

j=1

ω2
j

ω2
j − ω2

uju
T
j

uT
j Kuj

. (13)

The dynamic flexibility at the transducer location in (12) then follows in the form

w
T
[

K− ω2
M

]−1
w =

n
∑

j=1

ω2
j

ω2
j − ω2

1

kj
≃ ω2

r

ω2
r − ω2

1

kr
+

n
∑

j 6=r

1

kj
(14)

where the modal parameters are associated with the mode shape vectoruj/(w
T
uj) normalized

to unity over the transducer. Thus, the modal stiffness, mass and load are defined as

kj =
u
T
j Kuj

(wTuj)2
, mj =

u
T
j Muj

(wTuj)2
, fj(t) =

u
T
j

wTuj

fe(t) (15)

In the latter expression in (14) only the resonant term withj = r is now retained in its frequency-
dependent form, while the remaining non-resonant terms arereplaced by their equivalent quasi-
static solution. The last sum can thus be expressed directlyby the expansion in (14) forω = 0,

w
T
K

−1
w =

n
∑

j=1

1

kj
=

1

kr
+

n
∑

j 6=r

1

kj
=

1

kr
+

1

k0
(16)

The background flexibility1/k0 is therefore formed by the sum of the quasi-static flexibility
of all the non-resonant modes. When introducing (14) into the equation (12) the transducer
deformation is obtained in pure scalar form as

u ≃
[ ω2

r

ω2
r − ω2

1

kr
+

1

k0

]

f (17)

This relation connects the local deformationu of the piezoelectric transducer and the corre-
sponding local piezoelectric forcef . In the time domain the expression in (17) represents the
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local deformationu(t) as the sum of a resonant modal deformationur(t) and an additional
quasi-static termf(t)/k0. Thus, the solution in (17) can be written as

u(t) = ur(t) +
1

k0
f(t) (18)

where modal deformationur(t) follows from the classic modal equation

mrür(t) + krur(t) = f(t) + fr(t) (19)

associated with the normalized mode shape vectorur/(w
T
ur). The modal massmr and modal

load fr(t) are together with the modal stiffnesskr defined by the general modal relations in
(15). In (19) the piezoelectric forcef(t) also constitutes the corresponding modal force due to
the particular normalization of the resonant mode.

3. EXPLICIT PARAMETER CALIBRATION

The calibration procedure of the present paper is based on the fourth-order characteristic
equation inω obtained by combining the frequency representation of the modal dynamic equa-
tion (19) with the corresponding filter equation in (3) for the series circuit or in (6) for the
parallel circuit. The influence of background flexibility from the non-resonant vibration modes
is taken explicitly into account by the relation in (18). Thecalibration is based on the principle
of equal damping of the two modes associated with the electromechanical system, which is a
pole placement principle originally developed for the mechanical tuned mass damper in [12]
and recently applied to piezoelectricRL shunt circuit damping in [10, 17]. This section con-
structs the generic polynomial equation with equal modal damping and presents the calibration
procedure based on direct parameter equivalence between the characteristic equations.

3.1 Complex root analysis

Figure 2 shows the desired trajectories of the two complex rootsω1 andω2 with positive
real part of the corresponding fourth-order characteristic equation. The two associated vibra-

0
0

Re[ω]

Im
[ω
]

ω0

ω0

ω1

ω2
ωb

Figure 2. Complex root trajectories with circles indicating solutionsω1, ω2.
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tion modes will have equal damping ratio ifω1 andω2 lie on the same line containing the origin
of the complex plane, as illustrated in the figure. This implies that the rootsω1 andω2 are in-
verse points with respect to a circle with radiusω0. This desirable condition can be expressed
asω2/ω0 = ω0/ω

