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Summary: For the modelling of thin elastic shells with attached piezoelectric transducers,
we consider a material surface with certain mechanical degrees of freedom in each point. Addi-
tionally, electrical unknowns are present within the domain, where the piezoelectric transducers
are attached, such that the sensing and actuating behavior can be properly accounted for. The
modelling is done in the geometrically nonlinear regime, but the electromechanically coupled
constitutive relations are treated within the framework of Voigt’s linear theory of piezoelec-
tricity. Owing to the assumed thinness of the shell the influence of shear is neglected in the
modeling. A Finite Element scheme for the solution of the resulting model is implemented
and the solutions computed with the present theory are compared to results computed with the
commercially available FE code Abaqus. Different examples are presented ranging from large
deformations, to snap through instability and to a linear analysis. A very good agreement be-
tween the results is obtained, from which the accuracy of the thin shell formulation as a material
surface is concluded. Next, an existing physical shell is modeled within the linearized version
of the present theory and the computational results are compared to measurement results from
the physical experiment. The agreement is reasonably good; natural frequencies as well as
eigenmodes are considered for the comparison. Concerning the eigenmodes the MAC crite-
rion is used. Finally, the resulting linear time invariant dynamical system for the simulation of
the physical shell is imported into Mathematica and different strategies for passive and active
control are tested and compared to each other. Concerning passive control methods classical
single mode shunt-damping using an optimized RL-network is studied.

1. INTRODUCTION

Many practical problems, like active or passive vibration control and the study of buckling
and post-buckling of thin piezoelectric shells require the proper electromechanically coupled
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modeling of the shell; both, in the linear and the nonlinear regime. In particular, the effect of
electromechanical coupling must be properly accounted for on the level of a theory of structural
mechanics for thin shells.

Different approaches to reduce the three dimensional equations to the structural level range
from equivalent single-layer theories (Krommer[1] or Batra and Vidoli[2]), to layer-wise for-
mulations and to hybrid or mixed formulations, see Carrera and Boscolo[3] for a review in the
case of piezoelectric plates. In these theories a-priori assumptions concerning the distribution
of the displacement vector and the electric potential through the thickness of a thin structure
are imposed and the resulting governing equations are derived using a weak form of the three
dimensional equations. In the present paper a nonlinear theory for thin piezoelectric shells is
presented, which considers the shell as a material surface with certain mechanical degrees of
freedom in each point. Additionally, electrical unknowns are present within the domain, where
the piezoelectric transducers are attached, such that the sensing and actuating behavior can be
properly accounted for. The modelling is done in the geometrically nonlinear regime, but the
electromechanically coupled constitutive relations are treated within the framework of Voigt’s
linear theory of piezoelectricity. Owing to the assumed thinness of the shell the influence of
shear is neglected in the modeling. The present formulation for the shell represents an exten-
sion of a linear formulation derived in Krommer [1] for thin plates, which has been recently
proven to be asymptotically exact, see Vetyukov et.al. [4]

2. GEOMETRICALLY NONLINEAR MODELING OF
THIN PIEZOELECTRIC SHELLS

In the present paper a theory is developed, for which a thin shell is considered as a material
surface with mechanical and electrical degrees of freedom.

2.1 Differential geometry of a surface

As a starting point, we introduce some notions from differential geometry of a surface.
We consider an undeformed reference configuration of the shell, in which a material point of
the reference surface has the position vector R(qα); q1 and q2 are the curvlinear Lagrangean
coordinates of the reference surface. We denote the derivatives of an entity with respect to these
coordinates as ∂/∂qα ≡ ∂α. The base vectors Rα in the tangential plane and the unit normal
vector N are

Rα = ∂R/∂qα , N = R1 ×R2/ ‖R1 ×R2‖ . (1)

Fig. 1 shows the basic concepts we just introduced. We are now in the position to proceed
further. First, we define the 2D differential operator with respect to the reference configuration
as ◦

∇ = Rα∂α, (2)

and compute the first metric tensor A and the second metric tensor B from

A =
◦
∇R = I−NN , B = −

◦
∇N. (3)
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Figure 1. Shell as a material surface

Finally, the area element in the reference configuration is d
◦
Ω =

√
Adq1dq2, in which A =

‖R1 ×R2‖2.
Next, we consider the deformed configuration, in which lower case letters are used. The

position vector is r = r(qα), and we can introduce the corresponding entities in the actual
configuration rα, n, ∇, a, b and dΩ, which are defined indentical to the ones in the reference
configuration, besides the use of the differential operator ∇ with respect to the actual configu-
ration. The two configurations are linked to each other by means of the deformation gradient
tensor

F =
( ◦
∇ r
)T

= rαR
α. (4)

Note that the inverse of this tensor does not exist; nonetheless, we will also use the notion F−1

for the pseudo inverse of the deformation gradient tensor. The latter is defined as F−1 · F = A

and F·F−1 = a. The relation between the area elements in the two configurations is dΩ = Jd
◦
Ω,

with J =
√
a/A.

