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Summary: Undesired vibration may occur in lightweight structures due to excitation and low
damping. For the purpose of vibration attenuation, resonant shunting of piezoelectric transduc-
ers can be an appropriate measure. This technique transfers mechanical vibration energy from
the mechanical structure into an electrical vibratory system, resulting in reduced vibration of
the mechanical structure. In this paper, lateral vibration attenuation in one of the two elastic
supports of a beam with circular cross-section by integration of resonantly shunted piezoelec-
tric stack transducers is investigated numerically and experimentally. In the elastic support,
bending of the beam is transformed into the stack transducer’s axial deformation. For vibration
attenuation, resonant shunts including a resistor and an inductance are chosen. It is shown that
the concept of an elastic beam support with integrated resonantly shunted piezoelectric stack
transducers is capable of reducing the lateral vibration of the beam in arbitrary direction.

1. INTRODUCTION

Structural vibration may occur in mechanical systems leading to fatigue, reduced durability
or undesirable noise. In this context, resonantly shunted piezoelectric transducers can be an
appropriate measure. Generally, a piezoelectric transducer converts mechanical kinetic energy
of a vibrating host structure into electrical energy. By connecting the electrodes of the trans-
ducer to an electrical circuit, the electromechanical impedance of the shunted transducer may
achieve vibration attenuation. Shunting the piezoelectric transducer with resistor and induc-
tance, the resonant RL-shunt, an electrical oscillation circuit with the inherent capacitance of
the transducer is created. This electromechanical system acts comparable to a mechanical vi-
bration absorber. Vibration attenuation with shunted piezoelectric transducers has been subject
to research for several decades [1, 2, 3, 4]. In [3], an overview of shunt damping technologies
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such as simple resonant shunts or complex shunts with negative capacitance, [4], and switched
shunts, [2], is given. With increasing shunt complexity, enhancements in vibration attenuation
and system robustness are pursued.

In mechanical and civil engineering, truss structures that represent complex mechanical
systems bear and withstand static and dynamic loads. Truss structures comprise truss members,
considered as beams that are connected to each other via the relatively stiff truss supports.
Therefore, truss structures show global vibration modes with lateral moving or rotating truss
supports. Furthermore, local modes exist that are dominated by the lateral vibration of the truss
members. Truss structures that are subject to heavy mass loading may show adequate separation
in the structural frequencies of global and local modes. However, dynamics of other truss
structure designs may be affected by local modes whose frequencies lie within the bandwidth
of the global modes.

For vibration reduction in truss structures, piezoelectric shunt damping has been investigated
in [5, 6, 7, 8]. Axial piezoelectric stack transducers are integrated, e. g. in one strut of the
truss and investigations are focused on vibrations of global modes, resulting in compression
and elongation of the transducer in axial direction of the strut, [5, 6, 8]. Resonant RL-shunts
and shunts with negative capacitance were connected to the piezoelectric stack transducers for
vibration attenuation. In [6], a smart support with piezoelectric washers has been investigated
and vibration attenuation in a truss substructure was achieved.

In this paper, an alternative concept for integrating piezoelectric stack transducers in truss
structures for vibration attenuation is presented. The new concept uses an elastic beam support
with integrated piezoelectric stack transducers. Bending of the beam in arbitrary direction is
transferred to the transducers via a relatively stiff axial extension. Hence, lateral beam vibra-
tions of a truss member as well as global truss structure vibrations can by attenuated. In former
studies, e. g. in [8], only global modes could be attenuated. In this paper, only one truss mem-
ber, an elastically supported beam under harmonic excitation is considered to show that lateral
vibration attenuation in arbitrary direction is possible. The concept is investigated numerically
and experimentally.
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2. SYSTEM DESCRIPTION

The investigated system is an elastically supported beam of length lb with circular solid
cross-section of radius rb, constant bending stiffness EIb and density ρb, Fig. 1a. The circular
cross section has no preferred direction of vibration, so the beam may vibrate in any plane
lateral to the x-axis. Elastic spring elements with lateral stiffness kl,A = kl,B = kl and rotational
stiffness kϕ,A = kϕ,B = kϕ in both supports A and B at location x = 0 and x = lb bear lateral
forces at the beam’s ends in y- and z-direction and enable rotation around the y- and z-axis,
thus, defining centers of rotation. A force Fd(t) excites the beam at xd = lb/2 with variable
angle 0 ≤ αd ≤ π/2 in y-z plane .
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Figure 1: Beam system, a) beam with elastic supports and integrated resonantly shunted piezo-
electric stack transducers in support A, b) arrangement of piezoelectric transducers, c) resonant
circuit (RL-shunt)