∗
1, where the asterisk denotes the complex conjugate. As demonstrated in [12]

this reciprocal relation implies a particular form of the fourth-order polynomial equation, which
governs the complex-root solution illustrated in Fig. 2. The maximum damping of the individ-
ual modes is obtained at the bifurcation pointωb, where the two complex roots meet. However,
at this bifurcation point the two angular frequencies of themodes are identical (ω1 = ω2), which
implies constructive interference of the two vibration forms and thereby an undesirable single
peak in the dynamic response amplification, as illustrated in [3, 12]. It has been thoroughly
demonstrated in [12] that an optimal balance between the attained damping ratio and a suitable
separation of the vibration frequencies to avoid interference is obtained by the two roots indi-
cated by the circles in Fig. 2. By construction it can be shownthat these complex roots are
solutions to the generic equation

ω4 − (2 + 4ξ2)ω2
0ω

2 + ω4
0 − 2i

√
2ξω0ω

(

ω2 − ω2
0

)

= 0 (20)

whereξ is the single remaining system parameter governing the attainable damping level. The
special property of equally damped modes is equivalent to imposing a balance between the
cubic and linear terms in (20), whereby they cancel at the reference frequency±ω0. This is the
basis of the parameter calibration consider in the following subsections.

The parameter values of interest in connection with controland damping of structures cor-
respond to the part in figure 2, where the rootsω1 andω2 are inverse points in the circle. In this
part of the solution interval the two complex roots have the form

ω1,2 = |ω1,2|
(

√

1− ζ2 + iζ
)

(21)

whereζ is the common damping ratio of the two vibration modes associated with the targeted
resonance of the structure. A simple expression for the modal damping ratioζ in terms of the
system parameterξ can be obtained by using the fact that the coefficient of the cubic term in
(20) is the sum of the four roots [12]. When using the special symmetry properties of the four
roots the following approximate expression is obtained forthe common damping ratio

ζ ≃ 1

2

√
2 ξ (22)

This approximate expression can be used to determine the system parameterξ with respect to a
desired damping ratioζ and subsequently choose the piezoelectric transducer and calibrate the
shunt circuit components to achieve the desired level of modal damping.

3.2 Calibration of shunt circuit parameters

The calibration procedure is formulated in terms of the modal responseur(t) described by
the modal equation of motion derived from (19),

ür(t) + ω2
rur(t) = ω2

r

1

kr

(

f(t) + fr(t)
)

(23)

7



Jan Høgsberg, Steen Krenk

This equation determines the modal displacementur(t) and is therefore combined with a local
equation for the transducer forcef(t) with feedback from the local deformation of the trans-
duceru(t), which is represented by (18) and includes the effect of background flexibility via
the termf(t)/k0.

3.2.1 Series shunt circuit

In the case of the seriesRL shunt circuit the governing equation (3) relates the voltagev(t)
and the local deformation of the transduceru(t). Whenu(t) is expressed in terms of the modal
displacementur(t) by (18) and the transducer force is introduced by the relation f(t) = −θv(t),
the following second order differential equation is obtained

(1 + κ0)
(

f̈(t) + 2ζeωeḟ(t)
)

+ ω2
e f(t) = − kr κr

(

ür(t) + 2ζeωeu̇r(t)
)

(24)

where the electromechanical coupling relative to the modalstiffness and the background stiff-
ness are defined as

κr =
θ2

Ckr
, κ0 =

θ2

Ck0
(25)

The dynamic equations (23) and (24) are now expressed in the frequency domain, and the
natural vibration frequenciesω therefore follow from the associated characteristic equation,

ω4 −
(

(1 + κr + κ0)ω
2
r + ω2

e

) ω2

1 + κ0

+
ω2
eω

2
r

1 + κ0

− 2iζeωeω
(

ω2 − 1 + κr + κ0

1 + κ0

ω2
r

)

= 0

(26)
The calibration procedure consists in establishing equivalence between this characteristic equa-
tion and the generic equation in (20).

The first step is to identify the reference frequencyω0 both from the ratio between the
coefficients to the linear and cubic terms and directly from the constant term. Elimination ofω0

between these two solutions then gives the filter frequency as

ω2
e =

(1 + κr + κ0)
2

1 + κ0

ω2
r (27)

It is seen from this relation that the shunt circuit frequency ωe is always larger than the resonant
modal frequencyωr of the structure.

