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Summary: Spatial filters are spatially distributed sensors, which filter a specific content of
the deformation or vibration of a structure. Typically, they are put into practice by sensors,
which are sensitive to the strain in a deformed structure. The most commonly used type is a
modal filter, which filters one specific vibration mode of a structure. Applications of modal
filters are in the field of vibration control as well as in Structural Health Monitoring. In the
latter context the frequency response function obtained from the modal filter has only a single
peak, if the structure is undamaged. If damage occurs, additional peaks appear in the frequency
response function, from which one can conclude on the presence of damage. Besides the fact,
that using modal filters for Structural Health Monitoring enables damage detection only indi-
rectly, it is also a method, for which detailed information concerning the structure is needed;
in particular, the constitutive relations are crucial for the computation of the vibration modes,
which are needed to design the modal filters. In the present paper we propose a different type
of spatial filter for Structural Health Monitoring - Spatial Compatibility Filters. Such filters
filter the incompatible part of the strain tensor; hence, their signal is trivial, if the strain tensor
is comaptible. A non-trivial signal results only from the presence of incompatible parts of the
strain tensor, which is the case for damaged structures. Hence, the signal of a compatibility
filter can be directly related to damage. Moreover, the design of the filter only requires geo-
metrical information about the structure, but no constitutive relations. Based on the concept of
compatibility filters, we discuss their use for different levels of Structural Health Monitoring:
Damage detection, localisation and quantification.

1. Introduction

A spatial filter is a sensor, which filters certain spatial information; e.g. modal filters, which
filter the modal content of only one vibration mode (Lee and Moon [1]), displacement filters,
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which filter the displacement of a specific point in a specific direction (Krommer and Irschik [2])
or volume displacement filters (see Preumont et.al. [3]). Such spatial filters are widely used in
structural control (e.g. Preumont et.al. [4]) and structural health monitoring (e.g. Deraemaeker
and Preumont [5]). It has been mentioned in the literature that spatial filters can be put into
practice either by continuously distributed sensors or by arrays of dense sensors. In the present
paper we consider the first case only, in which the signal of a spatial filter represents a weighted
integral of the strain a body is suffering; such continuously distributed sensors may be im-
plemented using piezoelectric materials or optical fibers. Concerning the use of piezoelectric
sensors in structural mechanics we refer to Irschik et.al. [6].

In the present paper we study an alternative type of spatial filters; namely compatibility
filters, which filter the incompatible part of the strain tensor by a proper choice of the weights
in the definition of the signal of a spatial filter. In earlier works such filters have also been
denoted as nilpotent sensors, see Irschik et.al [7]. We consider compatibility filters, which we
will introduce in this paper, as a novel and innovative concept for damage detection, localisation
and quantification. The general idea of detecting defects and damage from the incompatibility
of the strain tensor has been suggested by Wildy et.al. [8]. However, in the latter paper this idea
has not been combined with spatial filtering. In general, it is accepted that the micromechanics
of defects and damage is strongly related to the concept of incompatible strains; or in other
words eigenstrains, see Mura [9]; e.g. it applies to problems concerned with inclusions, cracks,
dislocations, etc.

2. Governing equations

We study the three-dimensional problem of a material body with volume V , a sketch of
which is shown in Fig. 1. The boundary ∂V is composed of two parts. On the part ∂Vu homoge- 
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Figure 1. Three-dimensional material body with surface tractions and body forces

nous kinematical boundary conditions are prescribed, whereas at ∂Vσ tractions t act; within V
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body forces b are applied. The balance equations and the boundary conditions are

V : ∇ · σ(r, t) + b(r, t) = ρü(r, t),

∂Vσ : σ(r, t) · n = t,

∂Vu : u(r, t) = 0. (1)

Here, σ is the symmetric stress tensor and n the unit normal vector of the boundary pointing
outwards; r is the position vector of an arbitrary point P . Moreover, u is the displacement
vector and ρ the mass density.

