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Summary: Buckling of slender beam-columns subject to axial compressive loads represents
a critical design constraint for light-weight structures. Passive solutions to increase the criti-
cal buckling load are limited by increasing or modifying the cross-sectional area, changing the
material or reducing the beam-column length and may lead to oversizing or unwanted change
in geometry. Active buckling control provides a possible alternative to stabilize slender beam-
columns by active lateral forces or bending moments with fewer modifications in geometry,
shape and material. In this paper, the potential of active buckling control of an axially loaded
beam-column with circular solid cross-section by active supports with integrated piezoelectric
actuators at both ends is investigated numerically. The beam-column itself stays free from any
geometrical or material modifications along its length. A mathematical model of the axially
loaded beam-column is derived and a linear quadratic regulator (LQR) with state observer is
designed to stabilize the system. The effectiveness of the stabilization concept is investigated
by numerical simulation of the supercritically loaded beam-column. With the proposed active
buckling control it is possible to increase the maximum bearable axial compressive load signif-
icantly above the first critical buckling load of the passive beam-column.

1. INTRODUCTION

Buckling of slender and compressively loaded beam-columns is a critical failure mode in the
design of light-weight structures. The theory of buckling for passive beam-columns has been
thoroughly investigated, [1]. A general approach to passively increase the critical buckling load
is to change the geometry, e. g. length and cross-section area, or the material so that it withstands
higher loads. This, however, is sometimes not desirable because of given design constraints.
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In these cases, active buckling control without significant change in geometry and material
provides a suitable approach to increase the maximum bearable load of a given structure.

Active buckling control of slender beam-columns with rectangular cross-section and dif-
ferent boundary conditions has been investigated numerically and experimentally several times
and an increase in the critical buckling load could be achieved in all cases, [2, 3, 4, 5, 6, 7, 8, 9].
One way to compare the different investigated structures is to compare the slenderness ratio
s = leff/i that is derived from the beam’s effective buckling length leff and the gyration radius i.
Usually, elastic EULER buckling may occur for slenderness ratios higher than the limiting slen-
derness ratio s > sl = π

√
E/σp which is dependent on the material’s Young’s modulus E and

the proportional limit σp. The higher s, the more vulnerable a beam-column is against buckling.
Often, surface bonded piezoelectric patches were used to induce active bending moments in

the structure to counteract the deformation, [2, 3, 4, 5]. In a numerical study, the buckling load
of a pinned-pinned beam with piezoelectric patches along the entire length and slenderness ratio
s = 530 could be increased above the first critical buckling load by 280 % for slow static load
variations, [2]. In a similar numerical study with the same beam geometry with pinned-pinned
boundary conditions and discrete piezo patches at two beam positions, an increase in the critical
buckling load by 780 % was achieved for the stabilization of a non-zero initial deflection, [3].
The experimental studies generally achieved a smaller increase in critical buckling load than the
numerical studies. In [4], actively controlled piezoelectric patches were applied to predeflected
carbon-epoxy composite columns with slenderness ratio s = 970 and the critical buckling load
could be increased by 37 % compared to the column without actively controlled patches and by
7 % compared to the theoretical buckling load of the undeflected column. For a beam-column
with s = 670 and active piezoelectric patch actuators attached along the entire surface with
additional stiffeners to cover gaps between the actuators, the buckling load of the passive system
could be increased by 460 %, [5]. In another stabilization concept, a predeflected beam-column
with s = 300 and eccentrically embedded shape memory alloys was investigated experimentally
and an increase of 11 % in the critical buckling load was achieved, [6].

The active stabilization concept investigated by earlier own studies used piezoelectric stack
actuators to apply active lateral forces near the base of a fixed-pinned beam-column with rect-
angular cross-section and slenderness ratio s = 725, [7, 8, 9]. Compared to other studies
mentioned above, most of the beam-column’s surface was kept free from any actuator like
piezoelectric patches, so the beam-column’s stiffness and, respectively, the slenderness ratio
was not influenced by additional actuators. Only strain gauges were applied on the surface.
In the earlier own studies, a lateral disturbance force represented uncertainty in loading of the
beam-column that had to be compensated by the buckling control. In an experimental study,
an increase in the critical axial buckling load of 40 % was achieved by using a linear-quadratic
regulator (LQR) to control the first three modes of the supercritically loaded beam-column, [9].