Three transducers in the y-z plane are connected with the center of rotation at the beam’s end
via a relatively stiff axial extension of length lext, radius rext, constant bending stiffness EIext

and density ρext at the support A in Fig. 1a. With that, bending of the beam around the y- and
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z-axis is transformed into the stack transducer’s axial deformation assuming only small bending
deflection at the axial extension’s end, so rotational displacements at x = −lext are neglected.
An elastic spring element and the piezoelectric transducers form the actual beam support A,
Fig. 1b. In support A at location x = −lext, three piezoelectric stack transducers P1, P2 and P3

are arranged in the support housing at an angle of 120◦ to each other, orthogonal to the beam’s
longitudinal x-axis in y-z plane. The piezoelectric transducer P1 affects the axial extension
with the lateral force FP1 . The transducer’s axial elongation is e1. The electrical charge at the
transducer electrodes is q1 and the electrical potential difference between the electrodes is the
voltage u1. The properties of each uniaxial transducer are: the number of layers of piezoelectric
material np, the capacitance Cp at constant mechanical stress, the piezoelectric constant d33 and
the mechanical stiffness with short circuited electrodes kp, see Fig. 1b. For vibration reduction
in any plane lateral to the x-axis, each piezoelectric transducer is connected to an electrical
network with resistance R and inductance L, the RL-shunt, Fig. 1c.

The experimental setup of one elastic support with three piezoelectric stack transducers is
shown in Fig. 2a. Fig. 2b shows a sectional view of the CAD model with the piezoelectric stack
transducers colored in red, the axial extension colored in blue and the elastic spring element
colored in yellow. The support housing and beam material is aluminum alloy EN AW-7075
and the extension is hardened steel 1.2312. The elastic spring element is made of spring steel
1.4310.
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Figure 2: Elastic beam support A with integrated piezoelectric stack transducers P1, P2 and P3

a) experimental setup b) sectional view of CAD model with the stack transducers (red), axial
extension (blue) and elastic spring element (yellow)
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All properties of the elastically supported beam with piezoelectric stack transducers are
given in Table 1.

property symbol value SI-units
beam length lb 0.4 m
beam radius rb 0.005 m
density aluminum ρb 2775 kg/m3

Young’s modulus aluminum Eb 74 · 109 N/m2

axial extension length lext 0.0075 m
axial extension radius rext 0.006 m
density steel ρext 7800 kg/m3

Young’s modulus steel Eext 210 · 109 N/m2

stiffness of piezoelectric transducer kp 22 · 106 N/m
lateral stiffness of spring element kl 49.74 · 106 N/m
rotational stiffness of spring element kϕ 273 Nm/rad
piezoelectric coefficient d33 640 · 10−12 m/V
number of layers in stack transducer np 340 –
capacitance of stack transducer Cp 3.55 · 10−6 F

Table 1: Geometric, material and electromechanical properties

3. MATHEMATICAL MODEL

In this section, the derivation of a mathematical model for simulating the lateral vibration in
y- and z-direction of the elastically supported beam with resonantly shunted stack transducers,
as described in Sec. 2., is presented. In a first step, a finite element (FE) model of the beam is
developed. In a second step, three resonantly shunted piezoelectric stack transducers are con-
nected to the beam. Finally, a linear state space formulation of the coupled electromechanical
system is derived in the LAPLACE domain and transformed into frequency domain to calcu-
late the frequency transfer function of the harmonically excited beam with resonantly shunted
transducers.

3.1 Finite element model

To describe the lateral vibration of the beam in y- and z-direction, a FE model of the system
presented in Sec. 2. is used.