The second step in the calibration procedure determines thedamping property of the shunt
circuit, represented by the filter damping parameterζe. First ζe is determined in terms of the
generic parameterξ by comparing the coefficients of the cubic terms in (20) and (26). However,
the parameterξ also follows by comparing the coefficients of the quadratic terms. Elimination
of ξ between these two solutions directly determines the optimal filter damping ratio as

ζ2e =
1

2

κr

(1 + κ0)(1 + κr + κ0)
(28)
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An estimate of the corresponding modal damping ratioζ is obtained by substitution of the
derived expression forξ into the approximation (22). This gives the following relation between
the damping ratio and the electromechanical coupling coefficient

ζ2 ≃ 1

8

κr

1 + κ0

(29)

where presence of background flexibility via the parameterκ0 reduces the damping attained for
a given generalized electromechanical coupling coefficient κr.

3.2.2 Parallel shunt circuit

For the parallelRL shunt circuit the voltage is governed by (6) and then replaced by the
transducer force via the relationf(t) = −θv(t). Furthermore, the transducer deformationu(t)
is again eliminated by (18) and the resulting filter equationcan therefore be written as

(1 + κ0)f̈(t) + 2ζeωeḟ(t) + ω2
e f(t) = − kr κr ür(t) (30)

In this case the frequency equations corresponding to (23) and (30) are combined, and the
corresponding fourth-order characteristic equation inω is obtained as

ω4 −
(

(1 + κr + κ0)ω
2
r + ω2

e

) ω2

1 + κ0

+
ω2
eω

2
r

1 + κ0

− 2iζeωe

1 + κ0

ω
(

ω2 − ω2
r

)

= 0 (31)

This equation is rather similar to (26) for the case of a seriesRL shunt circuit, the only differ-
ence occurring in the last term. Again the ratio between the linear and cubic terms identifiesω0.
And sinceω0 is also determined by the constant term in (21) elimination of ω0 between these
two solutions gives the filter frequency

ω2
e = (1 + κ0)ω

2
r (32)

The damping parameterζe is given in terms ofξ by comparing the coefficients of the cubic term,
while ξ also follows from the quadratic terms. Again elimination ofξ between these solutions
gives the optimal damping parameter,

ζ2e = 1

2
κr (33)

Finally, the attainable modal damping ratio can be estimated by the approximation in (22),
whereξ has been determined in connection with the derivation ofζe in (33). It turns out that
the modal damping ratioζ in the present case is identical to the expression (29) obtained for the
series shunt circuit.

3.3 Design procedure

The design expressions in the previous subsection are givenin a format where the general-
ized electromechanical coupling coefficientθ2/C is assumed known and the shunt circuit com-
ponents are then determined. However, the common solution for the estimate of the attainable

9
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Table 1. Calibration ofRL shunt circuit components.

LCω2

r
RCωr

Series:
1 + κ0

(1 + κ0 + κr)2

√

2κr

(1 + κ0 + κr)3

Parallel:
1

1 + κ0

√

1

2κr(1 + κ0)

modal damping ratio in (29) suggests that the electromechanical properties of the piezoelectric
transducer may initially be chosen based on a desired level of the modal dampingζdes. Thus,
the procedure is conveniently reversed so that it initiallyobtains an optimal value ofθ2/C based
on the desired modal damping ratioζdes, and then determines the inductanceL and resistance
R based on the properties of the chosen piezoelectric transducer. Therefore, the desired modal
damping ratioζdes is conveniently assumed given, while the background flexibility coefficient
κ0 is expressed in terms of the modal flexibility coefficientκr asκ0 = (kr/k0)κr. Hereby, the
expression for the modal damping ratio in (29) can be inverted to give the design formula

κr =
8ζ2des

1− 8(kr/k0)ζ2des

(34)

and the actual electromechanical coupling parameter then follows from (25a) as

θ2

C
= κr kr (35)

It is worth noting that the introduction of the background flexibility parameterκ0 actually leads
to a larger design value of the electromechanical coupling coefficient. The shunt circuit com-
ponentsL andR can finally be determined via the respective expressions forthe optimal filter
parametersωe and ζe. The explicit design expressions for the shunt circuit components are
summarized in Table 1 for both the series and parallelRL shunt circuits.

