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Summary: The paper presents statistical analysis of damage index used to detect structural
damage in the recently developed enhanced nonlinear crack-wave interaction technique. Con-
sidered damage detection technique combines Lamb waves propagation with nonlinear acous-
tics. Low-frequency excitation is used to modulate propagating Lamb waves in the presence of
fatigue cracks. Analysis of these modulations is used to detect the presence of damage. This
method is extremely sensitive to any nonlinearity source present in an inspected object. It is,
however, also sensitive to measurement noise. Therefore, currently it is necessary to perform
high number of measurements in order to minimize the influence of noise on the results. A possi-
ble solution to that problem is the use of statistical resampling techniques. This paper presents
a method of measurement data resampling in order to artificially increment the population size
and improve the quality of estimates.

1. INTRODUCTION

Various damage detection methods based on ultrasonic wave propagation have been devel-
oped for the last few decades [1, 2]. Within this group of methods there are the techniques based
on nonlinear vibration and acoustic phenomena that gain an increasing attention in the scientific
community [2, 3, 4]. This is mainly due to the fact that the nonlinear damage detection methods
are usually much more sensitive to detect small damage severities than their linear counterparts
[5].

The nonlinear vibro-acoustic modulation technique [8, 9, 10, 11, 12] is one of the most
widely used approaches. The method allows for crack detection in metals [12, 13, 14] and
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impact damage detection in composites [15, 16, 17, 18]. There are two major drawbacks asso-
ciated with the method. Firstly, damage location is limited and often not possible. Although
a few attempts have been made to perform imaging s of damage-related nonlinearities, these
studies are still limited.

Secondly, reliable damage indices - that indicate damage-related nonlinearities - are re-
quired. This is mainly due to the fact that nonlinear effects can be often associated with bound-
aries, material behaviour or measureing chain. The paper aims to address the second problem.
The objective is to present a method of measurement data resampling in order to artificially
increment the population size and improve the quality of estimates.

2. DESCRIPTION OF PROBLEM

The proposed damage detection technique utilizes the combination of a high frequency
Lamb wave packet along with a low frequency harmonic excitation for detection of fatigue
cracks. The main idea is to use a low frequency harmonic excitation to perturb fatigue crack,
and probe that behaviour with a high frequency Lamb wave packet. Conceptually similar ap-
proaches for locating isolated nonlinear scattering sources, that utilize low frequency pumping
wave and high frequency burst of probing wave, have been already proposed in the literature
[6, 7] with the difference in the experimental setup and signal processing. In the proposed ap-
proach we observe that the behaviour of Lamb wave packet that propagates through the material
is altered when interacting with the perturbed crack. If we synchronize the high frequency wave
packets with low frequency harmonic excitation in such a way that the wave packet crosses the
crack when it is in compression (Figure 1a) and in tension (Figure 1b) we can extract useful
diagnostic information. When crack is in tension the crack faces will separate or partly separate
and a greater part of an incident wave packet will be reflected. In contrast when the crack is in
compression the incident wave packet can travel through the crack.

v ilan

(a) (b)
Figure 1. Crack states: (a) compressed and (b) tensioned.

The responses should be, therefore, measured in these two configurations and the difference
between them should be calculated. It is expected that in the presence of nonlinearity (i.e.
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fatigue crack) the difference of those signals will be non-zero. This non-zero difference can
be used to detect the presence and the location of a fatigue crack. It is expected that in case of
experimental measurements, obtained responses will be of small amplitudes and signal-to-noise
ratio will be relatively low. Therefore, it is required to repeat experiments a number of times to
obtain more confidence concerning the results [19].

3. MATHEMATICAL MODEL

Mathematical model which describes considered situation will be presented in this section.
There are two families of signals, C' and D. Each family consists n signals from only one
dynamic state, respectively close and open state. It is assumed that n is even. Each element of
family C' is random process and can be written as

Xz(t) = C(t) + Ei,ta (1)

analogously, each element of family D can be written as

Yi(t) = D(t) + €ntiy (2)

where ¢ is time, i is the index of signal (from 1 to n), C'(¢) and D(t) are deterministic functions
and ¢;; are independent and identically distributed zero-mean random variables. Values of ¢; ;
can be understood as measurement noise and functions C' and D are responses in a perfect
situation without any measurement errors. The second index ? in ¢; ; is fixed, so can be omitted
to make calculations more lucid, hence €,.; = €, ;.

4. DOES C(t) EQUAL D(t)?

The main idea of the test is to analyse differences between collected signals. Based on
differences between elements from the family C', n/2 random variables is constructed in the
following way.