3. Spatial filters

A spatial filter is a distributed sensor, whose signal is

y(t) =

∫
V

S(r) · · ε(r, t)dV . (2)

ε(r, t) is the strain tensor and the tensor S(r) is the so-called shape tensor. The general goal of
sensor design is to choose the latter, such that the signal has a meaningful mechanical interpre-
tation. In order to enable a simple design, we introduce an auxiliary quasi-static problem with
the same geometry as the original problem and with identical kinematical boundary conditions
at ∂Vu; see Fig. 2 for the auxiliary problem. We apply static external body forces b(aux) and
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Figure 2. Three-dimensional quasi-static auxiliary problem

static external tractions t(aux) at that part of the boundary, at which tractions are applied in the
original problem; namely, ∂Vσ. Then, the principle of virtual work for the auxiliary problem
reads ∫

V

σ(aux) · · δεdV =

∫
V

b(aux) · δudV +

∫
∂Vσ

t(aux) · δudS. (3)
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Here, σ(aux) is a statically admissible stress tensor (see e.g. Gurtin [12] for a definition), which
must satisfy

V : ∇ · σ(aux)(r) + b(aux)(r) = 0,

∂Vσ : σ(aux)(r) · n = t(aux)(r), (4)

and which in general is not unique. We use the displacement vector u(r, t) and the strain tensor
ε(r, t) of the original problem as the virtual displacement vector δu and the virtual strain tensor
δε in Eq. (3) and we choose the shape tensor as any statically admissible stress tensor in the
auxiliary problem, S(r) = σ(aux)(r). Then, the signal of a spatial filter is

y(t) =

∫
V

b(aux)(r) · u(r, t)dV +

∫
∂Vσ

t(aux)(r) · u(r, t)dS. (5)

Hence, a proper choice of the forces in the auxiliary problem finds a sensor, the signal of which
is the work conjugate to the auxiliary forces. An overview discussing different choices of these
auxiliary forces has been given by Krommer and Irschik [2].

A classical example for such a spatial filter is a modal filter, which was introduced by Lee
and Moon in [1], and which filters the modal content of one vibration mode only. Modal
filters are very well known types of spatial filters and are widely used in vibration control
(e.g. [4]), but also in the context of structural health monitoring, as introduced by Deraemaeker
and Preumont [5]. In the present paper we will be using a related type of a spatial filter for
structural health monitoring, namely compatibility filters; in particular, for damage detection,
localisation and quantification. The latter concept of compatibility filters represents a novel
concept in the field of structural health monitoring.

4. Compatibility filters

We introduce the idea of a compatibility filter as a special case of a spatial filter, which has
a trivial signal

y(t) =

∫
V

S(r) · · ε(r, t)dV = 0 (6)

in case the strain tensor is compatible. From Eq. (5) we find that Eq. (6) holds, if the external
forces in the auxiliary problem are zero, b(aux)(r) = 0 and t(aux)(r) = 0; hence, the shape
tensor can be computed from

V : ∇ · S(r) = 0,

∂Vσ : S(r) · n = 0. (7)

We note again that the shape tensor S(r) represents a statically admissible stress tensor, which
is not unique in case the problem is not statically determinate and not trivial even for the case
the external forces in the auxiliary problem are zero. A shape tensor that satisfies Eq. (7) is
denoted as a nilpotent shape tensor. The idea of nilpotent sensors has been studied in detail
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by Irschik et.al. [7], in which it is mentioned that such sensors are inappropriate for measuring
structural entities (e.g. displacements or slopes) as their signal is trivial. Since then applications
for optimizing sensor distributions by a proper superposition of nilpotent sensors have been
discussed, see e.g. Krommer et.al. [10], and the use for damage detection in simple beam
structures has been introduced in Krommer and Zellhofer [11]. In the present paper we put this
novel concept for damage detection into a more theoretical framework by identifying nilpotent
sensors as compatibility filters.

