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Summary: This work presents mode conversion effects in carbon fiber reinforced plastic

plates. The optically observed pattern of wave propagation, which include the inhomogeneity

of the material and additionally the information of eventually existing defects will be discussed.

Furthermore, the modeling of the carbon fiber reinforced plastic for subsequent finite element

analysis of wave propagation in plates from this material will be presented. The random distri-

bution of fibers in the matrix material has to be considered in a microscale model to properly

capture the “quasi-continuous mode conversion”. Finally, a numerical example will show the

influence of the material model on the developing wave modes.

1. INTRODUCTION

Modern infrastructure includes a vast variety of structural systems which have to be kept
under surveillance in order to avoid malfunction and accidents. Typical examples are steel
and concrete bridges, pressure vessels, railway tracks, and transmission lines, to name just a
few. Especially aerospace structures are in the focus of improved inspection techniques since a
considerably amount of life cycle costs is due to inspection and repair and since damage can lead
to catastrophic failure. A reliable monitoring technique would allow for adjusted maintenance
intervals in accordance to the real requirements so that a reduction of the operating costs can be
expected.

Because of the reasons above mentioned, current research on structural health monitoring
methods and non-destructive testing techniques aims at fast, efficient, and reliable detection of
visible and hidden structural damages in engineering structures.

The difficulty in identifying the damage is often caused by the complex phenomena of dam-
age initiation and evolution including various failure modes which have to be detected reliably.
Among others, techniques based on elastic waves play an important role for damage detection.
In plate and shell structures, especially high frequency waves, i.e. guided waves or LAMB-
waves, cf. GRAFF [4], and their possible contributions to structural health monitoring methods
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are in the focus of current research, cf. GIURGIUTIU [3]. Reflections, refractions or mode con-
versions are distinct indications of faults or defects and are often instantaneous visible in the
pattern of an otherwise undisturbed propagating wave.

Beyond that, the increasing application of fiber reinforced plastics in lightweight structures
is currently demanding for advanced monitoring techniques. Thus LAMB-wave based tech-
niques are investigated for potential use in carbon fiber reinforced plastic structures. However,
with the anisotropic behavior of this class of materials and their layered structure in mind,
the arising physical phenomena are more complicated and the interpretation of the observed
LAMB-wave behavior becomes more challenging, cf. ROSE [8].

This work deals with the observation of a phenomenon which is called “quasi-continuous
mode conversion”, cf. NEUMANN ET AL. [7] and WILLBERG ET AL. [9]. It appears after the
fastest guided wave (S0-wave in isotropic solids) has passed the observed area and before the
second-fastest wave (A0-wave in isotropic solids) arrives. In this time period, regular patterns
occur which are not seen in isotropic solids. This phenomenon is observed in thin-walled fiber
reinforced plastic material with arbitrary fiber orientation and lay-up or with woven fabrics.

The manuscript is structured as follows: First, the experimentally observed quasi-continuous
mode conversion is described in detail. In a next step, possible reasons of the quasi-continuous
mode conversion are discussed and the material inhomogeneity is identified as the source. Then,
a stochastic inhomogeneity is implemented into the material law, cf. HENNINGS [5]. Subse-
quently, numerical investigations show that this phenomenon can be captured in this way.

2. THEORETICAL FOUNDATIONS

2.1 Waves in elastic plates

In the analysis of wave motion in elastic media the balance of momentum (σ: stress tensor,
ρ: material density, b: distributed volume specific body forces, u: displacement field, super-
posed dot: differentiation with respect to time)

divσ + ρb = ρ ü , (1)

the linear strain-displacement relation (linear GREEN-LAGRANGIAN strain tensor E)

E =
1

2
(gradu+ gradT u) , (2)

as well as HOOKE’s law (fourth order elasticity tensor C)

σ = C : E (3)

are combined to obtain
div(C : gradu) + ρb = ρ ü . (4)

In the case of isotropic material HOOKE’s law can be expressed by the LAMÉ-constants λ and
µ and Eq. (4) may be rewritten as

(λ+ µ) grad(divu) + µ div(gradu) = ρ ü (5)
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which is well-known as LAMÉ-NAVIER differential equation. Solutions of the differential equa-
tion (5) are given in many textbooks, cf. ACHENBACH [1] or GRAFF [4], and are not repeated
here for brevities sake.