2.2 Basic shell equations

Now, consider a shell as a two-dimensional continuum of "needles" with five degrees of
freedom: three translations δr and two rotations δn; the variation of the unit normal vector lies
in the tangential plane. This resembles the notion of a single director attached to each particle
of the shell, introduced by Naghdi [5]. Then, the principle of virtual work work reads∫

Ω

(
q · δr + m× n · δn + J−1δAi

)
dΩ +

∫
∂Ω

(P · δr + M× n · δn) dl = 0, (5)

in which q and m are distributed external forces and moments per unit area in the deformed
configuration and P and M are distributed boundary forces and moments per unit length in
the deformed configuration; for details see Eliseev and Vetyukov [6]. δAi is the virtual work
of the internal forces per unit area in the reference configuration. We introduce geometrically
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nonlinear strain tensors according to the change of the metric of the surface as

C =
1

2

(
FT · F− a

)
= CαβR

αRβ , Cαβ =
1

2
(Aαβ − aαβ)

K = FT ·B · F− b = KαβR
αRβ , Kαβ = Bαβ − bαβ. (6)

Both, C and K vanish in the reference configuration. Moreover, they remain constant, if and
only if the shell undergoes a rigid body motion and the virtual work of the internal forces does
not change; then,

δC = 0 , δK = 0 → δAi = 0 (7)

must hold for a classical non-shearable shell. This means the orthogonality of n and rα; there-
fore,

δ (rα · n) = 0 → ∇δr · n + δn = 0 (8)

must hold as well. Now, we consider the principle of virtual work under the above constraints,
for which we introduce Lagange multipliers τ , µ and Q, such that the term J−1δAi can be
formally replaced by

J−1δAi → −F−1 · τ · F−T · · δC− F−1 · µ · F−T · · δK + Q · (δn +∇δr · n) (9)

in the principle of virtual work. The equilibrium conditions are now derived from the principle
of virtual work as

∇ ·T + q = 0 , Q +∇ · µ · a−m× n = 0, (10)

in which T = τ + µ · b + Qn. τ and µ are Cauchy-type stress tensors and Q is the transverse
shear force vector, which can only be computed from the equilibrium conditions, but not from a
constitutive relation. The equilibrium conditions refer to the deformed configuration. One could
derive a corresponding formulation refering to the reference configuration involving Piola-type
stress tensors. For details, also concerning boundary conditions, we refer to Vetyukov [7].

The present formulation must be completed by constitutive relations. For that sake we
introduce a specific 2D enthalpy as

η0H2 =
1

2
C · ·A · ·C + C · ·B · ·K +

1

2
K · ·D · ·K− Vi(pi · ·C + si · ·K)− 1

2
ciV

2
i . (11)

η0 is the mass per unit area in the undeformed configuration. A, B and D are stifness tensors, pi
and si are tensors of piezoelectric coefficients and ci are specific capacities. All these entities
are taken from a linear piezoelectric plate theory, see e.g. Krommer [1] or Vetyukov et.al. [4] for
details concerning their definition. Vi are the electric voltages. E.g. in a layered shell more than
one layer may exhibit piezoelectric material parameter, such that one voltage per piezoelectric
layer would enter the formulation. Now we can compute the Cauchy-type stress tensors used in
the equilibrium conditions from the derivatives of the specific enthalpy as

τ = η0J
−1F · ∂H2

∂C
· FT , µ = η0J

−1F · ∂H2

∂K
· FT , qi = −η0

∂H2

∂Vi
. (12)
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Here, qi is an electric charge per unit area in the undeformed configuration. The latter can be
integrated over the shell domain in case a piezoelectric layer is considered or over the doamin
of a piezoelectric patch

◦
Ωi; in any case the voltage Vi is constant with respect to these domains,

as they are in general electroded. Hence, we have

Σi =

∫
◦
Ωi

qid
◦
Ω. (13)

With the second Piola-Kirchhoff stress tensors
◦
τ = JF−1 · τ · F−T and

◦
µ = JF−1 · µ · F−T

the constitutive relations are
◦
τ = η0

∂H2

∂C
= A · ·C + B · ·K− piVi,

◦
µ = η0

∂H2

∂K
= B · ·C + D · ·K− siVi,

Σi = −
∫

◦
Ωi

η0
∂H2

∂Vi
d
◦
Ω = CiVi +

∫
◦
Ωi

(pi · ·C + si · ·K)d
◦
Ω, (14)

in which Ci is the total capacity of either the piezoelectric layer or the piezoelectric patch. The
last relation is a transducer relation, which relates the total charge not only to the voltage via
the capacity, but also to the strain tensors via the direct piezoelectric effect. As we have already
mentioned, we are not interested in formulating the equilibrium conditions and the boundary
conditions in terms of the Piola-Kirchhoff stress tensors; rather, we conclude this section with
a variational statement of the problem.