For that sake we proof that, if Eqs. (6) and (7) hold, ε must be compatible; hence, Eq. (6)
represents a compatibility filter. First, we note that∇ · S = 0 is identically satisfied, if

S = ∇× (∇×Φ)T (8)

holds. Φ is an arbitrary symmetric second rank tensor and denoted as a Beltrami stress tensor
in the literature, see e.g. Gurtin [12]. In practical problems, for which S · n = 0 must hold at
∂Vσ as well, Φ must satisfy certain conditions at ∂Vσ, which we do not wish to discuss here. As
another pre-requisite, we note the general compatibility conditions

R = ∇× (∇× ε)T = 0. (9)

We can now write the signal of a compatibility filter as

y(t) =

∫
V

S · · εdV =

∫
V

∇× (∇×Φ)T · · εdV . (10)

Next, we apply integral transforms to the integral and assume that the tensors Φ and ε satisfy
certain conditions at the boundary, which follow from the kinematical and dynamical boundary
conditions and which ensure no boundary integrals are non trivial. This results into

y(t) =

∫
V

Φ · ·RdV . (11)

Note that the boundary integrals my not be zero, if certain compatbility conditions at the bound-
ary are not satisfied; nonetheles, this case also relates to the notion of a compatibility filter, if
it is not only understood locally within the volume V , but also with respect to the boundary.
In general, we conclude that the signal of a compatibility filter is trivial, if the incompatibility
tensor R = ∇× (∇× ε)T vanishes; it is not trivial, if incompatibility is present.

This is indded the case for many practical problems; e.g. for the case the displacement vector
experiences a discontinuity at some internal surface of the material body. In the following this
case will be discussed in some detail.

5. Discontinuous displacements

As a specific type of incompatibility, we consdier discontinuous displacements. If the dis-
placement vector u(r, t) in our original problem experiences a discontinuity [[u]] 6= 0 at an
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internal surface of the body under consideration, say S12, it is clear that the strain tensor does
no longer satisfy the compatibility conditions. Moreover, the displacement field is not kine-
matically admissible for the quasi-static auxiliary problem previously used in the principle of
virtual work. To ensure the latter kinematical admissibility, we introduce a different auxiliary
problem, for which certain kinematical constraints at S12 are released, such that the displace-
ment field of the original problem becomes admissible for the auxiliary problem. For a sketch
of this auxiliary problem see Fig. 3. Body forces in V and surface tractions at ∂Vσ are absent;
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Figure 3. Three-dimensional quasi-static auxiliary problem with discontinuity surface

at S12 tractions t(aux) are applied at both sides of the discontinuity surface, which are identi-
cal but of opposite sign. At the surface with unit outer normal vector n12 these tractions are
computed from t(aux) = σ(aux) · n12, where σ(aux) is any statically admissible stress tensor for
the original auxiliary problem without body forces and surface tractions; hence, from nilpotent
shape tensors as defined in Eq. (7), S = σ(aux). It then follows from Eq. (5) that the signal of a
compatibility filter becomes

y(t) =

∫
V

S(r) · · ε(r, t)dV = −
∫
S12

(S · n12) · [[u]] dS; (12)

hence, the signal is a weighted average over the jump the displacement vector experiences at the
discontinuity surface S12. This latter fact can be utilized to detect displacement discontinuities
using compatibility filters. Moreover, nilpotent shape tensors also exist for the case the tractions
t(aux) at S12 are zero; this fact can be used to localize damage, which in the case of disconti-
nuities means the location of the internal surface. With respect to discontinuous displacements
related to damage, we mention two examples.

1. The theory of plasticity, in which the tangential components of the displacement vec-
tor are sometimes assumed to be discontinuous across an internal surface; the normal
component of the displacement vector in contrast must be continuous, see Prager and
Hodge [13].
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2. The field of crack mechanics, for which the so-called Crack Opening Displacement,
which is a displacement discontinuity, is of particular importance, as it can be related
to stress intensity factors, see e.g. Mura [9].