A = Xoiq(t) — Xo4(1)
= C(t) + €91 — C(t) — €9; (3)
= €2;—1 — €24

Analogously, next n/2 random variables is created for the family D.

Aoy = Yoi1(t) — Yoi(t)
= D(t) + €ns2i1 — D(t) — €nya “)
= €n42i-1 — €nt2i
This process produces n random variables which are linked with differences of pairs drawn

from the same state. Afterwards n random variables By, B», ..., B,, are created. Those are
based on differences between different families, hence:
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B; = X;(t) = Y;(t)
=C(t)+€¢—D(t) — enti 5)
=& — e + C(t) = D(t)
Of course A; and B; depend on ¢, but since it is fixed, it is omitted. Ordinary testing if C'()
equals D(t) isn’t plausible due to the relatively big measurement errors. One can eliminate
this inconvenience by averaging difference between C'(¢) and D(t) for all ¢. Unfortunately this

approach causes a problem as well, because sign of C(t) — D(t) varies. To resolve this issue
the mean of the squares A; and B; are considered.

l iAf = l QZnGZZ - z iEQi—IEQi (6)
tis "o "o
D I B P SCR o

+(C(t) — D(t))*
Hence the difference Z(t) between = >°" | B and 1 Y% | AZis

R S U N

+(C(t) — D(1))*

Since expected value of random variable is linear one can calculate expected values sep-
arately for €g;_q€9;, €;€,4; and €; — €,,. All of them are zero, so the average of Z(t) is just
(C(t) — D(t))?. Hence an estimator which is based on the same idea is unbiased. Since
(C(t) — D(t))?* is always positive, the problem with the sign of (C'(t) — D(t)) is resolved.
One can average all Z(t) to get better approximation.

5. ESTIMATOR Z,(t)

Currently it is necessary to perform high number of measurements in order to minimize the
influence of noise on the results. In this section possible solution will be presented. The main
idea is to build Z(¢) in a slightly different way to make it more reliable.

Assuming the same model as in previous section, one can construct Z,(t) in expanded way.

Based on differences between elements from the family C, Ll) random variables is con-
structed.

Ay = Xi(t) — X;(1)
=C@t)+e6—C(t) —¢ )

:Gi—ﬁj
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(n—=1)
2

for 1 <i < j < n. In analogous way, next - random variables is created for family D.

An/2+i,n/2+j = }/;(t) - Y;(t)
= €n4i — €ntj

for 1 < i < j < n. This process produces n(n — 1) random variables which are linked with
the differences of pairs drawn from the same state. Afterwards n? random variables is created.
Those are based on differences between different families, hence:

Bi; = Xi(t) = Y;(t)
=C(t)+e —D(t) — €pyj (11)
=€ — €y + C(t) — D(1)
for 1 < 7,5 < n. To make calculation more lucid only B; ; for i # j will be take into account.

So eventually n(n — 1) variables of B kind is considered. As before, the average of A and B
has to be calculated, the results are respectively equal:

1 2
A=— Z €& — ——— Z (€i€j + €nti€nj) (12)

n(n —1) 1<i<j<n

1o, 2
B :ﬁ € — m Z €i€ntj

— 1<iZj<n (13)
z(c;l(a:ll?)@)) S™ (6= ensy) + (C(1) = D(1))?
1<i#j<n

and the difference between them is Z,(t). The same arguments as in case of Z(t) prove that
expected value of Z,(t) is also (C(t) — D(t))>.

A question arises, is there a gain from using Z,(¢) instead of Z(¢)? To answer this question
one can compare variance of Z(t) and Zs(t).

6. VARIANCE OF Z(t) AND Z,(t) ESTIMATORS

In this section comparison of variance of Z(t) and Z5(t) will be provided.

n

2 2 —
Var(Z(t)) = ((ﬁ Z €2i-1€2i = Z €i€nti
=1

=1

L 2ACH) = D)) i<€i — ensi) + (C(t) = D(t))? — E(Z(t))> )

n -
=1

(14)

Since E(Z(t)) = (C(t) — D(t))? and 2 is constant, variance of Z(t) equals
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Z(t) = %E ((Z €2;_1€2; — Z €i€nti + (C(t) — D(t)) Z(eZ — enﬂ-)) ) . (15)

i=1 i=1

After multiplication one obtains expressions of following kinds:

o (ei_1€9;)%, forl <i <n,

(€i€nsi)? for 1 < i < n,

o ¢, forl <i<2n,

® cienpg,forl <7< n,

® 916960 1625, forl <71 <n, 1 <j<mn,buti#j,
® ci€nti€i€ntj,forl <i<n,1<j<n,buti#j,

® cicpqj,forl <e<n,1<j<n,

® o _1€9€i€6ptj, forl <i<n,1<j<n,

® cyj€€5,forl <i<mn,1<j5<2n,

® cicppi€j,forl <iv<n,1<j7<2n.