2.3 Variational formulation

We complete the development of the shell theory by formulating an extension of the prin-
ciple of virtual work with respect to electromechanical coupling. For the virtual work of the
external loadings (forces, moments and electrical charges) we have

δAe =

∫
◦
Ω

◦
q ·δrd

◦
Ω + Σ̃iδVi. (15)

For the sake of simplicity, we only account for distributed forces per unit area in the undeformed
configuration

◦
q = Jq, but not for distributed moments or any forces and moments applied at

the boundary. Σ̃i are the applied charges at the electrodes. The virtual work of the internal
loadings is

δAi = −
∫

◦
Ω

( ◦
τ · · δC +

◦
µ · · δK

)
d
◦
Ω− ΣiδVi = −δ

∫
◦
Ω

η0H2(C,K, Vi)d
◦
Ω, (16)

such that the principle of virtual work reads∫
◦
Ω

( ◦
q ·δr− ◦

τ · · δC− ◦
µ · · δK

)
d
◦
Ω +

(
Σ̃i − Σi

)
δVi = 0. (17)
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Using the enthalpy and assuming all external loadings to be conservative δAe = −δU e, then the
principle of virtual work can be rewritten as

δAi + δAe = −δ
(
UH2 + U e

)
= −δUΣ = 0, (18)

with
UH2 =

∫
◦
Ω

η0H2(C,K, Vi)d
◦
Ω, (19)

from which we conclude that the total energy functional UΣ = UH2 +U e must have a stationary
value for an equilibrium.

2.4 Finite Element modeling

For the Finite Element implementation we use elements with 4 nodes. Each node has 12
mechanical degrees of freedom, which are the position vector r, the base vectors in the de-
formed configuration rα and the vectors of mixed derivatives of the position vector rαβ , see
Vetyukov [8]. The domain of an element is Ωel = q1 × q2, in which the local coordinates have
the range [−1, 1]. The position vector within the j-th element is approximated as

rj(q1, q2) =
n∑
i=1

Si,1(q1, q2)rj + Si,2(q1, q2)rj1 + Si,3(q1, q2)rj2 + Si,4(q1, q2)rj12. (20)

The four bi-cubic shape functions are shwon in Fig. 2. The element degrees of freedom are bor-
rowed from the global vector of degrees of freedom U, which contains all mechanical degrees
of freedom. The voltages at the electroded layers or patches are collected in the vector V. For
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16 3 GRUNDLAGEN

ergibt sich eine eindeutige Menge von Ansatzfunktionen. Für die Freiheitsgra-
de des ersten Knotens sind diese die Ansatzfunktionen aus Gleichung (3.56)
[15]. Diese sind in Abbildung 3.4 graphisch dargestellt.

S1,1(q1, q2) =
1

16
(q1 − 1)2(q2 − 1)2(q1 + 2)(q2 + 2)

S1,2(q1, q2) =
1

16
(q1 − 1)2(q2 − 1)2(q1 + 1)(q2 + 2)

S2,3(q1, q2) =
1

16
(q1 − 1)2(q2 − 1)2(q1 + 2)(q2 + 1)

S1,4(q1, q2) =
1

16
(q1 − 1)2(q2 − 1)2(q1 + 1)(q2 + 1) .

(3.56)

(a) Shapefunktion S1,1 (b) Shapefunktion S1,2

(c) Shapefunktion S1,3 (d) Shapefunktion S1,4

Abbildung 3.4: Ansatzfunktionen der Freiheitsgrade des Knotens 1 im Ba-
siselement

Wird das betrachtete Gebiet Ω in quadratische Elemente der Größe
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all elements with electrical degrees of freedom these unknowns are borrowed from V, which
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ensures the equipotential area condition at the electrodes. As the electric potentials are element
wise constant, no approximation is needed for the voltages within the element. Finally, we seek
for an extremum of the total energy functional,

UΣ =
(
UH2 + U e

)
→ Extremum, (21)

provided the problem is conservative. This will be the case in all examples.

3. VERIFICATION

In order to verify our theory and its FE implementation we compare the results of our sim-
ulations to the results of computations with the commercial FE code ABAQUS in this section.
In particular, we consider plates in the geometrically linear regime and shells in the geometri-
cally nonlinear regime. As we will be discussing below, an electromechanically coupled shell
formulation is unavailable in ABAQUS, such that one needs to involve three-dimensional finite
elements for the present kind of problems.

3.1 Linear plates

Within this subsection, we restrict ourselves to plates in the geometrically linear regime.
The governing equations are obtained from our FE implementation using an initially flat refer-
ence configuration and linearizing the system of algebraic equations for the deformation in the
vicinity of the reference configuration. Moreover, inertia is included in the formulation in terms
of a kinetic energy, with

T =
1

2

∫
◦
Ω

η0ṙ · ṙd
◦
Ω, (22)

from which a mass matrix can be computed in a straight forward manner. The result is a system
of second order linear ordinary differential equations with constant coefficients,[

M 0
0 0

] [
Ü

V̈

]
+

[
Kuu Kuv

KT
uv Kvv

] [
U
V

]
=

[
F
Q

]
, (23)

in which U is the vector of mechanical nodal degrees of freedom, V the vector of voltages, F
the vector of force loadings and Q the vector of electrical charges. We consider three cases in
the following:

1. The voltage is known: In this case V can be elliminated and an effective load vector
Feff = F−KuvV replaces the original load vector in the equations, which reduce to

MÜ + KuuU = Feff . (24)

In a post computation the accumulated total charge can be found from

Q = KT
uvU + KvvV. (25)

This case includes also the case of a short-circuit V = 0, in which the vector of charges
can be measured, y = Q = KT

uvU.

7
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2. The charge is known: Then the voltage V is an unknown, but we can reduce the system
of equations using

V = K−1
vvQ−K−1

vvK
T
uvU. (26)

This results into
MÜ +

(
Kuu −KuvK

−1
vvK

T
uv

)
U = Feff , (27)

with the effective force vector Feff = F −KuvK
−1
vvQ. This case also includes the case

of an open-circuit Q = 0, in which the vector of voltages can be measured, y = V =
−K−1

vvK
T
uvU.