5.1 A simple example with discontinuous displacements

As a simple example we consider a straight beam of length L under the assumption of plane
bending using the Bernouli-Euler kinematic hypothesis. The notion of shape tensors then refers
to the notion shape functions S(x). In particular, nilpotent shape functions are computed as
bending moments for the beam without any force loading,

∂2S(x)

∂x2
= 0, (13)

for which S(x) has to satisfy homogenous dynamical boundary conditions, if dynamical bound-
ary conditions are prescribed in the actual beam. The number of nilpotent shape functions is
identical to the grade of redanduncy of the beam. E.g. two nilpotent shape functions exist for a
one span beam that is clamped at both ends and whose grade of redundancy is 2; see Fig. 4. In

In[73]:= Plot[{Snil1, Snil2}, {x, 0, L}, LabelStyle %> {FontSize + 15, FontFamily + "Times"},
AxesLabel + {"x " L", "Shape function " Nm"}, ImageSize + 600,

PlotLegends +
Placed[LineLegend[{Style["Nilpotent Shape Function 1", 15],

Style["Nilpotent Shape Function 2", 15]}, LegendFunction + Panel,
LegendMargins + 5], {Scaled[{1, 0.9}], {1, 1}}],

PlotStyle + {{Black, Thickness[0.0035]}, {Black, Thickness[0.0035]}}]

Out[73]=

Nilpotent Shape Function 1

Nilpotent Shape Function 2

0.2 0.4 0.6 0.8 1.0
x ! L

"1.0

"0.5

0.5

1.0
Shape function ! Nm

Übertragungsmatrizenverfahren für harmonische Probleme

In[47]:= A =

0 %1 0 0

0 0 0 1 " (D0)
%P0 # i^2 0 0 0

0 0 1 0

;

IMatrix = IdentityMatrix[4];

f =

0

0

1

0

;

Us = Inverse[s # IMatrix % A];
fs = LaplaceTransform[f, x, s];

Übertragungsmatrix und Lastvektor
In[52]:= U = FullSimplify[InverseLaplaceTransform[Us, s, x]];

fq = InverseLaplaceTransform[Us.fs, s, x];

2   Damged.nb

Figure 4. Nilpotent shape functions of a beam clamped at both ends

order to simulate the dynamics of this simple beam we take the bending stiffniss as D = 1Nm2

and the linear inertia as P = 1kgm−1. A span wise constant transverse force p0 = 1Nm−1

is applied harmonically and the response in the frequency domain is computed. In Fig. 5 the
dynamic magnification factor is shown for the deflection at x = L/2 and for the two sensor
signals resulting from compatibility filters put into practice by means of the two nilpotent shape
functions shown in Fig. 4. One can see that the deflection is not zero; yet, the signals are trivial,
because nilpotent sensors do not result into a signal in case the strain is compatible. In terms
of the beam theory, compatibility refers to the continuity of the deflection and the slope as well
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ListLinePlot{ynil1Listplot, ynil2Listplot, wLListplot},

LabelStyle %> {FontSize + 15, FontFamily + "Times"},

AxesLabel + "ω " s%1", "Deflection " m & Signals " Nm", ImageSize + 600,

PlotLegends +
Placed[LineLegend[{Style["Nilpotent sensor 1", 15],

Style["Nilpotent sensor 2", 15], Style["Deflection", 15]},
LegendFunction + Panel, LegendMargins + 5], {Scaled[{1, 1}], {1, 1}}],

PlotStyle + {{Black, Thickness[0.0015]}, {Black, Dashed, Thickness[0.0015]},
{Black, Dotted, Thickness[0.0015]}}, PlotRange + {{%0.004, 0.004}}

ynil[index_] := Switch[
index,
1, Chop[ynil1List],
2, Chop[ynil2List]

]

A = Table[
ynil[i].ynil[j],
{i, 1, 2}, {j, 1, 2}

];
A "" MatrixForm


0 0
0 0



MatrixRank[A]
A "" NullSpace "" Transpose "" MatrixForm

0


0 1
1 0



ESA = Eigensystem[A]

{{0, 0}, {{0, 1}, {1, 0}}}

A.ESA[[2]]

{{0, 0}, {0, 0}}

10   Undamged.nb

Figure 5. Nilpotent sensor signals & deflection

as to the kinematic boundary conditions. In the following, we will introduce incompatibility in
terms of a kink; hence, in terms of a discontinuity of the slope, which occurs at an intermediate
hinge.