In an unbounded elastic media it is well known that two and only two types of waves are
propagated, namely the compression (P-) wave and the shear (S-) wave. These types of waves
are fundamental to the following considerations.

In the case of semi-infinite media the existence of a boundary comes into play and distin-
guishes this problem from the latter. The analysis leads to the phenomenon of mode conversion
that occurs when waves encounter a free boundary. This means that in the case of an incident P-
or S-wave, both a P-wave as well as an S-wave may be reflected. Similar effects are observed at
the interface between two elastic layers. In the analysis of the reflections SNELL’s law is funda-
mental. The result of the respective mathematical problem, i.e. differential equations including
boundary condition is interpreted as a surface wave which is a third type of wave. These waves
have been named after LORD RAYLEIGH who showed that their amplitudes decrease rapidly
with depth. Depending on POISSON’s ratio of the media the velocity of propagation is some-
what less than shear velocity. RAYLEIGH waves are non-dispersive.

LAMB-waves belong to another type of waves which is found in traction-free thin plate
and shell structures. Their formation may be considered as a consequence of P- and S-wave
reflections at the surfaces of plates and shells. Many textbooks, e.g. GRAFF [4], deal with
the LAMB-wave theory for isotropic media which is not repeated here for that reason. From
the analytical solution of the governing equations one obtains finally the RAYLEIGH-LAMB-
equation

tan qd

tan pd
= −

[

4k2pq

(q2 − k2)

]±1

. (6)

The parameters p and q are defined as p2 = ω2/c2L − k2 and q2 = ω2/c2T − k2. Furthermore, k
stands for the wave number, ω for the excitation frequency, and cL and cT for the phase veloc-
ities of the longitudinal and transversal waves, respectively. The numerical solution of Eq. (6)
with the exponent +1 yields the symmetric eigenvalues, with consideration of the exponent -1
the antisymmetric eigenvalues. The results show that an infinite number of wave modes propa-
gates in plates and that at least two modes exist at any frequency. In structural health monitoring
the fundamental symmetric (S0) and antisymmetric (A0) modes are typically generated without
excitation of higher modes. LAMB-waves are generally dispersive. They are able to propagate
over long distances in thin plate and shell structures with low attenuation so that they are at-
tractive for health monitoring techniques. Due to their short wavelength LAMB-waves are also
applicable for the detection of small faults.

In the case of transversal isotropic media, e.g. a single layer of carbon fiber reinforced plastic
material, the derivation of the result corresponding to Eq. (6) is much more sophisticated, cf.
HENNINGS [5] or ROSE [8], and is not presented here for brevities sake. Instead of the analytical
expressions the graphical visualization is shown in Figs. 1 and 2 as dispersion diagrams for fiber
orientations of 0◦ and 45◦, respectively.
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Figure 1: Dispersion diagram of a single unidirectional layer in fiber orientation (0◦-layer)
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Figure 2: Dispersion diagram of a single unidirectional layer in fiber orientation (45◦-layer)
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It becomes visible, that the dispersion diagram for wave propagation in fiber direction, cf.
Fig. 1, is quite similar to the isotropic case. Here, the symmetric (Si) and antisymmetric (Ai)
modes can clearly be distinguished. This is not the case for wave propagation at the angle of
45◦ with respect to the fiber orientation. Therefore, the various curves are not marked in Fig. 2.
Furthermore, SH-waves (shear horizontal waves) are included in Fig. 2.