3. Neither the charge nor the voltage are known: In this case the transducer must be
connected to an electrical network or to a control system, such that an additional relation
between the charge and the voltage can be specified to complete the problem. An example
would be a passive network with a series connection of a resistor and an inductance; in
this latter case, which is also denoted as passive shunt damping this relation is an ordinary
differential equation,

V = RQ̇ + LQ̈. (28)

The matrices R and L are diagonal. The reformulated problem reads[
M KuvL
0 KvvL

] [
Ü

Q̈

]
+

[
0 KuvR
0 KvvR

] [
U̇

Q̇

]
+

[
Kuu 0
KT
uv −I

] [
U
Q

]
=

[
F
0

]
, (29)

in which the vector of charges is unknown. In any case other control laws can be imple-
mented here. We also note that this third case includes both, the short-circuit case and
the open-circuit case. For the open-circuit case the impedance tends to infinity, for the
short-circuit case the admittance tends to infinity.

In case more than one piezoelectric layer or patch are embedded or attached to the structure,
combinations of the above cases are possible; the resulting equations can be easily obtained
from the three individual formulations above.

Next, we will compare the results obtained from our shell FE implementation, which we
denote as FE2 with results computed with ABAQUS. Here, we use 3D coupled elements in
ABAQUS first and secondly, we study the implementation with structural shell elements coupled
to electromechanical 3D elements to model the piezoelectric parts of the structure in ABAQUS.

3.1.1 Comparison to 3D piezoelectric Finite Elements

As a first example we study a square plate with the side length a = 0.5m and a total thickness
h = 0.003m. The plate is made of three layers with identical thickness; the top layer and the
bottom layer are made of the piezoelectric material PZT-5A and the center layer is made of
Aluminum. PZT-5A is transversally isotropic and Aluminum is isotropic; hence, the sufficient
material parameters (SI units are understood) are

E = 7.0× 1010 , µ = 0.33 , ρ = 2660 (30)

8
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for Aluminum and

C11 = 12.1× 1010 , C33 = 11.1× 1010 , C12 = 7.54× 1010,

C13 = 7.52× 1010 , C44 = 2.11× 1010 , ρ = 7500,

εz = 1700ε0 , e31 = −5.4 , e33 = 15.8 (31)

for PZT-5A. In particular, we study two cases: (1) all edges are clamped and (2) one edge is
clamped and the other three edges are free. The results computed with FE2 using 400 (20 ×
20) elements are compared to results computed with ABAQUS. For the 3D formulation we
used 10.000 C3D20E elements for the piezoelectric layers and 20.000 C3D20 elements for the
Aluminum layer. The first 6 natural frequencies for the two models are presented in Tab. 1.
Allthough the relative error in case of the cantilevered plate goes up to 3% the correspondance

Clamped 1 2 3 4 5 6
ABAQUS f /Hz 177.64 362.43 362.43 532.41 650.56 653.62

FE2 f /Hz 178.13 363.32 363.32 535.70 651.39 651.39
relative error e/% 0.28 0.25 0.25 0.62 0.13 0.13

Cantilvered 1 2 3 4 5 6
ABAQUS f /Hz 17.720 39.680 103.57 135.94 146.99 257.66

FE2 f /Hz 17.710 40.780 103.73 137.07 149.63 263.27
relative error e/% -0.05 2.76 0.16 0.83 1.80 2.18

Table 1. Natural frequencies of the square plate

is in general very good considering the fact that we only use 400 elements in our code instead
of 40.000 elements in ABAQUS. The high number of elements in ABAQUS may seem to be
excessive, but it is actually neccesary in the following static computations. Besides the natural
frequencies the eigenmodes are of interest for us too. We compute them with both, FE2 and
ABAQUS, and present the MAC (Modal Assurance Criterium) between the two. The result is
graphically represented in Fig. 3. Again we notice a good modal correlation between FE2 and
ABAQUS. Finally, we consdier the problem of static equilibrium, in which an electric voltage
is applied at the electrodes of the top layer and the bottom layer is used as a sensor to measure
the resulting voltage from the deformation. The sensor voltage Vbot, the mid point deflection w
and the accumalted charge at the actuator Σtop are compared in Tab. 2 for an applied voltage
Vtop = −1V. For the case of the clamped plate, the present theory does not result into any mid
point deflection nor a sensor voltage; the reason is that the clamping prevents the plate from
any deformation and, hence, the voltage must be zero as well. In the ABAQUS results, both the
mid point deflection and the voltage are very small, but not zero. This can be explained by the
fact that in the 3D solution the actuation, which is applied non symmetrically with respect to
the middle surface, also results into a change in the thickness of the upper piezoelectric layer,
which is constraint by the clamping. Therefore, a small deflection occurs and a voltage can be

9
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4 Simulation und Verifikation

Koeffizient Länge / m
Länge der Platte a 0.5
Breite der Platte b 0.5

Plattendicke h1 0.001
Höhe der Piezos h2 0.001

Tabelle 4.1: Geometrische Abmessungen

4.1.1.1 Allseitig fest eingespannt

Die ermittelten Eigenfrequenzen in Tabelle 4.2 stimmen gut miteinander überein. Die Eigenformen
werden in Abbildung 4.7(a) und die dazugehörige MAC -Matrix für die ersten 6 Eigenwerte in
Abbildung 4.2 dargestellt.