4. DAMPING OF FLEXIBLE STRUCTURE

The purpose of this final example is both to illustrate the efficiency of the balanced cali-
bration procedure with equal modal damping properties and in particular to demonstrate the
importance of including the effect from non-resonant vibration modes via the background flex-
ibility parameterκ0.

4.1 Beam with piezoelectric transducer

Figure 3 shows two identical piezoelectric transducers placed symmetrically on a cantilever
beam. The two piezoelectric transducers are conveniently treated as a single transducer couple

10
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with effective piezoelectric and shunt circuit parameters. The beam is discretized by 10 finite
beam elements and the pair of piezoelectric transducers is assumed to exactly occupy the fourth
element. The total contribution to the bending stiffness from the transducer couple with short-
circuit electrodes isEIp =

1
2
EI, whereEI is the beam bending stiffness. The stiffness matrix

is therefore given as
K = Kb + EIpww

T (36)

whereKb is the stiffness matrix of the beam without piezoelectric transducers, while the con-
nectivity vectorw defines the change in rotation∆ϕ4 = ϕ4 − ϕ3 = w

T
u across the transducer

element. Finally, the mass of the transducer couple in not included in the mass matrixM.
The piezoelectric transducers are connected to individualresonant shunt circuits with iden-

tical resistanceR and inductanceL. As demonstrated in (34) and (35) the dimensions and
properties of the piezoelectric transducer are conveniently chosen or estimated so that a desired
value of the modal damping ratioζ = ζdes is obtained for the resonant vibration mode of the
structure. The results from the calibration procedure are presented in Table 2 for the series
shunt circuit and in Table 3 for the parallel shunt circuit. For both shunt circuit configurations
the calibration is conducted the desired damping ratiosζdes = 0.02 and 0.04. These results
are summarized in the top half of each table, while the bottomhalf presents the corresponding
results forκ0 = 0 without correction for background flexibility.

4.2 Root locus analysis

The last column in each of the Tables 2 and 3 gives the damping ratios for the two modes
associated with the first vibration form of the beam structure. The damping ratio is determined
asζ = Im[ω]/|ω|, where the complex-valued natural frequencyω is governed by the eigenvalue
problem constituted by the homogeneous form of the structural equation of motion (8) together
with the filter equation in (3) and (6) for the series and parallel shunt circuits, respectively. The
results for the damping ratio in the top half of both tables show that the two damping ratios
are virtually identical and equal to the corresponding desired valueζdes. This demonstrates that
equal modal damping is obtained when using the present balanced calibration procedure with
correction by the non-vanishing background flexibility factorκ0. In the bottom half of the tables
without correction for background (κ0 = 0) the equal modal damping property is not retained.

x3 x4

ϕ3 ϕ4

fe

4a

a

10a

Figure 3. Beam with nodal displacementxj and rotationϕj and piezoelectric transducer pair.
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Table 2. Complex root analysis: SeriesRL shunt circuit.

ζdes κr κ0 LCω2

r
RCωr

ωe

ωr

ζe ζ

0.02 0.0033 0.0403 0.9551 0.0765 1.0232 0.0392
0.0200
0.0200

0.04 0.0151 0.1834 0.8238 0.1326 1.1018 0.0731
0.0400
0.0399

0.02 0.0032 0.0000 0.9936 0.0796 1.0032 0.0399
0.0290
0.0118

0.04 0.0128 0.0000 0.9749 0.1570 1.0128 0.0795
0.0715
0.0143

In fact, the damping ratio from the first eigenvalue becomes too large, while the damping ratio
from the second eigenvalue is reduced, which consequently reduces the effective damping of
the resonant structure.