Active buckling control of beam-columns with circular cross-section has not often been in-
vestigated so far. In [10], active buckling control of a circular beam-column with slenderness
ratio s = 500 and active lateral forces acting near the beam-column’s fixed base was investi-
gated. An increase of 110 % in the critical buckling load was achieved in a numerical simulation.
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The studies mentioned before investigated beam-columns with high slenderness ratios s ≥ 300
with low stiffness and relatively low buckling loads. In this paper, a rather stiff beam-column
is stabilized using active supports with integrated piezoelectric actuators to introduce active lat-
eral forces below the beam-column ends. The beam-column has a first critical buckling load of
Pcr,1 = 3221.3 N and a relatively low slenderness ratio s = 104 that is closer to the limiting
slenderness ratio of sl = 38 of the chosen material than in earlier studies.

2. SYSTEM DESCRIPTION AND STABILIZATION CONCEPT

The investigated system is a slender beam-column of length lb with circular solid cross-
section of radius rb that has two elastic supports A at x = 0 and B at x = lb with rotational
stiffness kϕ and lateral stiffness kl that are the same for both supports A and B and in both
y- and z- direction, Fig. 1. The beam-column properties radius rb, bending stiffness EIb and
density ρb are assumed to be constant across the entire beam-column length lb.
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Figure 1: Beam-column system, a) beam-column with active supports for experimental test, b)
sketch of beam-column
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In each support A and B at position x = −lext and x = lb + lext, three piezoelectric
stack actuators are arranged in the support housing at an angle of 120 ◦ to each other in one
plane orthogonal to the beam-column’s x-axis. They are connected to the beam-column via a
relatively stiff axial extension of length lext, radius rext, bending stiffness EIext and density ρext

forming a cantilever beam ending beyond both spring elements. This way, active lateral forces
in arbitrary directions orthogonal to the beam-column’s longitudinal x-axis can be introduced
in both supports A and B, Sec. 3. The beam-column is loaded with a constant axial load P
that exceeds the first critical axial buckling load P > Pcr,1. The circular cross-section has
no preferred direction of buckling, so the beam-column may buckle in any plane lateral to
the x-axis. A time-dependent lateral impulse disturbance force Fd(t) that initially deflects the
beam-column is applied at xd with variable angle 90 ◦ ≤ γd ≤ 270 ◦. Two sensors at position
xs,1/2 are used to identify the lateral displacement of the beam-column in y- and z-direction.

Figure 2 shows the close-up view of the beam-column support A in the experimental test
setup and a sectional view of the CAD-model. The support housing and beam-column material
is aluminum alloy EN AW-7075-T6 and the axial extension material is hardened steel 1.2312.
The elastic spring element that bears the axial compressive load and allows rotations in any
plane perpendicular to the x-axis is made of spring steel 1.4310.
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Figure 2: Active support A, a) active support in experimental test setup, b) sectional view
of active support in CAD-model with elastic spring element and piezoelectric stack actuators
acting on an axial extension of radius rext of the beam-column at a distance of lext

The model parameters describing the properties of the beam-column system presented in
Figures 1 and 2 are summarized in Table 1.
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property symbol value SI-unit

beam-column length lb 0.4 m
beam-column radius rb 0.004 m
axial extension length lext 0.0075 m
axial extension radius lext 0.006 m
sensor positions [xs,1, xs,2] [0.03, 0.37] m
Young’s modulus aluminum EN AW-7075-T6 Eb 70.0 · 109 N/m2

density aluminum EN AW-7075-T6 ρb 2710 kg/m3

proportional limit aluminum EN AW-7075-T6 σp,b 485.0 · 106 N/m2

Young’s modulus steel 1.2312 Eext 210.0 · 109 N/m2

density steel 1.2312 ρext 7810 kg/m3

rotational stiffness spring element kϕ 415.3 Nm/rad
lateral stiffness spring element kl 60.81 · 106 N/m
lateral stiffness piezoelectric stack actuator kp 22 · 106 N/m

Table 1: Properties of the active beam-column system

3. MATHEMATICAL MODEL AND CONTROLLER DESIGN

For the active buckling control of the supercritically loaded beam-column, a mathematical
model of the beam-column for controller design is needed. In a first step, a finite element (FE)
model of the beam-column is developed, Sec. 3.1. In a second step, a reduced state space model
is set up, Sec. 3.2, which is then used to design a stabilizing controller and observer, Sec. 3.3.