Nr. Abaqus f/Hz FE2 f/Hz rel.F. / %
1 177.64 178.13 0.28
2 362.43 363.32 0.25
3 362.43 363.32 0.25
4 532.41 535.70 0.62
5 650.56 651.39 0.13
6 653.62 654.47 0.13

Tabelle 4.2: Allseitig eingespannte Platte: Ver-
gleich der Eigenfrequenzen

2

4

6

2

4

6

0.0

0.5

1.0

FE2

Abaqus

Abbildung 4.2: MAC: allseitig eingespannt

Die weiteren Vergleiche an einer allseitig fest eingespannten quadratischen Platte werden in
Tabelle 4.3 dargestellt.

Spannung v1 = −1 V Abaqus FE2 rel. Fehler / %
Durchbiegung s in m 3.44E-09 1.52E-20 -

Spannung am Sensor ϕ1 in V -1.88E-05 -1.01E-13 -
Ladung am Aktor q1 in C 4.32E-06 4.33E-06 -

Tabelle 4.3: Vergleich: Allseitig eingespannte Platte
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4.1 Modellbildung an einer Platte

Spannung v1 = −1V Abaqus FE2 rel. Fehler / %
Durchbiegung s in m -1.20E-05 -1.20E-05 0.27

Spannung am Sensor ϕ1 in V -1.82E-02 -1.80E-02 -0.81
Ladung am Aktor q1 in C 5.26E-06 5.26E-06 -0.01

Tabelle 4.4: Vergleich: Einseitig eingespannte Platte

(a) Durchbiegung: FE2 (b) Durchbiegung: Abaqus

Abbildung 4.5: Platte: Durchbiegung in FE2 und Abaqus

Wie in Unterabschnitt 4.1.1.1 stimmen die ermittelten Eigenfrequenzen (siehe Tabelle 4.5)
und Eigenformen in Abbildung 4.7(b) mit jenen aus Abaqus gut überein (siehe MAC -Matrix in
Abbildung 4.6).

Nr. Abaqus f/Hz FE2 f/Hz rel.F. / %
1 17.72 17.71 -0.05
2 39.68 40.78 2.76
3 103.57 103.73 0.16
4 135.94 137.07 0.83
5 146.99 149.63 1.80
6 257.66 263.27 2.18

Tabelle 4.5: Einseitig eingespannte Platte: Ver-
gleich der Eigenfrequenzen
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Abbildung 4.6: MAC: einseitig eingespannt
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Figure 3. MAC for the rectangular plate with different boundary conditions: Clamped (left) and
cantilevered (right)

Clamped w/m Vbot/V Σtop/C
ABAQUS 3.44× 10−9 −1.88× 10−5 4.32× 10−6

FE2 1.52× 10−20 −1.01× 10−13 4.33× 10−6

relative error e/% - - -

Cantileverd w/m Vbot/V Σtop/C
ABAQUS −1.20× 10−5 −1.82× 10−2 5.26× 10−6

FE2 −1.20× 10−5 −1.80× 10−2 5.26× 10−6

relative error e/% 0.27 -0.81 -0.01

Table 2. Comparison for the static transducer behavior

measured. The results for the accumulated charge at the actuator electrodes are very close as it
is dominated by the capacitive behavior of the layer. No error is presented, because the results
cannot be compared due to the fact the present theory prevents any thickness deformation. A
different result is found for the cantilevered plate, where the response is dominated by bending.
Here, the results coincide very well and the relative errors are very small. From the results
we have presented in this section, we conclude that the present electromechanically coupled
theory is capable of providing an accurate response and it is well suited for dynamic simulations
including pasive and active control. In contrast, the 3D model in ABAQUS has a very high
number of degrees of freedom and is therefore not suited for control applications, with the
neccesity of a simple model with sufficient accuracy. This neccesity is met by the present
formulation. Nonetheless, we must also mention the fact that one can also use structural shell
elements in ABAQUS; yet, these elements have no electrical degrees of freedom. Therefore,
they must be coupled with 3D piezoelectric elements.

3.1.2 Comparison to structural elements coupled with 3D piezoelectric Finite Elements

Here, we consider the problem shown in Fig. 4. The plate is rectangular and it has two at-
tached piezoelectric patches with different dimensions, but identical position; one at the upper

10
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side and one at the lower side. The material of the substrate plate is Aluminum and the piezo-
electric patches are made of PZT-5A; the material parameters are the ones used in the previous
example. The boundary is clamped. The geometry parameters are given in Tab. 3. The plate

Figure 4. Sketch of the plate with piezoelectric patches

Length of plate a 0.87m
Width of plate b 0.62m

Thickness of substrate plate h 0.0008m
Distance to actuator and sensor ap 0.444m
Distance to actuator and sensor bp 0.420m

Length of actuator xa 0.102m
Width of actuator ya 0.102m
Height of actuator ha 0.0002m
Length of sensor xs 0.01m
Width of sensor ys 0.01m
Height of sensor hs 0.0002m

Table 3. Geometry parameters of the plate

is modelled in FE2 with a total of 40 × 40 elements, the domain of the actuator with 9 × 9
elements and the domain of the smaller sensor with 1 element. In ABAQUS two models are cre-
ated. First, both the substrate plate and the actuator and sensor are modelled with 3D elements;
for the plate C3D20 elements are used, for the actuator and the sensor C3D20E elements are
used. In total 56336 elements are used. We denote this type of modelling as ABAQUS VOLUME.
Secondly, the substrate plate is modelled with 11672 structural shell elements of type S85R, the
actuator with 2025 C3D20E elements and the sensor with 25 C3D20E elements. This type of
modelling is denoted as ABAQUS SHELL. The different elements are coupled to each other by
a Tie-constraint.