The beam and the axial extension are discretized by N − 1 = 11 one-dimensional EULER-
BERNOULLI beam elements, see Fig. 3a, with N = 12 nodes and four degrees of freedom
per node, see Fig. 3b. Each node n has two translational displacements vn and wn in y- and
z-direction and two rotational displacements ϕyn and ϕzn around the y- and z-axis. In order
to build the element stiffness and element mass matrices, the GALERKIN method is used, [9].
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Figure 3: a) FE model of elastically supported beam with 12 nodes, forces FP1(t), FP2(t) and
FP3(t) of the piezoelectric transducers P1, P2 and P3 and excitation force Fd(t), b) finite beam
element between node n and n+ 1 with element coordinates in positive directions

For bending, HERMITIAN cubic shape functions are used for y- and z-direction. The resulting
[8× 8] elastic element stiffness matrix Kel and element mass matrix Mel are found in literature,
[9, 10].

After assembling global stiffness and mass matrices from the element matrices, the global
equation of motion system of the elastically supported beam in Fig. 3a is

Mẍ(t) + Dẋ(t) + Kx(t) = Fd(t)− Fp(t). (1)

The [4N × 1] global displacement vector is given by

x(t) = [v1(t), w1(t), ϕy1(t), ϕz1(t), ..., vN(t), wN(t), ϕyN (t), ϕzN (t)]T . (2)

M, D and K are the global mass matrix, damping matrix and stiffness matrix with dimension
[4N × 4N ]. The external force vector is

Fd(t) = bd Fd(t) = [0[1×4(N−6)],− cos(αd), cos(αd), 0, 0,0[1×4(N−7)]]T Fd(t) (3)

with bd mapping the excitation force Fd(t) to node 7. Fp(t) is the resulting [4N ×3] piezoelec-
tric transducer force vector from the three transducers P1, P2 and P3, see Sec. 3.2. Proportional
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damping is given by D = αM+ βK, [11]. The proportional damping coefficients α and β are
determined for modal damping ratios of the first and second mode ζ1/2 = 0.5% obtained from
experiment. The lateral stiffness kl,A/B in y-and z-direction and the rational stiffness kϕ,A/B

around y- and z-axis of the elastic spring elements at location x = 0 and x = lb are added to
the global stiffness matrix at nodes n = 2 and n = 12.

3.2 Mathematical model of elastically supported beam with stack transducers

To describe the effect of piezoelectric transducers on the lateral beam vibration, a linear
mathematical transducer model is derived. In the following, all transducer properties num-
ber of layers np, piezoelectric coefficient d33, stiffness kp and capacitance Cp according to
Table 1 are the same for each transducer P1, P2 and P3. The transducer forces in support
A Fp,A(t) = [FP1(t), FP2(t), FP3(t)]

T are calculated with the transducers axial elongations
e(t) = [e1(t), e2(t), e3(t)]T and the voltages u(t) = [u1(t), u2(t), u3(t)]T that are applied across
the transducer electrodes,

Fp,A(t) = kp e(t)−Θu(t). (4)

In (4), Θ = np d33 kp. The charges q(t) = [q1(t), q2(t), q3(t)]T at the transducer electrodes are
calculated with the transducers axial elongations e(t) and the voltages u(t) applied across the
transducer electrodes,

q(t) = Θ e(t) + Cp u(t). (5)

The forces Fp,A(t) of all piezoelectric transducers acting on the axial extension at support
A, see Fig. 3a, are considered in the piezoelectric transducer force vector

Fp(t) = Bp Fp,A(t). (6)

The [4N × 3] matrix Bp maps the transducer forces according their effective direction to node
1. Bp = [b1;b2;b3] with

b1 =
[
0,−1, 0, 0,01×4(N−1)

]T
, b2 =

[
sin(60◦), cos(60◦), 0, 0,01×4(N−1)

]T
and (7)

b3 =
[
− sin(60◦), cos(60◦), 0, 0,01×4(N−1)

]T
.