3.1 Finite Element Model

To describe the lateral motion of the beam-column with constant axial load P , a FE-model
of the beam-column system, Fig. 1b, is used. The beam-column and the stiff extensions are dis-
cretized by N − 1 one-dimensional BERNOULLI beam elements of length lel with N nodes that
each have four degrees of freedom, Fig. 3a. Each node n is described by the lateral displace-
ments vn and wn in y- and z-direction and the rotational displacements ϕy,n and ϕz,n around the
y- and z-axis. Consequently, the [4N × 1] FE-displacement vector is

v(t) = [v1(t), w1(t), ϕy,1(t), ϕz,(t), . . . , vN(t), wN(t), ϕy,N(t), ϕz,N(t)]T . (1)

Axial and rotational displacements in and around the x-axis of the beam-column are neglected.
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Figure 3: FE-beam-column system, a) nth finite beam-column element 1 ≤ n ≤ N − 1 of
length lel with element coordinates in positive directions, b) FE-model of beam-column

Figure 3b shows the discretized beam-column with N −1 finite elements and N nodes. The
beam-column is loaded by the constant axial load P acting at node N − 1 and disturbed by the
lateral force Fd(t) acting at xd with angle 90 ◦ ≤ γd ≤ 270 ◦. The piezoelectric stack actuators
in the beam-column supports A and B are represented by the lateral stiffness kp and additional
active control forces Fay/z,A/B(t) in the y- and z-direction of nodes 1 and N of the FE-model.
The active forces are summarized in the control input vector

u(t) =


Fay,A(t)
Fay,B(t)
Faz,A(t)
Faz,B(t)

 . (2)

The GALERKIN method with cubic HERMITIAN shape functions g(xel) is used to build the
[8×8] element stiffness matrix Kel(P ) and element mass matrix Mel for the BERNOULLI beam
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elements, [11]. The element stiffness matrix takes into account the influence of the axial force
via

Kel(P ) = Ke,el − P Kg,el (3)

with elastic element stiffness matrix Ke,el and geometric element stiffness matrix

Kg,el =
1

lel



6/5 0 0 lel/10 −6/5 0 0 lel/10
6/5 −lel/10 0 0 −6/5 −lel/10 0

2/15 l2el 0 0 lel/10 −l2el/30 0
2/15 l2el −lel/10 0 0 −l2el/30

6/5 0 0 −lel/10
6/5 lel/10 0

symmetric 2/15 l2el 0
2/15 l2el


(4)

that describes the influence of the axial load P on the beam-column’s lateral stiffness. The elas-
tic element stiffness matrix Ke,el and element mass matrix Mel are readily found in literature,
[11, 12]. After assembling the global stiffness and mass matrices from the element matrices,
the FE-equation of motion is

M v̈(t) + D(P ) v̇(t) + K(P ) v(t) = B0 u(t) + bd Fd(t). (5)

In Eq. (5), the [4N × 4N ] global stiffness matrix K(P ) = Ke − P Kg consists of the
stiffness element matrices, Eq. (3), as a function of the constant axial load P with the global
elastic stiffness matrix Ke and the global geometric stiffness matrix Kg, Eq. (4). The lateral
stiffness kp of the piezoelectric stack actuators is added to the entries of the lateral degrees of
freedom of nodes 1 and N in the global elastic stiffness matrix Ke. Similarly, the lateral and
rotational stiffness kl and kϕ of the global elastic spring elements are added to the entries of the
lateral and rotational degrees of freedom of nodes 2 andN−1 in the elastic stiffness matrix Ke.
The first and second critical buckling loads Pcr,1 and Pcr,2 of the beam-column with the given
boundary conditions are calculated according to [12] from the global elastic and geometric
stiffness matrices by solution of the eigenvalue problem

det
[
Ke − Pcr,1/2 Kg

]
= 0. (6)