We use this damage scenario of the intermediate hinge with a residual stiffness, because
the effect of a crack on the stiffness of a beam can be approximated by a reduction of the
stiffness in the vicinity of the crack. A fully local formulation models this stiffness reduction as
an intermediate hinge with a rotational spring; the residual spring stiffness K is related to the
crack depth d characterized by the non-dimensional ratio β = d/t (with t the thickness of the
rectangular cross section of the beam, which in our case is t = L/100) by means of

K =
D

t

1

C(β)
, (14)

with the nominal bending stiffness D of the beam cross section. Different methods to compute
the local compliance C(β) have been reported in the literature; we use the one proposed in [14],

C(β) = 6πβ2(0.6384−1.035β+3.7201β2−5.1773β3+7.553β4−7.332β5+2.4909β6). (15)

With respect to our example problem, we introduce a hinge at the location x = L/3 with a
residual stiffness K = 383.684, which corresponds to a relative crack depth β = 0.1. Again,
we apply a span wise constant transverse force loading harmonically. In Fig. 6 we present the
dynamic magnification factor for the resulting kink at the location of the hinge at x = L/3
and for the two sensor signals resulting from compatibility filters put into practice by means of
the two nilpotent shape functions. We see that in contrast to the undamged beam the signals
from the nilpotent sensors are not trivial. Moreover, the signal from the first nilpotent sensor is
identical to the resulting kink and the signal from the second nilpotent sensor is similar to the
one from the first nilpotent sensor in the sense that it only differs by a constant factor. We now
use the information from the two nilpotent sensors to detect, localize and quantify the damage.
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In[76]:= ListLinePlot{ynil1Listplot, ynil2Listplot, kinkListplot},

LabelStyle %> {FontSize + 15, FontFamily + "Times"},

AxesLabel + "ω " s!1", "Kink & Signals " Nm", ImageSize + 600,

PlotLegends +
Placed[LineLegend[{Style["Nilpotent sensor 1", 15],

Style["Nilpotent sensor 2", 15], Style["Kink", 15]}, LegendFunction + Panel,
LegendMargins + 5], {Scaled[{1, 1}], {1, 1}}],

PlotStyle + {{Black, Thickness[0.0015]}, {Black, Dashed, Thickness[0.0015]},
{Black, Dotted, Thickness[0.0015]}}, PlotRange + {{%0.0001, 0.0001}}

Out[76]=

In[77]:= ynil[index_] := Switch[
index,

1, Chop[ynil1List],
2, Chop[ynil2List]

]

In[78]:= A = Table[
ynil[i].ynil[j],
{i, 1, 2}, {j, 1, 2}

];
A "" MatrixForm

Out[79]//MatrixForm=
0.0000116873 "7.79155 × 10"6

"7.79155 × 10"6 5.19437 × 10"6

In[80]:= MatrixRank[A]
A "" NullSpace "" Transpose "" MatrixForm

Out[80]= 1

Out[81]//MatrixForm= 
0.5547
0.83205



In[82]:= ESA = Eigensystem[A]

Out[82]= 0.0000168817, 4.23516 × 10"22, {{"0.83205, 0.5547}, {"0.5547, "0.83205}}

10   Damged.nb

Figure 6. Nilpotent sensor signals & kink

5.1.1 Damage detection

Damage is detected simply by the fact that the nilpotent sensors have no trivial signal for
the damaged case. In order to introduce damage indices, we introduce inner products of the
signals. We use the sensor signals, which depend on the excitation frequency, yi = yi(ω), with
i = 1, 2 to compute the components of a square matrix A as