Angles of 60◦ are formed in Fig. 1b due to the transducer arrangement. Similarly, the axial
transducer elongations e(t) are related to the displacements v1(t) andw1(t) in y- and z-direction
at node 1 by

e(t) = BT
p x(t). (8)

Replacing e(t) in (4) by (8) and substituting Fp,A(t) in (6) by (4), the piezoelectric force vector

Fp(t) = kp Bp B
T
p x(t)−ΘBp u(t). (9)

Inserting (9) in (1), the beam equation of motion system with voltage driven transducers is

Mẍ(t) + Dẋ(t) + Kx(t) + kp Bp B
T
px(t)−ΘBp u(t) = Fd(t). (10)

7
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Furthermore, replacing e(t) in (5) with (8), the charges at the transducer electrodes are calcu-
lated from

q(t) = ΘBT
p x(t) + Cp u(t). (11)

The coupled matrix equation of motion system of beam with piezoelectric transducers, see
Fig. 3a, are represented by (10) and (11).

3.2.1 Effect of piezoelectric transducers on beam eigenfrequencies

For vibration attenuation via shunted transducers, the system’s angular eigenfrequencies are
an important measure. To investigate the influence of piezoelectric transducers on the beam sys-
tem stiffness and, thus, on the beam system angular eigenfrequencies, three eigenvalue problems
can be distinguished by analyzing (1), (10) and (11) for neglected excitation force Fd(t) = 0
and small damping that is neglected, D = 0:

• if no transducer is connected to the beam Fp(t) = 0, the angular eigenfrequencies ωb of
the beam are calculated by solving

det
[
K− ω2

b M
]

= 0 (12)

• if transducers are connected to the beam Fp(t) 6= 0 and u(t) = 0, i. e. the electrodes
of the transducer are short circuited (sc) and the transducer stiffness with short circuited
electrodes is taken into account, (10) becomes

Mẍ(t) + Kx(t) + kp Bp B
T
px(t) = Mẍ(t) + Ksc x(t) = 0, (13)

Ksc = K + kp Bp B
T
p (14)

and the angular eigenfrequencies ωsc are calculated by solving

det
[
Ksc − ω2

sc M
]

= 0 (15)

• if transducers are connected to the beam Fp(t) 6= 0 and q(t) = 0, i. e. the electrodes
of the transducer are open circuited (oc) and the transducer stiffness with open circuited
electrodes is taken into account, (10) and (11) result in

Mẍ(t) + Kx(t) +

(
kp +

Θ2

Cp

)
Bp B

T
px(t) = Mẍ(t) + Koc x(t) = 0, (16)

Koc = Ksc +
Θ2

Cp

Bp B
T
p . (17)

and the angular eigenfrequencies ωoc are calculated by solving

det
[
Koc − ω2

oc M
]

= 0. (18)
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3.2.2 General electromechanical coupling coefficient

For vibration reduction with shunt damping, the generalized electromechanical coupling
coefficient K33 is an important measure to evaluate the vibration attenuation capability. It char-
acterizes the energy exchanged between the mechanical and the electrical domains of the piezo-
electric transducer coupled to the structure. The coupling coefficient K33 may be calculated
with the short and open circuited angular eigenfrequencies ωsc and ωoc, [12], to

K33 =

√
ω2

oc − ω2
sc

ω2
oc

. (19)

3.3 Mathematical model of elastically supported beam with resonantly shunted stack
transducers

To describe the effect of resonantly shunted piezoelectric transducers on the lateral beam
vibration, linear resistive inductive shunts are taken into account. A shunt with resistanceR and
inductance L is connected to the piezoelectric stack transducer P1, P2 and P3, Fig. 1c. Using
the second KIRCHOFF’s law, the voltages across the shunt terminals for all three transducers P1,
P2 and P3

ush(t) =

−L1

−L2

−L3

 q̈(t) +

−R1

−R2

−R3

 q̇(t) (20)

Solving (11) for u(t) and substituting u(t) in (10), the shunt is connected to the transducer
electrodes. Furthermore, replacing u(t) in (11) by (20) with u(t) = ush(t), the coupled equation
of motion system of the beam with resonantly shunted stack transducers (sh) is

Msh ẍsh(t) + Dsh ẋsh(t) + Ksh xsh(t) = bsh Fd(t) (21)

with the parameter matrices

Msh =


M

L1

L2

L3

 , Dsh =


D

R1

R2

R3

 , (22)