2.2 Material modeling

Carbon fiber reinforced plastic material is composed from the carbon fiber and the shap-
ing matrix material as depicted in Fig. 3, where a lay-up with four layers in an orientation of
[0◦, 90◦]s is shown. The physical structure (left picture) is transferred to a fiber-matrix-model
on the micro-scale. Here, both components are described by their individual material proper-
ties (center picture). Now, an appropriate homogenization technique, e.g. the semi-empirical
homogenization method of HALPIN & TSAI, cf. JONES [6], is applied in order to obtain the
fiber-matrix model on the macro-scale (right picture). This procedure leads to a layer-wise ho-
mogeneous structure. In a subsequent re-consideration, this idealization will be reviewed and
an enhanced material model will be proposed.

3. QUASI-CONTINUOUS MODE CONVERSION (QCMC)

To clearly explain the phenomenon of “quasi-continuous mode conversion”, the difference
of LAMB-wave propagation in carbon fiber reinforced plastic (CFRP) plates compared to that
in an isotropic one is pointed out.
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Figure 3: Material modeling: from microscopy to fiber-matrix-model
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Figure 4: Measured wave propagation via scanning laser vibrometry
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Figure 4a shows the experimental investigation of the fundamental S0- and A0-modes in an
intact aluminium plate (thickness: 1 mm) taken with a scanning laser vibrometer. As expected,
the transiently excited primarily S0- and A0-wave groups propagating with their inherent phase
velocity and wave length and separating in a certain travelling time without any mode conver-
sion. As mentioned before, an almost identical behavior is expected from transiently excited
wave groups in intact CFRP laminates.

However, recent experimental investigations showed irregularities from this regular pattern
in assumedly undamaged CFRP plates, which can be seen in the following examples. The
wave propagation in a quasi-isotropic plate exclusively composed of unidirectional (UD) layers
[UD255 0◦/ UD500 ± 45◦/ UD255 90◦]S is shown in Figure 4b. The faster S0- and slower
A0-waves occur and move as expected, but the arising waves between the primary excited sym-
metric and antisymmetric wave groups, highlighted by white ellipses, represent an anomaly in
the wave behavior. Wave length and propagation velocity of these “new” waves point toward
additional A0-waves. Though, these secondary A0-waves appear farther from the excitation
point than the primary excited ones.

Beside quasi-isotropic laminates, this phenomenon is also observed in cross-plies as well
as in UD laminates, (cf. Fig. 4c, 4d). Since the secondary A0-waves immediately appear in
the whole plate during and after passing of the S0-wave field, this behavior implies “quasi-
continuous” mode conversion. In all of the investigated laminates, the secondary A0-wave
fronts run almost parallel to the fiber direction of the near surface layers. Furthermore, animated
measurements identify them as secondary A0-waves propagating in same and opposite direction
of the primary excited wave groups, as well as standing waves.

4. ENHANCED MATERIAL MODELING

In numerical computations the described wave phenomenon cannot be represented by the
conventionally utilized complete homogenization of the single layers in a laminate. Therefore,
an enhanced material modeling approach, which enables the realistic reproduction of the QCMC
effect, is presented in this section.

Figure 5 shows the details of two photomicrographs of a single UD-layer with fibers in x1-
direction. In both sectional views it can be seen that the assumption of uniformly distributed
fibers does not reflect the reality. On closer inspection, obviously, the global fiber volume ratio
ϕf of a single layer does not correspond to the local fiber-matrix ratio. This fact is clearly evi-
dent in Figure 5b, where the randomly distributed fibers may form regions with a considerably
lower fiber volume ratio, e.g. in the upper left corner.

Since the QCMC phenomenon does not just occur in complex anisotropic laminates but
already in the simplest case of a single layer UD-plate this particular type of plate is considered
for development of enhanced material modeling. For the simulation of wave propagation the
three-dimensional problem (plate with actuator at the top and/or bottom surfaces) is reduced to
a two-dimensional plane strain plate, cf. Fig. 6 (top) and Fig. 7. Additionally, the boundary
conditions are introduced in the axis of symmetry and the excitation of the actuators is replaced
by nodal forces. They act in the same or in opposite direction dependant on whether symmetric
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or antisymmetric waves are to be generated.
A look at the 90◦-sectional view of the UD layer motivates a novel approach with sectored

homogenized zones. Figure 6 shows the procedure to generate the enhanced model by means
of a single UD layer with a thickness of 0.4 mm.