Aij =

∫ ω̄

0

yi(ω)yj(ω)dω , i, j = 1, 2. (16)

ω̄ is an upper bound of the excitation frequency used in the simulation. Then we define two
damage indices Di, with i = 1, 2 as

Di =
Aii

Aii,nominal
. (17)

Here, Aii,nominal are corresponding nominal values for the case of a small damage, which serve
as reference values. In our example, we use a relative crack depth of βnominal = 0.01 and we
compute the two damage indices as

D1 = D2 = 148.944, (18)

from which we conclude on the presence of damage in the beam.

5.1.2 Damage localization

As we have already mentioned, the signals from the two nilpotent sensors are identical
besides a constant factor; hence, the rank of the matrix A is only 1 and one can compute a 1-
dimensional null space. Rather then computing the null space, we solve the eigenvalue problem

9
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for the matrix A, from which we find one zero eigenvalue and one non zero eigenvalue. We use
the matrix of the eigenvectors

T =
[
eT1 eT0

]
(19)

as a transformation matrix. Here, e0 is the eigenvector for the zero eigenvalue and e1 the
eigenvector for the non zero eigenvalue. The transformation is applied to the nilpotent shape
functions Si(x). With the aid of this transformation we obtain adjusted nilpotent shape func-
tions S̄i = S̄i(x), which are shown in Fig. 7. We note that the adjusted second nilpotent

In[70]:= Plot[{Snilnew[[1]], Snilnew[[2]]}, {x, 0, L},
LabelStyle %> {FontSize + 15, FontFamily + "Times"},
AxesLabel + {"x " L", "Shape function " Nm"}, ImageSize + 600,

PlotLegends +
Placed[LineLegend[{Style["Adjusted Nilpotent Shape Function 1", 15],

Style["Adjusted Nilpotent Shape Function 2", 15]}, LegendFunction + Panel,
LegendMargins + 5], {Scaled[{1, 1}], {1, 1}}],

PlotStyle + {{Black, Thickness[0.0035]}, {Black, Thickness[0.0035]}}]

Out[70]=

Adjusted Nilpotent Shape Function 1

Adjusted Nilpotent Shape Function 2
0.2 0.4 0.6 0.8 1.0

x ! L

"1.0

"0.5

Shape function ! Nm

ynilnewq = ({{1 " (Snilnew[[1]] ". x + 1 " 3), 0}, {0, 1}}.ynilnew);

In[72]:= ynil1newqplot = Table[{1 j, Chop[ynilnew[[1]][[j]]]}, {j, 1, 200}];
ynil2newqplot = Table[{1 j, Chop[ynilnew[[2]][[j]]]}, {j, 1, 200}];
kinkListqplot = Table[{1 j, Chop[kinkList[[j]]]}, {j, 1, 200}];

Damged.nb   13

Figure 7. Adjusted nilpotent shape functions

shape function, which results from the transformation with the eigenvector belonging to the
zero eigenvalue, hence from the null space of the matrix A, has a zero value at the location of
the intermediate hinge, which represents the damage in our case. Therefore, we have found the
location of the damage at x = L/3 as the location of the zero value of the adjusted nilpotent
shape function.

5.1.3 Damage quantification

To quantify the damage, we use the signals from the adjusted nilpotent sensors. For that sake
the above transformation is also applied to the signals from the nilpotent sensors yi = yi(ω)
resulting into adjusted sensor signals ȳi = ȳi(ω), which are shown in Fig. 8. Clearly, the
signal from the second adjusted nilpotent sensor, which results from the transformation with
the eigenvector belonging to the zero eigenvalue is trivial; hence, this sensor is nilpotent for
the damaged beam. This fact has also been used to locate the damage. Yet, the signal from
the first adjusted nilpotent sensor is not zero; but, it is similar to the kink at the location of the
damage by means of a constant factor. Hence, this adjusted nilpotent sensor measures the kink,
or, in other words the ammount of damage. This follows from the fact that the damage in this
example is modelled as a hinge with a residual stiffness. Instead of using such a model, we can