First, we compute the natural frequencies for all three models and present the results in
Tab. 6 One can see that all the natural frequencies coincide ver well. Next we present the MAC

11
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1 2 3 4 5 6
ABAQUS VOLUME f /Hz 14.68 23.65 35.65 39.10 43.33 58.23
ABAQUS SHELL f /Hz 14.51 23.46 34.81 38.41 43.05 57.18

FE2 f /Hz 14.62 23.57 35.50 38.96 43.16 58.00

Table 4. Natural frequencies of the plate

in between the results of ABAQUS VOLUME and FE2 in Fig. 5, which shows the similarity of the
results. Finally, we use the upper patch as an actuator with an applied voltage Vtop = −1V. The

4 Simulation und Verifikation

Abaqus FE2
Nr. Shell f/Hz Vol. f/Hz f/Hz
1 14.51 14.68 14.62
2 23.46 23.65 23.57
3 34.81 35.65 35.50
4 38.41 39.10 38.96
5 43.05 43.33 43.16
6 57.18 58.23 58.00

Tabelle 4.8: Vergleich der Eigenfrequenzen: all-
seitig eingespannte Platte
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Abbildung 4.11: MAC für die ersten 6
Eigenfrequenzen

Abbildung 4.12: Eigenformen der allseitig eingespannten Platte in FE2

Die Durchbiegung wird in Abbildung 4.13 mit FE2 und Abaqus dargestellt und in der Mitte
der Platte in Tabelle 4.6 miteinander verglichen.

30

Figure 5. MAC for the rectangular plate with piezoelectric patches

static sensor voltage Vbot, the mid point deflection w and the accumalted charge at the actuator
Σtop are compared in Tab. 5. Here, we see that the results computed using shell elements in
ABAQUS are very far off the ones computed with FE2, but also the ones computed using 3D
elements in ABAQUS. In contrast, the results of FE2 and 3D elements in ABAQUS coincide
well. From these results we conclude that the coupling of structural shell elements with 3D

w/m Vbot/V Σtop/C
ABAQUS SHELL −4.55× 10−7 2.85× 10−2 −9.54× 10−7

FE2 −1.50× 10−6 −5.43× 10−2 1.04× 10−6

relative error e/% 228.44 90.53 9.49
ABAQUS VOLUME −1.49× 10−6 −4.91× 10−2 1.05× 10−6

FE2 −1.50× 10−6 −5.43× 10−2 1.04× 10−6

relative error e/% -0.46 -10.54 0.06

Table 5. Comparison for the static transducer behavior

piezoelectric elements by means of a Tie-constraint in ABAQUS may fail and the results are not
reasonable. In contrast, the correspondance between our results and the one computed with 3D
elements in ABAQUS is good, such that we can conclude on the accuracy and trustworthiness of
our formulation of thin piezoelctric shells as material surfaces with mechanical and electrical
degrees of freedom.
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3.2 Nonlinear shells

In this subsection we seek to verify the geometrically nonlinear behavior for shells. With
respect to a comparison to ABAQUS we only consider an elastic shell, because structural shell
elements can be used in ABAQUS; no piezoelectric shells are studied in ABAQUS for the follow-
ing reasons: (1) No electromechanically coupled shell elements are available. (2) The coupling
of structural shell elements with 3D piezoelectric elements does not work sufficiently well, as
we have just shown in the prevous section on linear plates. (3) Modelling of shells with 3D
elements is computationally quite expansive; in particular in nonlinear problems. Therefore, re-
sults for piezoelectric shells are only presented using the theory at hand, which we have shown
to be sufficiently accurate.

3.2.1 Global snap through buckling of an elastic shell with a rectangular boundary

As mentioned above, we start with the example of a purely elastic shell. It has a plane
rectangular boundary that is clamped on all 4 edges; moreover, the tangential plane of the
shell surface in the undeformed configuration coincides with this plane for all points along the
edges. A sketch of the shell is shown in Fig. 6. As the geometry of the shell stems from

4.2 Modellbildung der Schale

x

x

y
y

z

z

m

n

F

F

PP

a

b

Abbildung 4.22: Snap Through: Geometrie der Schale

In Abaqus wird die Struktur als Schale modelliert. Dabei wird diese mit 1600 quadratischen
8-Knoten-Elementen für doppelt gekrümmte dünne Schalen, mit fünf Freiheitsgraden pro Knoten
und reduzierter Integration (S8R5 ) vernetzt.

Im Programm FE2 wird die Struktur gleichmäßig mit 40× 40 Elementen vernetzt.