The further terms in Eq. (5) are the global mass matrix M and the global damping ma-
trix D(P ) that is determined by RAYLEIGH proportional damping D(P ) = αM + βK(P ),
[13]. The proportional damping coefficients α and β are determined for assumed modal damp-
ing ratios of the first two bending modes of ζ1/2 = 1 %. The right hand side of Eq. (5) represents
the external forces that are the active control forces u(t), Eq. (2), and the lateral disturbance
force Fd(t). The [4N × 4] control input matrix B0 maps the active forces of the control input
vector u(t) to the lateral degrees of freedom of the first and last nodes 1 andN of the FE-model.
Similarly, the disturbance force Fd(t) is mapped to the FE-nodes according to the disturbance
position xd and the disturbance angle γd via [4N × 1] disturbance input vector bd.
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The lateral motion v(t) and w(t) of the beam-column in the real test setup is measured
with eight strain gauge sensors that are applied on the beam-column surface at two sensor
positions xs,1/2 in the y- and z-direction, Fig. 1. Therefore, the surface strain at the sensor
positions in the y- and z-direction is chosen as output

y(t) =


εy(xs,1, t)
εz(xs,1, t)
εy(xs,2, t)
εz(xs,2, t)

 = C0 v(t). (7)

In Eq. (7), the [4 × 4N ] output matrix C0 relate the surface strains y(t) to the FE-displacement
vector v(t), Eq. (1), by the entries −rb g′′(xs,1/2) at the FE-nodes surrounding sensor positions
xs,1/2 where rb is the beam-column radius and g′′(xel) the second derivative of the HERMITIAN

shape functions, [11].

3.2 Reduced State Space Model

For the full state FE-model, Eq. (5), a relatively high number of N = 53 nodes resulting
in 4N = 212 degrees of freedom is chosen to properly describe the maximum surface strain at
the sensor positions xs,1/2 according to Eq. (7). Once the maximum surface strain is known, the
FE-model is reduced for further simulation and controller design. First, a modal reduction of
the FE-model is performed so that higher modes are excluded from the calculation of the beam-
column’s dynamic behavior. Secondly, a model reduction via balanced truncation is carried out
so that the model is optimized for the controller design, Sec. 3.3.

A modal reduction of the FE-model that only includes a limited number of p < 4N of the
system’s mode shapes is conducted in this work. The vector of modal displacements qM(t) is
calculated from the full state FE-displacement vector via the transformation

v(t) = Φ qM(t), (8)

with the [4N × p] modal matrix
Φ = [Φ1,Φ2, ...Φp] (9)

including the first p eigenvectors of the FE-Model, [14].
The eigenvectors in Eq. (9) are normalized with respect to the mass matrix M, so that the

modal mass matrix M̃, modal stiffness matrix K̃ and modal damping matrix D̃ result in the
diagonal matrices

M̃ = ΦT M Φ = I [p×p]

K̃(P ) = ΦT K Φ = diag
[
ω2

1(P ), . . . , ω2
p(P )

]
(10)

D̃(P ) = ΦT D Φ = diag [2 ζ1(P )ω1(P ), . . . , 2 ζp(P )ωp(P )]

with identity matrix I, the eigen angular frequencies ωi(P ) and the modal damping ratios ζi(P )
as functions of the axial load P and i = 1 . . . p.
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Using the [2p×1] modal state vector xM(t) = [qM(t), q̇M(t)]T with the modal displacements
and velocities, the modal state space equations of first order are

ẋM(t) =

[
0 I [p×p]

−K̃(P ) −D̃(P )

]
xM(t) +

[
0

ΦT B0

]
u(t) +

[
0

ΦT bd

]
Fd(t)

y(t) =
[

C0 Φ 0
]
xM(t),

(11)

[14], leading to the reduced modal state space form of Eq. (5)

ẋM(t) = AM(P ) xM(t) + BM u(t) + bdM Fd(t)

y(t) = CM xM(t).
(12)