10
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Out[77]=

Adjusted Nilpotent sensor 1

Adjusted Nilpotent sensor 2 Kink

50 100 150 200 ω " s#1

#0.0001

#0.00005

0.00005

0.0001
Kink & Signals " Nm

Figure 8. Adjusted nilpotent sensor signals & kink

also simulate the undamaged beam under a certain loading and account for damage by means
of a local eigenstrain, whose intensity is to be determined such that the response is the one of
the damaged beam. To further clarify this idea, we note that the bending moment is

My = −D
(
∂2w

∂x2
− κi

)
. (20)

Here, the inelastic curvature κi takes the role of the local eigenstrain, which is applied with an
unknown intensity κ, κi = κδ(x− x̄) at the already identified location of the damage x̄ = L/3.
We can now simulate the response due to a given loading and the unknown local eigenstrain. In
the harmonic case, the latter is a function of the frequency, κ = κ(ω). For the simulation, we
split the beam into two parts, left and right from the location of the damage and account for the
interface condition

J
∂w

∂x
Kx̄ = κ. (21)

Hence, the unknown eigenstrain intensity κ = κ(ω), which is a measure to quantify the damage,
represents nothing else than the kink, which is proportional to the signal of the second adjusted
nilpotent sensor from the original damaged structure. Therefore, we suggest the following
strategy to quantify the damage.

1. We assume the damage has been detected and localized.

2. The signal from the adjusted nilpotent sensor, which is not trivial, has been measured
under a prescribed force loading; the signal is denoted as ȳ = ȳ(ω). E.g. the signal from
the first adjusted nilpotent sensor in Fig. 8 is such a signal.

11
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3. The damaged beam is simulated as an undamged beam under the same prescribed force
loading, but with an additional local inelastic curvature κi = κδ(x − x̄), for which the
signal is used in the sense κ = κ(ω) = αȳ(ω). The unknown factor α is identified from
the condition that the simulated signal ỹ = ỹ(ω) from the adjusted nilpotent sensor is
identical to the measured signal.

4. Once the factor α is identified, the damage in terms of the local inelastic curvature κi =
κδ(x− x̄) is known, and the intensity κ = κ(ω) quantifies the damage.

Running through this procedure with our example problem, we identify the factor of prortion-
ality as α = −1.20185 and the intensity κ = κ(ω) as the kink in the damaged beam, which is
also shown in Fig. 8. Clearly, such a way of quantifying damage is questionable, as it depends
on the actual type of loading that is used for the procedure. However, we can further identify
the actual residual stiffness of the hinge. For that sake, we compute the bending moment at
the location of the hinge in the simulation, see Fig. 9, and compute the residual stiffness as the
ratio between this bending moment and the intensity κ = κ(ω) of the local inelastic curvature
κi = κδ(x− x̄). In our example problem we obtain exactly the original value for the stiffness,
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Figure 9. Simulated bending moment

K = 383.684.

5.1.4 Summary and discussion

Within this subsection we have shown the application of spatial compatibility filters for
Structural Health Monitoring of a simple beam. The spatial compatibility filters were put into
practice by means of nilpotent sensors, which are based on nilpotent sensor shape functions.
The latter are statically admissible bending moment distributions for the case no external forces
are applied. They exist in redundant beams only and their number is identical to the garde of
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redundancy. As long as the beam is undamaged the nilpotent sensors render a trivial signal. This
changes, if damage occurs; in particular, damage, which may be characterized by means of local
incompatibility. From the non trivial signals in the damaged case, we can detect, localize and
quantify the damage. As a specific case a damage was introduced as an intermediate hinge with
a residual rotational stiffness. For this problem, we have used the simulated signals to detect
the damage by introducing damage indices, to localize the location of the hinge by a proper
transformation of the signals with a transformation matrix constructed from the measurements
and quantified the damage by using the measurement data, which is directly related to the kink
at the location of the hinge.