4.3 Frequency response analysis

Figure 4 shows the frequency amplitude of the transverse tipmotionutip of the cantilever
beam in (a,b) and the amplitude of the piezoelectric forcef = −θv in (c,d). The results are
obtained from the frequency representation of the equationof motion (8) with the transverse tip
force introduced by the load vectorfe = [ 0 . . . , fe , 0 ]

T and the corresponding filter equation
(3) or (6). Because the dynamic tip motion amplitude is normalized by the corresponding static
deflectionu0

tip the curves in Fig. 4(a,b) represent the so-called dynamic amplification, while
the force in Fig. 4(c,d) is normalized by the modal loadfr defined in (15c). Each of the sub-
figures in Fig. 4 contain curves for the desired modal dampingratiosζdes = 0.02 and 0.04, as

Table 3. Complex root analysis: ParallelRL shunt circuit.

ζdes κr κ0 LCω2

r
1/(RCωr)

ωe

ωr

ζe ζ

0.02 0.0033 0.0403 0.9613 0.0832 1.0200 0.0408
0.0200
0.0200

0.04 0.0151 0.1834 0.8450 0.1893 1.0878 0.0870
0.0400
0.0399

0.02 0.0032 0.0000 1.0000 0.0800 1.0000 0.0400
0.0276
0.0117

0.04 0.0128 0.0000 1.0000 0.1600 1.0000 0.0800
0.0601
0.0142
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Figure 4. (a,b) Dynamic amplification and (c,d) force amplitude for (a,c) series and (b,d) parallel
RL shunt circuit.

also considered in Table 2. The solid curves represent the case with correction for background
flexibility, while the dashed curves represent the corresponding case withκ0 = 0. It is observed
that the solid curves in Fig. 4 show both the desired reduction in the vibration amplitude of the
structure and the entirely flat plateau in the magnitude of the piezoelectric force. For both the
series (a,c) and the parallel (b,d) shunt circuits the dashed curves exhibit a significant detuning
because of the absence of the correction for background flexibility (κ0 = 0). For the double
peak plateau of the dynamic amplification in Fig. 4(a,b) the left peak is lowered, while the right
peak has become larger. This corresponds well with the observed loss of equal modal damping
discussed in the previous subsection and illustrated by theresults in the bottom rows (κ0 = 0) of
Table 2. For the present transducer location it is found thatthe increase in vibration amplitude is
approximately 50% compared to the calibration case where theκ0 correction has been included.

5. CONCLUSIONS

The design of piezoelectricRL shunt circuits is commonly based on a single mode rep-
resentation of the structural response, whereby the electromechanical system is governed by
two coupled scalar equations: The modal equation of motion and the corresponding electric
filter equation. Although the electromechanical properties of the piezoelectric transducer have
been be determined accurately, the assumed single mode representation is an approximation,
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which may result in significant detuning of the actual system. In the present paper the trans-
ducer deformation is approximated by the resonant part fromthe targeted vibration mode and a
quasi-static contribution from the remaining non-resonant vibration modes. This representation
introduces an additional background flexibility parameterκ0, which modifies the coefficients of
the electric filter equation. As demonstrated the presence of the background flexibility param-
eter is easily taken into account by the proposed balanced calibration procedure because it is
based on full equivalence between the characteristic equations and the desired generic equation
with implied equal modal damping. The presented balanced calibration procedure with explicit
correction for background flexibility comprises equal modal damping, effective reduction of the
dynamic amplification, no peak in the frequency dependent force amplitude, and explicit design
expressions for the system parameters. The accuracy of thiscalibration procedure is illustrated
by a numerical example, which initial shows that the presence of the background flexibility
parameter leads to a reduction in both inductance and resistance, compared to the calibration
expressions withκ0 = 0. Furthermore, it is seen that the property of equal modal damping
requires this correction for background flexibility, and inthe case without correction (κ0 = 0)
the desired flat plateau of the double peaks in the dynamic amplification is lost.
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