Ksh =


Koc − Θ

Cp
Bp

− Θ
Cp
BT

p

1/Cp

1/Cp

1/Cp

 and bsh =


bd

0
0
0

 . (23)

and the time domain solution xsh(t) =
[
x(t)T ,q(t)T

]T .
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3.4 Frequency transfer behavior of elastically supported beam with resonantly shunted
stack transducers

To describe the lateral beam vibration with resonantly shunted transducers in y- and z-
direction in frequency domain, a first order state space model is derived from (21). For later
investigations, only the transfer behavior of force Fd at node 7 to lateral displacements v7 and
w7 at node 7 are considered. Therefore, the state space model of the electromechanical system
in LAPLACE domain with LAPLACE variable s can be written, [13] , as

s z(s) = Az(s) + BFd(s)

y(s) = Cz(s) +DFd(s) (24)

with system matrix A, input matrix B, output matrix C and feedthrough constant D = 0,

A =

[
0[(4N+3)×(4N+3)] I[(4N+3)×(4N+3)]

−M−1
sh Dsh −M−1

sh Ksh

]
, B =

[
0[(4N+3)× 1]

M−1
sh bsh

]
and (25)

C =

[
[0[1×4(N−6)], 1, 0, 0, 0,0[1×(4(N−7)+3)]]
0[1×4(N−6)], 0, 1, 0, 0,0[1×(4(N−7)+3)]]

0[2×(4N+3)]

]
. (26)

All state variables are contained in the state vector z(s) and the output vector is y(s),

z(s) =


x(s)
q(s)
sx(s)
sq(s)

 and y(s) =

[
v7(s)
w7(s)

]
. (27)

The transfer functions of the beam with stack transducers and resonant shunts in LAPLACE

domain, [13], result in

H(s) =
y(s)

Fd(s)
= C(s I−A)−1B +D. (28)

For later comparison with experimental results, the transfer function due to excitation force
Fd(t) and acceleration response in y-direction at node 7 with αd = π according to Fig. 1

Hy(s) = s2 v7(s)

Fd(s)
(29)

and the transfer function due to excitation force Fd(t) and acceleration response in z-direction
at node 7 with αd = 0 according to Fig. 1

Hz(s) = s2w7(s)

Fd(s)
. (30)

In all following figures, Hy and Hz are plotted as functions of frequency f in Hz using the
conversion s = j 2πf .
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4. NUMERICAL INVESTIGATION OF THE INFLUENCE OF SUPPORT PROPER-
TIES ON THE SHUNT DAMPING CAPABILITY

An numerical investigation is conducted to prove the capability of reducing lateral beam
vibrations in y- and z-direction by an elastic support with integrated resonantly shunted piezo-
electric stack transducers, introduced in Fig. 1. The rotational support stiffness kϕ,A and lateral
stiffness kl,A as well as the axial extension length lext influence the resulting support stiffness
of support A and, thus, the vibration attenuation capability of shunted transducers integrated in
support A. Three cases I, II and III, see Table 2, are distinguished to investigate shunt damping
capability. Case I investigates the influence of varying kϕ,A on the beam’s eigenfrequency fb

without piezoelectric transducers, on the beam’s eigenfrequency fsc with piezoelectric trans-
ducers and short circuited electrodes and on the beam’s eigenfrequency foc with transducers
and open circuited electrodes. Case II investigates the influence of varying kl,A on the elec-
tromechanical coupling coefficient K33 and case III investigates the influence of varying lext on
the electromechanical coupling coefficient K33.

case I II III
varied input kϕ,A kl,A lext

investigated output fb, fsc, foc K33 K33

Table 2: Investigated input and output parameters for numerical investigation of vibration re-
duction capability of support A for cases I, II and III

The vibration behavior of the elastically supported beam with transducers integrated in sup-
port A is assumed to be linear and symmetric in y- and z-direction. Hence, numerical investi-
gations in case I, II and III are only conducted for the z-direction.