Koeffizient Länge / m
Position m 0.31
Position n 0.435

Länge der Schale a 0.87
Breite der Schale b 0.31

Schalendicke t 0.004

Tabelle 4.14: Geometrische Abmessungen

Abbildung 4.23 zeigt den Verlauf der Auslenkung der Schalenmitte (Punkt P), wenn an diesem
Punkt der Schale eine Kraft F angreift (siehe Abbildung 4.22). Diese wird sukzessive gesteigert
und ab einer kritischen Last beginnt die Schale durchzuschlagen (Snap Through). Wird die Kraft
verringert, schlägt die Schale ein weiteres Mal in die Gegenrichtung durch (Snap Back). In Ab-
bildung 4.23 wird dieser Verlauf in Abaqus und FE2 dargestellt. Die Methode mit Abaqus Static
bricht die Berechnung im Gegensatz zur Riks-Methode kurz vor dem Snap Through ab. Das Pro-
gramm FE2 kann den nichtlinearen Verlauf der Durchbiegung nicht darstellen. Dieser springt
direkt zur Lösung des stabilen Zweiges.

39

Figure 6. Sketch of the shell

an existing physical structure and has been measured by a geometry scan unit of a Scanning
Laser Vibrometer, we do not present any specific data here, other than the dimensions of the
boundary rectangle a × b = 0.87m × 0.62m and the thickness h = 0.004m of the shell. The
material parameters are indentical to the ones used in the plate examples. The shell is modelled
with 40 × 40 elements in FE2 and with 1600 quadratic S8R5 elements with 8 nodes and 5
degrees of freedom for each node in ABAQUS. A vertical force F is applied in the center point
of the plate; Fig. 7 shows the applied force F as a function of the center point displacement.
We observe a snap through at a critical force level; this behavior is found with both, FE2
and ABAQUS. ABAQUS Static stops the computation at this force value, FE2 reproduces the
snap through and proceeds with the computation after the snap through. Here, we were also
able to compute the center point deflection for the case of unloading finding a second critical
value, at which snap back occurs. In order to reproduce this result the Riks method available
in ABAQUS was used. In this latter case the deformation is controlled by the center point

13
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4 Simulation und Verifikation

Abaqus Static
Abaqus Riks

FE2 40x40
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Vergleich Abaqus mit Shell FE2

Abbildung 4.23: Durchschlagen

40

Figure 7. Force - center point displacement curve

displacement. Hence, the instable path can be computed in ABAQUS Riks. This method is not
implemented in FE2; yet, the critical values obtained by FE2 and by ABAQUS Riks are very
close and the stable equilibrium paths coincide very well. We conclude on the accuracy of
FE2 for geometrically nonlinear elastic problems. As already mentioned we do not present a
comparison with ABAQUS for piezoelastic problems, because of the lack of corresponding shell
elements in ABAQUS. Nonetheless, from all the results (both, for linear piezoelastic plates and
nonlinear elastic shells) we conclude on the general applicability of FE2 to analyse and simulate
linear and nonlinear thin piezoelastic shells. The latter case is studied in the next section.

3.2.2 Local buckling of a cylindrical piezoelectric shell

As a second example we study a cylindrical shell with three attached piezoelectric patches,
which is clamped at one side. The deformed configuration for a static loading, which acts in
the vertical direction and which can be considered as the weight of the shell, is shown in Fig. 8.
One can see that a local buckling occurs in the vicinity of the clamping (indicated as a thick
blue line in the figure) at the upper side. In order to get a better understanding of the behavior

Figure 8. Local buckling of a cylindrical shell with three piezoelectric patches - deformed
configuration

of the shell in the geometrically nonlinear regime, the vertical displacements are shown in the
left graph of Fig. 9 as a function of the load factor g. The blue curve is the response for the
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upper corner point and the red curve for the lower corner point at the free end of the shell. The
corresponding results for the voltage measured at the three patches, which are operated in an
open-circuit mode, are shown in the right graph. The colors refer to the colors used for the
patches in Fig. 9. One can clearly see that once the load factor reaches a critical value (slightly
smaller than g = 6) the reponse becomes nonlinear. To quantify the critical value we apply
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the method of an accompanying eigenfrequency analysis for the small amplitude vibrations of
the statically pre-deformed shell. The results for the first four eigenfrequencies are shown in
Fig. 10; the left graph shows the whole range of variation of the load factor, and the right graph
a detailed view on the vicinity of the critical value. From the results shown in the right figure,
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Figure 10. Local buckling of a cylindrical shell with three piezoelectric patches - results: Ac-
companying eigenfrequency analysis

we see that the critical value, for which the eigenfrequencies become zero, is different for the
loading and the unloading case; hence, a snap-through and a snap-back buckling occurs in this
problem.