In a first step the fiber-matrix-model is viewed on the micro scale. The fibers are idealized
depicted as squares (black) with an edge length (8 µm) corresponding to the dimension of a
real fiber diameter (5− 10 µm). Furthermore, the fibers are randomly distributed (GAUSSian
distribution) in the matrix material (represented by white squares) in consideration of the global
fiber volume ratio. Here, each square corresponds to a single finite element. The resulting high-
resolution numerical model is able to reproduce the QCMC effect. However, due to the vast
number of degrees of freedom (DOF) this model is unsuitable for efficient numerical evaluation.

In the next step the micro-model will be divided into subsets. Both center pictures in Figure
6 show the same detail of the micro-model with their respectively subsets, which are composed
of an arbitrary square number of fiber-matrix-elements and are highlighted by colored frames.
Since the primary allocation of fiber and matrix elements is randomly distributed, the fiber
volume ratio of every subset can differ from the global ratio.

Subsequently, the material properties (YOUNG’s modulus, POISSON ratio, shear modulus)
of each subset are determined by using the semi-empirical homogenization method of HALPIN

& TSAI, cf. JONES [6]. With displacement amplitudes and wave velocity in mind, this method
offers the best approximation to the values of the micro-model. Due to the fact that now all
elements in a subset have the same material parameters, the sectored homogenization allows
a coarser discretization as the micro-model, so that every subset in the meso-model can be
expressed by only one finite element. The shades of gray in the bottom pictures of Figure 6
correlate to the local fiber volume ratio of the subsets, in which brighter squares reflect a higher
matrix concentration than darker ones.

The subsets of the left meso-model show marginal variations in coloring resp. fiber volume
ratio, whereas the color changes (and with this the different fiber volume ratios) are clearly

2 1

3

(a) Sectional view in 0◦

1 2

3

(b) Sectional view in 90◦

Figure 5: Detail of photomicrographs of a single UD-layer (fibers in x1-direction)
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Figure 6: Approach for the generation of an enhanced material modeling using a sectored ho-
mogenization of the UD layer
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visible in the right meso-model. The reason for this is the number of fiber and matrix elements
per subset. The smaller the number of elements, the stronger is the influence of the random
distribution of fiber and matrix, which arises in the deviation from the global fiber volume ratio.

5. RESULTS

The dimensions of the micro-model of a single UD layer (fibers in x2-direction) are illus-
trated in Figure 7. The material parameters of fibers and matrix material are listed in Table 1.
The fiber volume ratio is ϕf = 0.5. Based on the edge length of 8 µm the micro-model consists
of 12500× 50 squared fiber-matrix-elements (FM elements).

F

x1

x3

100 mm

0.4 mm 8 µm

8 µm

Figure 7: Dimensions of the micro-model and a fiber-matrix-element (FM element).

Originating from the micro-model different meso-models are created, in which various
squared numbers of FM elements (2×2/ 5×5/ 10×10/ 25×25/ 50×50 elements) are combined
to subsets, cf. Figure 8. As mentioned in the section before, each subset is discretized by one
finite element with its homogenized material properties. The computation of wave propagation
in this meso-models is supposed to answer the question at which homogenization level of the
layer the QCMC effect can be reproduced.

Table 2 shows the information of the micro and meso-models concerning element distribu-
tion and local fiber volume ratios. The first rows lists the number of subsets of each model.
Every subset is represented by a 9-node element (2 DOF per node) and thus leads to the total
number of DOF for each model shown in the second row.

Due to the mergence of fiber and matrix elements there are different fiber volume ratios ϕe
f

in the subsets. The number of occurring ratios as well as their minimum and maximum are
listed in line 3 to 5. It is evident that the number of local fiber volume ratios rises with an
increasing number of FM elements per subset (see Tab. 2 line 3). Simultaneously, the minimum
and maximum values converge to the global fiber volume ratio of the layer (ϕf = 0.5).