5.2 Generalization of the method

We complete this paper by shortly presenting a sketch on the possible extension of the
method we have developed for the specific example of a simple beam to 3D problems, for
which the displacement is discontinuous at an internal surface S12; see Fig. 3. The first step in
the method is to compute the nilpotent shape tensors from

V : ∇ · Si = 0,

∂Vσ : Si · n = 0, (22)

and put the compatibility filters with the signals

yi(t) =

∫
V

Si · · εdV (23)

into practice. We note that infinitely many nilpotent shape tensors Si exist; hence, infinitely
many compatibility filters are put into practice. Concerning the idea of damage detection, lo-
calisation and quantification using these compatibility filters, we note the following:

• Damage detection For the undamaged case none of the signals are non trivial. This
changes once damage occurs; e.g. for the discontinuous displacements we have

yi(t) =

∫
V

Si · · εdV = −
∫
S12

(Si · n12) · [[u]] dS 6= 0, (24)

from which we conclude on the presence of damage; hence, we detect the damage from
the fact that the signals of the compatibility filters are not trivial.

• Damage localisation First we note that even for the damaged case with discontinuous
displacements at S12 nilpotent shape tensors exist; the latter may be computed from

V : ∇ · S̄i = 0,

∂Vσ : S̄i · n = 0 and S12 : S̄i · n12 = 0. (25)
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Obviously, any shape tensor S̄i is also a shape tensor Si; hence, all S̄i can be represented
as a linear combination of the Si,

S̄i =
∞∑
j=1

αi,jSj. (26)

Our method allows to compute the coefficients αi,j from the non-trivial signals yi(t) mea-
sured in the damaged case. For that sake we introduce an inner product of two signals,
which we write as Aij = 〈yi(t)yj(t)〉; then, the inner products are used to form a theo-
retically infinite-dimensional matrix A. Next, we solve the eigenvalue problem and we
use the components of the eigenvectors ei with corresponding zero eigenvalues λi = 0 as
the coefficients αi,j . Once the shape tensors S̄i are known, the location of the damage, or
better of the internal surface S12 is found from the fact that

S̄i · n12 = 0 (27)

must hold at S12 for all S̄i.

• Damage quantification To quantify the damage we use sensors put into practice by those
sensor shape functions, which are defined as

S̃i =
∞∑
j=1

αi,jSj, (28)

and for which the coefficients αi,j are obtained from the components of the eigenvectors
ei with non zero eigenvalues λi 6= 0. The corresponding signals ỹi(t) are not trivial for
the damaged case. Then, we simulate the damaged case in the following sense:

1. An unknown distribution of eigenstrains ε∗ is applied at the location of the damage
S12, which has already been found from the localisation of damage.

2. In addition external forces are used in this simulation, which are identical to the
forces in the actual damaged problem, from which the signals ỹi(t) were obtained.

3. These signals are also computed in the simulation and denoted as ŷi(t); they depend
on the unknown distribution of eigenstrains ε∗.

4. We compute the error signal ei(t) = ỹi(t) − ŷi(t) and minimize it, from which the
unknown distribution of eigenstrains is obtained.

Finally, the distribution of eigenstrains ε∗ serves as a measure quantifying the damage.

Note that the discussion of the extension of the method to 3D problems was only meant to
give the general idea on how to use compatbility filters for damage detection, localisation and
quantification; hence, it is far from being exhaustive and from being directly applicable for
practical problems at this time. Example problems for a proof of concept are planned for the
future.
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6. Conclusion

In the present paper we have presented the theoretical foundation of a novel method for the
detection, localisation and quatification of local damage; namely Spatial Compatibility Filters.
These filters filter the incompatible part of the strain tensor, or in other words the damage, which
is closely related to the fundamental concept of incompatibility. The method can be used for
damage detection, damage localisation and damage quantification. This has been validated for
the simple example of a beam and an outlook on the possible extension to 3D problems has
been given.
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