4. Passive shunt damping

For the remainder of the paper we study passive shunt damping using RL-networks for the
linear vibrations of plates and shells. Two examples are used. (1) A thin plate to introduce
the method of shunt damping in some detail and (2) an existing physical shell, for which the
method is experimentally tested.
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4.1 An introductary plate example

Here, we use the three layer cantilvered plate from one of the previous examples. The
bottom layer is only used as a sensor in an open-circuit to measure the voltage. The upper layer
is connected to an electrical network, which consists of a series connection of a resistor R and
an inductance L. In case the resistance is zero the electrical network consisting of a parallel
circuit of the capacity Cp of the piezoelectric layer or patch and the inductance L is

ωe =
1√
LCp

. (32)

In order to compute an optimal value for R and L we use a method introduced by Ahmadian [9]
and Hagood and von Flotow [10]. The result for the optimal values to damp the vibrations in
the vicinity of the n-th natural frequency is

Lopt =
1

ω2
eC̃p

and Ropt =
ropt

ωscn C̃p
, (33)

with
C̃p = Cp(1− k2

31,n) , ωe = ωocn

√
1 + k2

31,n and ropt =
√

2
k31,n

1 + k2
31,n

. (34)

Here, the effective electromechanical coupling cooeficient (EMCC) for the n-th natural fre-
quency is computed as

k2
31,n =

(ωocn )2 − (ωscn )2

(ωscn )2
, (35)

where ωscn is the n-th natural frquency for short-circuit conditions and ωocn the one for open-
circuit conditions.

In Fig. 11 results for the cantilevered plate are presented, for which the target frequency is
the first natural frequency. In the upper left plot the optimal value for the resitor is used with
different values for the inductance, whereas in the upper right plot the optimal value for the
inductance is used together with different values for the resistor. On can see the very good
damping characteristics for using both optimal values. The lower two plots present the voltage
measured at the bottom piezoelectric layer, which is only used as a sensor in open-circuit con-
ditions. Concerning the experimental verification of passive shunt damping of thin plates we
refer to Berger et.al. [11].

4.2 Experimental validation on a real shell

In this subsection the method of passive shunt damping is used to damp the vibrations a thin
shell; simulation results as well as experimental results are presented. The shell is shown in
Fig. 12. The geometry of the elastic substrate shell is identical to the one used in 3.2.1. Two
patches are attached; one at the top and one at the bottom. The location and the dimensions
of the piezoelectric patches are the same as in 3.1.2. Concerning the boundary conditions, the
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Figure 11. Dynamic magnification factor for cantilvered plate with Shunt damping

Figure 12. Sketch of the shell with piezoelectric patches

two sides denoted as C are clamped, the side denoted as B is simply supported with in-plane
displacement and the side denoted as A is simply supported with a free displacement in the x-
direction. The natural frequencies are given in Tab. 6. TheRL-network is connected to the patch

Natural frequency 1 2 3 4 5 6
FE2 f /Hz 62.11 87.37 102.43 180.47 202.67 247.56

Table 6. Natural frequencies of the shell

at the upper side and the patch at the lower side is used as a sensor in an open-circuit; hence, the
voltage can be measured. The optimal values for the resistor and the inductance are computed
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to damp the vibrations in the vicinity of the fifth natural frequency. Te dynamic magnification
for the case no shunt is connected is shown in the left plot in Fig. 13 in the range of the fourth,
fifth and sixth natural frequency. The right plot shows the behavior in the vicinity of the fifth
natural frequency with the connectedRL-network. The optimal value for the inductance is used
in all curve, but the resistor vaue R is varied. One can see the good damping characteristics in
the case the optimal values for both, resistor and inductance, are used. Finally, we discuss

Figure 13. Dynamic magnification factor the shell without and with shunt damping

some experimental results for passive shunt damping of the shell we have used in this example.
The experimental setup is shown in Fig. 14. The dimensions of the shell and the piezoelectric
patches as well as the location of the patches are the ones we have just used in the simulation.
Two types of practical realizations of the RL-network are used. In one case the RL-network

Figure 14. Experimental setup

is put into practice by means of a Gyrator and in the other case by means of an RL-decade.
For these two cases the values for the RL-network are given in Tab. 7. The computed ones
are the optimal values based on a measurement of the capacity of the piezoelectric patch and
the target frequency, which is the fifth natural frequency. The other ones have been obtained
from the experiments; it is worth noting that the ones using the RL-decade are very close to the
computed ones, but the resistor value R for the Gyrator case is much higher than the computed
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one, because of the high input resistance of the Gyrator, which does not allow to use the optimal
value. In the experiment the shell is excited by an electrodynamic shaker and the amplitude of

computed Gyrator RL-decade
R 1.48H 1.56H 1.48H
L 81.64Ω 375Ω 77.9Ω

Table 7. Values for R and L used in the experiment

the center point deflection is measured with a Laser Scanning Vibrometer. The results with and
without passive shunt damping are shown in Fig. 15. The thick black curves correspond to the
values in Tab. 7. From the results we conclude that passive shunt damping works reasonably
well and the vibrations in the vicinity of the target frequency are significantly reduced.

Figure 15. Experimental results for passive shunt damping: Gyrator (left) and RL-decade
(right)

5. CONCLUSIONS

In the present paper we have introduced an efficient formulation for thin shells with piezo-
electric transducers in the geometrically nonlinear regime, which considers the shell as a mate-
rial surface with mechanical and electrical degrees of freedom. Results computed with this
theory have been compared to numerical solutions computed with commerciqally available
Finite Elements; in particular with ABAQUS using 3D elements in order to account for the
electromechanical coupling. A very good agreement was found, with a significantly reduced
numerical effort when using the present shell formulation. Finally, passive shunt damping has
beeen studied numerically and experimentally showing the practical applicability of passive
shunt damping under realistic conditions.
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