4.1 Numerical results of cases I, II and III

Case I: To investigate only the influence of varying kϕ,A on the eigenfrequency fb, fsc and
foc, the lateral stiffness kl,A is assumed to be infinite and the rotational stiffness kϕ,B in support
B is constant with kϕ,B = kϕ. In the following, the normalized resulting rotational support stiff-
ness around the y-axis of support A with three integrated piezoelectric transducers is assumed
to be

kϕ,res =
kϕ,A + kz l

2
ext

EIb/lb
for 10−3 ≤ kϕ,res ≤ 104. (31)

In (31), kz is the resulting stiffness of piezoelectric transducers in z-direction. kz = 0 for the
elastically supported beam with no transducers, kz = 1.5 kp with short circuited transducer
electrodes, (13), or kz = 1.5 (kp + Θ2/Cp) with open circuited transducer electrodes, (16).
Fig. 4 shows the eigenfrequency fsc, (15), and eigenfrequency foc, (18), for rotational stiffness
kϕ,A = [0 kϕ; 1 kϕ; 6 kϕ; 40 kϕ]. With increasing kϕ,A, the eigenfrequencies for short and open

11
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circuit fsc and foc move closer together, thus, reducing the coupling coefficient K33, (19). In
case kϕ,A = 0 kϕ, K33 = 0.17 and in case kϕ,A = 40 kϕ, K33 = 0.03. Meaning that with almost
infinite rotational support stiffness kϕ,A, the coupling coefficient tends to zero. To evaluate the
resulting rotational support stiffness kϕ,res of support A in comparison to an ideal rotational
support at the beam’s end, Fig. 4 shows the beam’s first eigenfrequency fb, (12), for rotational
support stiffness conditions that vary from pinned-elastic with kϕ,A,res = 10−3 to fixed-elastic
with kϕ,A,res = 104. The first eigenfrequency of the pinned-elastic beam is fb = 156.6 Hz and
for the fixed-elastic beam it is fb = 225.8 Hz. For kϕ,A = 0 kϕ, support A represents an elastic
support and for kϕ,A = 40 kϕ, support A represents a fixed support.

10
−3

10
−1

10
2

10
4

151

226

f
in

H
z

kϕ,res

 

 

Figure 4: First eigenfrequency fb in z-direction of elastically supported beam without transduc-
ers for support conditions pinned-elastic to fixed-elastic ( ), eigenfrequencies of beam with
short circuited transducer electrodes fsc (× ) and with open circuited transducer electrodes foc

(◦) for rational support stiffness kϕ,A = 0 kϕ (× , ◦), kϕ,A = 1 kϕ (× , ◦), kϕ,A = 6 kϕ (× , ◦)
and kϕ,A = 40 kϕ (× , ◦)

Case II: In Fig. 5a, the influence of varying lateral support stiffness kl,A on the coupling co-
efficient K33 is presented for constant rational support stiffness kϕ,A = [0 kϕ; 1 kϕ; 6 kϕ; 40 kϕ].
It is seen that the coupling coefficient is maximal for kϕ,A = 0 kϕ and kl,A = 10 · 1010 N/m
and the coupling coefficient is zero for kϕ,A = 40 kϕ and kl,A = 15.7 · 106 N/m. With high
lateral stiffness kl,A, the center of rotation in support A lies at x = 0 in the middle of the spring
element. With decreasing stiffness kl,A, the center of rotation in support A is moving from
x = 0 closer to the transducers, hence, reducing the coupling coefficient K33. The lateral stiff-
ness kl,A = 49.74 · 106 N/m appears to be an appropriate value for a significant shunt damping
capability and is shown in Fig. 5a.
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Figure 5: Electromechanical coupling coefficient K33 influenced by a) varying lateral
stiffness kl,A and b) varying extension length lext, values of constant rotational stiffness
kϕ,A = 0 kϕ ( ), kϕ,A = 1 kϕ ( ), kϕ,A = 6 kϕ ( ) and kϕ,A = 40 kϕ ( )

Case III: In Fig. 5b, the influence of varying axial extension length lext on the coupling coef-
ficientK33 is presented for different constant rotational stiffness kϕ,A = [0 kϕ; 1 kϕ; 6 kϕ; 40 kϕ].
The coupling coefficient K33 can be maximized by adjusting the value for lext. For kϕ,A = 0 kϕ
and lext = 0.0035 m, the coupling coefficient is maximal and K33 = 0.22. Furthermore, the
reachable maximum ofK33 is, again, reduced with increasing kϕ,A and shifts to higher values of
lext. The extension length lext = 0.0075 m was chosen due to design constraints. According to
Fig. 5b, this extension length appears to be sufficient for an effective shunt damping capability.