Finally, a balanced realization of the beam-column’s modal state space model, Eq. (12), is
set up with the transformation

xb(t) = Tb xM(t) (13)

using MATLAB balreal function. The resulting state space system with balanced system matrix
Ab(P ), balanced control input matrix Bb, balanced disturbance input vector bd,b and balanced
output matrix Cb is ordered according to the highest HANKEL singular values that express
the energy of the system states xM(t), [15]. The balanced state vector and matrices are then
divided into a reduced balanced system with a reduced number of r < 2p states, index r, and an
eliminated balanced system with 2p− r states, index e, according to

xb(t) =

[
xb,r(t)
xb,e(t)

]
Ab(P ) = T−1

b AM(P ) Tb =

[
Ab,r(P ) Ab,1(P )
Ab,2(P ) Ab,e(P )

]
Bb(P ) = Tb BM =

[
Bb,r

Bb,e

]
(14)

bd,b(P ) = Tb bd,M =

[
bd,b,r

bd,b,e

]
Cb(P ) = CM T−1

b =
[

Cb,r Cb,e

]
.

The second part xb,e(t) of the balanced state vector xb(t) contains all poorly observable and
controllable states so that these are eliminated (truncated) from the model, [15]. The resulting
state space system for the [r × 1] reduced state vector xb,r(t) can be written as

ẋr(t) = Ab,r(P ) xb,r(t) + Bb,r u(t) + bd,b,r Fd(t) (15)
y(t) = Cb,r xb,r(t). (16)

For simplicity, the reduced matrices in the following are written as A = Ab,r(P ), B = Bb,r

and C = Cb,r and the reduced system state vector as x(t) = xb,r(t).

9
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3.3 Controller and Observer Design

The instable reduced state space model of the supercritically loaded beam-column, Eqs. (15)
and (16), is fully controllable and observable so that it is possible to design a stabilizing con-
troller. The stabilization control of the circular beam-column is achieved by an infinite horizon,
continuous-time linear quadratic regulator (LQR). The control law determines the control input
u(t) from the system state vector x(t) so that the quadratic performance index

J =

∫ ∞
0

{
xT (t) Q x(t) + uT (t) R u(t)

}
dt (17)

is minimized, [16]. The matrices Q and R represent weights on the system state vector x(t)
and the control input u(t), respectively. They are chosen as

Q = αCTC and R = I [4×4] (18)

with C from Eq. (16) so that the control parameter α is used to adjust the ratio between
the weight matrices, [8, 9, 16]. The numerical simulations in this paper are performed with
α = 1 · 108. The control input u(t), Eq. (2), is calculated by

u(t) = −KLQR x(t), (19)

where the control matrix KLQR is given by

KLQR = R−1 BT P. (20)

In Eq. (20), [r×r] matrix P is the solution of the continuous-time Algebraic RICCATI Equation
(CARE)

AT P + P A − P B R−1 BT P + Q = 0 (21)

with system matrix A, input matrix B, Eq. (15), and the LQR weights Q and R, Eq. (18).
Since the system state vector x(t) is not directly measurable and only the beam-column

strain y(t) is a measurable output, an observer is required to estimate the state vector x(t). The
observer state space equation describing the estimated state vector x̂(t) is given by

˙̂x(t) = A x̂(t) + B u(t) + L (y(t) − ŷ(t)) (22)
ŷ(t) = C x̂(t), (23)

with the estimated output ŷ(t) and the observer matrix L, [17]. The setup of the used LUEN-
BERGER observer for the beam-column system as control plant is shown in Fig. 4, [17, 18].