The excitation of the plate takes place at 2.5 mm from the left edge (symmetry axis) at a load

Table 1: Material properties of fiber and matrix

Material
E|| E|⊥ ν|⊥ ν⊥⊥ G|⊥ ρ

[GPa] [GPa] [-] [-] [GPa] [kg/m3]

Fiber 200 16.7 0.2 0.2 83 1800

Matrix 3.5 - 0.4 - - 1400
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Elements per subset

50×50

25×25

10×10

5×5
2×2

Figure 8: Detail of the micro-model with illustration (red squares) of the subsets

of 100 N applied as a two cycle sine burst signal with a central frequency of 100 kHz. Over two
cycles the sine signal is multiplied by a HANNING window. Since the effect of QCMC occurs
after the symmetric waves are passing the plate the structure is excited symmetrically.

Figure 9 shows the results of the numerical simulation. The red curves display the out-
of-plane displacements (u3) of the different meso-models at the top edge of the plate. For
comparison also the displacement amplitudes of the micro-model calculation (black curves) are
depicted in the diagrams.

At the time of t = 49.5 µs the primary excited S0-wave has passed the whole plate and
reached the right end of the structure. As expected, due to the random allocation of FM elements

Table 2: Model parameter

meso-models micro-model

FM elements/subset 2× 2 5× 5 10× 10 25× 25 50× 50 (1× 1)

Subsets 156 250 25 000 6 250 1 000 250 (625 000)

DOF 1 275 051 210 021 55 011 10 005 3 003 5 050 101

Number of ϕe
f 5 18 37 73 95 2

min(ϕe
f ) 0 0.16 0.29 0.437 0.464 0

max(ϕe
f ) 1 0.84 0.68 0.563 0.532 1
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Figure 9: Out-of-plane-displacements [nm] of the UD plate at the top edge by using variously
sized subsets (t = 49.5 µs).
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the displacement curves of the micro-model show secondary A0-wave groups appearing after
the symmetric waves have passed the plate. These secondary wave groups are propagating in
same and opposite direction of the primary excited S0-wave and moreover they appear locally
as standing waves.

As it can be seen in Figure 9, every meso-model is able to reproduce this behavior, except the
model with the coarsest discretization (50× 50 FM elements per subset). Even the meso-model
with 25 × 25 FM elements per subset is able to capture the amplitudes of the secondary A0-
wave in an excellent manner and shows the peaks of the primary excited S0-wave. The offset of
the S0-displacement curves between the micro and meso-model is owed to the homogenization
method and is not a consequence of the application of subsets.

The reason for the absence of secondary A0-waves in the coarsest meso-model with 50×50
FM elements per subset is not explained by a bad discretization resp. oversized finite elements.
Also these finite elements (length of 0.4 mm) are 10 times smaller than the A0-waves (wave
length λa ≈ 4 mm). Since this meso-model uses only one finite element across the thickness,
the structure gets a symmetric set-up relating to the midplane of the plate and for this reason no
conversion from S0- to A0-mode happens, see AHMAD [2].

6. CONCLUSION

An enhanced material modeling method for single UD layer is presented. Here, compared to
the conventional layer-wise homogenization, size-varying subsets with homogenized material
properties are generated to successfully reproduce the phenomenon of “quasi-continuous mode
conversion” in this particular type of CFRP plates. For the homogenization the semi-empirical
method of HALPIN& TSAI is applied.

Investigations concerning the maximum size of the subregions for simulating the “quasi-
continuous mode conversion” yield at least two subregions over the height of the UD layer, but
solely to ensure an asymmetric set-up of the numerical model because of the varying material
parameters of the subsets. Additionally taking into account the common restrictions as node
number resp. polynomial degree per expected wave length the enhanced material model excel-
lently simulates the real propagation behavior in UD layers and thus motivates the need for a
stochastic material model for proper analysis of wave propagation.
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