In Fig. 5a and Fig. 5b, the coupling coefficient K33 = 0.13 for kϕ,A = 273 Nm/rad with
kl,A = 49.74 · 106 N/m and lext = 0.0075 m, see Table 1. These combinations lead to an
adequate electromechanical coupling and are chosen in the following for numerical and exper-
imental vibration attenuation investigations.

5. VIBRATION REDUCTION OF BEAM WITH ELASTIC SUPPORTS AND INTE-
GRATED RESONANTLY SHUNTED TRANSDUCERS

In this section, the vibration reduction of a beam with elastic supports A and B and in-
tegrated resonantly shunted piezoelectric transducers in support A is investigated numerically
and experimentally for properties given in Table 1. Therefore, the frequency transfer functions
|Hy| and |Hz| in y- and z-direction, according to (29) and (30), with open circuited transducer
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electrodes and RL-shunt are presented. In the experiment, an electrodynamic shaker is used
for excitation and the excitation force Fd(t) and the accelerations v̈7(t) and ẅ7(t) at xd are
measured via an impedance head.
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Figure 6: Frequency transfer behavior of the beam with elastic supports and three integrated
resonantly shunted piezoelectric transducers in support A with open circuited electrodes: simu-
lation ( ) and experiment ( ) and with RL-shunt: simulation ( ) and experiment ( ) in
a) y-direction and b) z-direction

Fig. 6a and Fig. 6b show the vibration behavior at node 7 of the beam in y- and z-direction
for the numerical simulation with open circuited transducer electrodes and with connected RL-
shunt. For the experimental setup it is also shown with open circuited transducer electrodes and
with connected RL-shunt. For the numerical simulation, the vibration reduction in y-direction
and z-direction is 31 dB since symmetry is assumed. For the experimental setup, the vibration
reduction in y-direction is only 16 dB and in z-direction is only 26 dB. What is more, non sym-
metric experimental behavior is observed. The difference between numerical and experimental
vibration reduction is presumably due to a smaller coupling coefficient in the experiment. In the
numerical simulation, K33 = 0.13 and in the experiment, K33 = 0.03. That, in turn, may result
from an overestimate lateral stiffness kl,A in the simulation, which has a significant influence
on the coupling coefficient, see Sec. 4.1. The reduced vibration reduction in the experiment
compared to the numerical results may also be observed in the phase argHy/z. Furthermore
in the experiment, the eigenfrequency foc = 139.8 Hz in y-direction and foc = 140.8 Hz in
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z-direction. This is due to non symmetric rotational support stiffness kϕ and bending stiffness
EIb. Still the effect is relatively small and assuming symmetric vibration behavior in y- and
z-direction in the numerical simulation is justified.

6. CONCLUSIONS

Lateral vibration reduction of a beam with circular cross-section in one of the beam’s two
elastic supports by integration of resonantly shunted piezoelectric transducers is investigated
numerically and experimentally. The vibration attenuation via RL-shunts depends significantly
on the electromechanical coupling coefficient. The electromechanical coupling coefficient is,
again, significantly dependent on the rotational stiffness and the lateral support stiffness of the
elastic spring element. The coupling coefficient is maximal if there is a very small rotational
stiffness and zero for infinite high rotational stiffness. Reducing the lateral stiffness, also de-
creases the coupling coefficient. Furthermore, the coupling coefficient can be maximized by
adjusting the axial extension length at constant rotational stiffness. An experimental setup of
the elastically supported beam with integrated piezoelectric stack transducers in the elastic sup-
port is presented and a significantly lateral vibration reduction is achieved with resonant shunt
damping in both lateral directions y and z. However, the experiments show less vibration re-
duction capability than the numerical simulation. What is more, non symmetric behavior is
observed in the supports in horizontal and vertical direction experimentally. The relatively
small electromechanical coupling coefficient in the experimental setup could be improved by a
different design of the elastic spring element with higher lateral stiffness. Additional investiga-
tions will be conducted to examine the influence of the support housing stiffness. Furthermore,
the vibration reduction could be improved by adding a negative capacitance to the RL-shunt.
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