10
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ẋ(t) x(t) y(t)0

y(t) − ŷ(t)
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Figure 4: Closed loop control with LUENBERGER observer for state estimation

Using the estimated state vector to determine the control input u(t) = −KLQR x̂(t) and
inserting Eq. (16) and Eq. (23) into Eq. (22) yields the state space equations for the state estimate
error e(t) = x(t) − x̂(t) and the state vector x(t)[

ẋ(t)
ė(t)

]
=

[
A − B KLQR B KLQR

0 A − L C

] [
x(t)
e(t)

]
, (24)

[17].From Eq. (24) it can be seen that the controller and observer design results in two sep-
arate problems (separation principle), [18]. The closed loop eigenvalues of the controller
A − B KLQR are determined by the LQR control, Eq. (20), to be stable and on the negative
half-plane. The eigenvalues of the observer A − L C are placed to lie further on the negative
half-plane by calculating an appropriate observer matrix L, [18]. By doing so, the state estimate
error e(t) converges faster to zero than the state vector x(t) which is necessary for the controller
to determine the correct control input u(t).
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4. NUMERICAL SIMULATION

Numerical simulations based on the reduced state space model derived in Sec. 3.2 and the
controller design in Sec. 3.3 are conducted to prove the concept of active buckling control by
active supports with integrated piezoelectric actuators for supercritical axial loads P > Pcr,1

illustrated in Figures 1 and 2. The maximum first theoretical critical buckling load of a beam-
column with the properties given in Table 1 is achieved for a fixed-fixed beam-column with

Pe =
π2EIb

(0.5 l)2
= 3472.7 N, (25)

representing EULER case IV, [1]. Using the FE-model of the elastically supported beam-
column, Fig. 3, derived in Sec. 3.1, the first and second critical buckling loads of the uncon-
trolled beam-column are calculated by Eq. (6) to

Pcr,1 = 3122.5 N ≈ 0.90Pe,

Pcr,2 = 6414.8 N ≈ 1.85Pe.
(26)

Thus, the beam-column has a slightly lower first critical buckling load than the maximum the-
oretical critical buckling load Pe and the elastic supports with piezoelectric stack actuators are
not as stiff as a fixed support.

The active buckling control is demonstrated for the simulation cases given in Table 2. Three
different supercritical axial loads P are taken into account: an axial load slightly above the
first critical buckling load P = 3200 N ≈ 1.02Pcr,1 (Case A), the maximum bearable axial
load above the second critical buckling load P = 7700 N ≈ 1.20Pcr,2 ≈ 2.22Pe (Case B) and
a medium axial load of P = 5000 N ≈ 1.60Pcr,1 (Case C). Cases A and B present the active
stabilization of the supercritically loaded beam-column in the z-direction with disturbance angle
γd = 90 ◦ according to the coordinates given in Fig. 1b. Case C shows the active buckling
control for disturbance angle γd = 120 ◦ and a different disturbance force amplitude F̂d and
position xd, Fig. 1.

Case A B C

P 3200 N 7700 N 5000 N

F̂d 5 N 5 N 10 N
γd 90 ◦ 90 ◦ 120 ◦

xd 0.1 m 0.1 m 0.15 m

Table 2: Numerical simulation cases of the supercritically loaded and stabilized beam-column

The impulse disturbance force Fd(t), Fig. 1b, is approximated by a shifted cosine wave with
maximum amplitude F̂d and disturbance length ∆td = 0.001 s that starts at time t = 0.01 s.
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Case A: Figure 5a shows the sensor strains εz(xs,1/2, t) in the z-direction at sensor loca-
tions xs,1/2, Eq. (16), of the controlled and uncontrolled beam-column. For the uncontrolled
system, the beam-column buckles and the initial deflection resulting from the disturbance Fd(t)