Since €; are independent and zero-mean only first three kinds of random variables have
non-zero mean. To obtain Var(Z(t)) one has to count how often they occur.

e (€9;_1€9;)% occurs once foreach 1 < i < n,
° (eienH)Q occurs once foreach 1 < ¢ <n,

° e? occurs once foreach 1 <4 < 2n,

Hence
Var(Z(t)) :iE i(e €2i)° —i—iE i(ee )2
n2 - 21—1€2¢ TL2 - 1Cn+1
4(01t> D)’ [ < ) o
+ 3 E Zel
=1
Therefore



Kajetan Dziedziech, Konrad Zolna, Lukasz Pieczonka, Wieslaw J. Staszewski, Piotr Kijanka

Var(z(t)) = Sa? + 2CU_DOV 2 an

where o is variance of €;¢; (i # j) and o is variance of ¢;. Analogously, variance of Z5(t)
equals

2 2
ZZ(t) :E<<m Z (61'63' + €n+i€n—|—j) - m Z €i€n+j

1<i<j<n

(C(t) - D(t)) 2 "
2(C(t) — D(t
+ €; — €Entj .
n(n—1) 1<§<n< ﬂ)) )
One can reformulate (18) into
4
Zg(t) :mE<( Z €i€j+ Z €nti€ntj — Z €i€n+j
1<i<j<n 1<i<j<n 1<i#j<n
2 (19)
+(C()—= D) > (Ei—€n+j)) )
1<i#j<n

After multiplication one obtains expressions of following kinds:
o (cie;)?, for1 <i<n,1<j<n,

o (6i+n€j+n)2’ for 1 S { S n, 1 S j S n,

(€i€jn)? for1 <i<n,1<j<n,buti#j

e, for1 < i< 2n,

€i€ntj.forl <i<n,1<j<mn,

eejepe, for1 <i<n,1<j<n, 1<k<n 1<I<n,buti#korj#l,
o cicjep,forl1 <1 <n,1<j53<n,1<k<2n.

Only first four kinds of random variables listed above have non-zero mean. To obtain
Var(Zy(t)) one has to count how often they occur.

e (ei€;)? occurs once foreach 1 < i < j < n,
® (€1n€j1n)? occurs once foreach 1 <i < j <n,

e (ci€j1n)* occurs once foreach 1 <i<n,1<j <n,buti#j
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e ¢ occurs (n — 1) times for each 1 <7 < 2n,

Once everything is sum up together Var(Z(t)) equals

Var(Zs(t) :ﬁE< 3 (621-1622-)2)

1<i<j<2n
i#j+n (20)
4C) = DOP :
E —1De; |.
+ n2(n—1)? ;(n )€;
Using the same designation as before, equation (20) transforms into,
4 » | UCW) ~ DO :
Var(Zy(t)) = e Z o T Zm— 1)o2. 21
1<i<j<2n =1
i#j+n
Hence, finally
t) — D(t))*
VCLT(ZQ(f)) — 8 Oé2 + 8(0( ) ( )) 0_2
n(n —1) n(n —1) 22)
- Var(Z(t))
 on-—1

Above calculations show that variance of Z,(t) is (n — 1) times smaller than variance of
Z(t).

7. CONCLUSIONS

A new estimator Z(t) for detection of nonlinear sources, such as fatigue crack damages, has
been presented. This estimator is based on comparison of responses from two dynamic states,
i.e. when the crack is opened and closed. The main advantage of the proposed estimator is
the lack of necessity for baseline measurements representing undamaged condition and lack of
sensitivity to temperature variations, as these measurements can be taken in short time apart. It
is expected that resulting estimator Z(¢) will be zero, however in practise, due to measurement
noises it never is. Therefore, confidence interval should be constructed, which tells whether
value of Z(t) is zero or not. Aforementioned confidence interval is linearly connected to the
standard deviation, and this is a square root of variance. It means that lower the variance,
there is more confidence concerning obtained results. In case of utilisation of estimator Z5(t)
confidence interval is much smaller than in case of the estimator Z(t), as variance is (n —
1) times smaller. Calculation of this confidence interval is not an easy task and it requires
application of the bootstrap technique, which is a future step of this work.
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