with F̂d = 5.0 N and γd = 90 ◦, Table 2, quickly grows and becomes inadmissibly high so that
the simulation is stopped. For the actively stabilized beam-column, the system does not buckle
and after 0.06 s, the surface strain has nearly returned to zero so that the beam-column has al-
most reached its straight form again. The strain sensor signal is superposed by an oscillation
of the second mode shape which is excited by the non-centric disturbance force, xd = 0.1 m,
and recognized as a counter-phase signal from sensors 1 and 2. Figure 5b shows the control
forces Faz,1/2 for the actively controlled beam-column. The control forces Faz,A and Faz,B with
a maximum value of 32 N are the same and therefore overlap in the figure.
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Figure 5: Case A: Axial load P = 3200 N ≈ 1.02Pcr,1, disturbance force amplitude
F̂d = 5.0 N, disturbance angle γd = 90 ◦ and disturbance position xd = 0.1 m, a) sensor
strains εz(xs,1, t) controlled ( ) and uncontrolled ( ) and εz(xs,2, t) controlled ( ) and
uncontrolled ( ), b) controller forces Faz,A ( ) and Faz,B ( ) for actively controlled beam-
column
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Case B: The maximum axial load P for which the beam-column is able to be stabilized is
P = 7700 N ≈ 1.20Pcr,2 ≈ 2.22Pe. The stabilization is limited by the maximum controller
force of 750 N for the chosen piezoelectric stack actuators. The disturbance Fd(t) is the same
as in Case A, Table 2. Figure 6 again shows the sensor strains εz(xs,1/2, t) and control forces
Faz,A/B. Since the axial load is larger than the second critical buckling load Pcr,2, the beam-
column buckles in the second buckling shape and the sensor signal, Fig. 6a, does not show any
oscillations and has different signs for sensors 1 and 2. The maximum sensor strains εz(xs,1/2, t)
are a lot smaller than in Case A. This is due to the fact that the state estimate error converges
faster for higher axial loads and the stabilization is faster so that the beam-column is in its
straight form again after 0.014 s. However, also the maximum actuator force Faz,A = 743 N is
required for the stabilization. In contrast to Case A, the actuator forces are not equal which can
be attributed to the asymmetrical buckling shape.
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Figure 6: Case B: Axial load P = 7700 N ≈ 1.20Pcr,2 = 2.22Pe, disturbance force amplitude
F̂d = 5.0 N, disturbance angle γd = 90 ◦ and disturbance position xd = 0.1 m, a) sensor strains
εz(xs,1, t) ( ) and εz(xs,2, t) ( ), b) controller forces Faz,A ( ) and Faz,B ( ) for actively
controlled beam-column
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Case C: The third simulation case shows both the influence of increasing disturbance force
amplitude F̂d = 10.0 N and change in angle γd = 120 ◦. Also, the disturbance position is
changed to xd = 0.15 m, Table 2. Figure 7a shows the sensor strains εz(xs,1/2, t) and εy(xs,1/2, t)
for γd = 120 ◦ that are positive in the y- and negative in the z-direction. The strains εz(xs,1/2, t)
are larger than εy(xs,1/2, t) and again show the counter-phase oscillation of the second mode
shape. The disturbance in the z-direction is larger than in the y-direction and, consequently,
also the required control forces Faz,1/2 are larger than Fay,1/2, Fig. 7b. Because of the higher
disturbance force amplitude F̂d, the required control force again almost reaches the maximum
piezoelectric stack actuator force of 750 N. The numerical simulation shows that the stabiliza-
tion of the circular beam-column is also possible for different disturbance force angles γd in
arbitrary direction perpendicular to the x-axis.
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Figure 7: Case C: Axial load P = 5000 N ≈ 1.60Pcr,1, disturbance force amplitude
F̂d = 10.0 N, disturbance angle γd = 120 ◦ and disturbance position xd = 0.15 m, a) sensor
strains εz(xs,1, t) ( ), εz(xs,2, t) ( ), εy(xs,1, t) ( ), εy(xs,2, t) ( ), b) controller forces
Faz,A ( ) and Faz,B ( ) for actively controlled beam-column
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5. CONCLUSIONS

A new method of active buckling control of a beam-column with circular cross-section
loaded by a supercritical constant axial load by active supports with integrated piezoelectric
stack actuators is presented and investigated numerically. With the active supports, lateral forces
in arbitrary directions orthogonal to the beam-column’s longitudinal axis can be introduced
below the beam-column ends. A reduced modal state space model of a real beam-column
test setup is derived and a linear quadratic regulator with state estimator is implemented. The
numerical simulation of several case studies shows that active stabilization of the supercritically
loaded beam-column with circular cross-section disturbed by a lateral impulse disturbance force
is possible up to a 2.47 increase of the first critical buckling load of the uncontrolled beam-
column. The numerical simulations show the effectiveness of the active supports with integrated
piezoelectric actuators. Further examinations will investigate the implementation of the derived
controller on the experimental test setup.
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