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Summary: This paper is focused on the development of a damage detection indicator that

combines a data driven baseline model (reference pattern obtained from the healthy structure)

based on principal component analysis (PCA) and multivariate hypothesis testing. More pre-

cisely, a test for the plausibility of a value for a normal population mean vector is performed.

The results indicate that the test is able to accurately clasify random samples as healthy or not.

1. INTRODUCTION

Among all the elements that integrate a structural health monitoring (SHM) system, methods

or strategies for damage detection are nowadays playing a key role for improving the operational

reliability of critical structures in several industrial sectors [2]. The essential paradigm is that

a self-diagnosis and some level of detection and classification of damage is possible through

the comparison of the in-service dynamic time responses of a structure with respect to baseline

reference responses recorded in ideal healthy operating conditions [3]. These dynamic time re-

sponses recorded in each test, even in stable environmental and operational conditions, present

the main characteristic that they are not repeatable. It means that always exist variation between

measurements. Such variability may be caused by random measurement errors: measure instru-

ments are often not perfectly calibrated and thus generating discordant interpretation and report

of the results.
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Since the dynamic response of a structure can be considered as a random variable, a set of

dynamic responses gathered from several experiments can be defined as a sample variable and,

all possible values of the dynamic response as the population variable. Therefore, the process

to draw conclusions about the state of the structure from several experiments by using statistical

methods is usually named as statistical inference for damage diagnosis. In SHM field, statistical

inference can be considered as one of the emerging technologies that will have an impact on the

damage prognosis process [4, 5].

In general, there are two kinds of statistical inference: (i) estimation, which uses sample

variables to predict an unknown parameter of the population variable and, (ii) hypothesis test-

ing, which uses sample variables to determine whether a parameter fulfils a specific condition

and to test a hypotheses about a population variable. In this last context, classical hypothesis

test is used to compare extracted statistical quantities from statistical time series models like

mean, normalized autocovariance function, cross covariance function, power spectral density,

cross spectral density, frequency response function, squared coherence, residual variance, like-

lihood function, residual sequences, among others [7]. A hypothesis testing technique called a

sequential probability ratio test (SPRT) has been combined with time series analysis and neural

networks for damage classification in [18]. The usefulness of the proposed approach is demon-

strated using a numerical example of a computer hard disk and an experimental study of an

eight degree-of-freedom spring-mass system. Afterwards, the performance of the SPRT is im-

proved by integrating extreme values statistics, which specifically models behavior in the tails

of the distribution of interest into the SPRT. A three-story building model was constructed in a

laboratory environment to assess the approach [19]. Recently, a generalized likelihood ratio test

(GLRT) is used to compare the fit of minimum mean square error MMSE model parameters in

order to detect damages in a scaled wooden model bridge [10, 11].

In previous works, the authors have been investigating novel multi-actuator piezoelectric

systems for detection and localization of damages. These approaches combine: (i) the dynamic

response of the structure at different exciting and receiving points; (ii) the correlation of dynam-

ical responses when some damage appear in the structure by using principal component analysis

(PCA) and statistical measures that are used as damage indices; and (iii) the contribution of each

sensor to the indices, what is used to localize the damage [14, 13].

Following the same framework and considering dynamic responses as random variables as

in [15], this paper is focused on the development of a damage detection indicator that combines

a data driven baseline model (reference pattern obtained from the healthy structure) based on

principal component analysis (PCA) and multivariate hypothesis testing. As said before, the

use of hypothesis testing is not new in this field. The novelty of the previous work [15] is based

on (i) the nature of the data used in the test since we are using scores instead of the measured

response of the structure [7] or the coefficients of an AutoRegressive model [21]; (ii) the num-

ber of data used since our test is based on two random samples instead of two characteristic

quantities [6]. The proposed development starts obtaining the baseline PCA model and the sub-

sequent projections using the healthy structure. When the structure needs to be inspected, new

experiments are performed and they are projected onto the baseline PCA model. Each exper-
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iment is considered as a random process and the projections onto a predetermined number of

principal component is a multivariate random variable. The objective is to analyse whether the

distribution of the variable associated with the current structure is related to the healthy one.

2. DATA DRIVEN BASELINE MODEL BASED ON PCA

In this work a particular experimental set-up based on the analysis of vibrational changes

is used as an exemplifying configuration in order to justify, validate and test the methodology.

The proposed methodology can also be applied to a more general structure.

PZT1 D1 PZT2

D2 D3 D4

PZT3 D5 PZT4

6.25 cm

6.25 cm

6.25 cm

6.25 cm

6.25 cm6.25 cm6.25 cm6.25 cm

25 cm

Figure 1. Aluminium plate (left). Dimensions and piezoelectric transducers location (right).

2.1 Experimental set-up

Some experiments were performed in order to test the methods presented on this paper. In

these experiments, four piezoelectric transducer discs (PZTs) were attached to the surface of

a thin aluminum plate, with dimensions 250 mm x 250 mm x 1 mm. Those PZTs formed a

square with 144 mm per side. The plate was suspended by two elastic ropes, being isolated

from environmental influences. Figure 1 (left) shows the plate hanging on the elastic ropes.

As a response to an electrical excitation, a PZT produces a mechanical vibration, propagat-

ing, in this case, across the plate (forming Lamb waves, since a thin plate has been used). PZTs

are also able to generate an electrical signal as a response to a mechanical vibration. In every

excitation phase of an experiment, one PZT were used as actuator and the other three PZTs

were used as sensors, recording the dynamical response of the plate.

500 experiments were performed over the healthy structure, and another 500 experiments
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were performed over the damaged structure with 5 damage types (100 experiments per damage

type). Figure 1 (right) shows the position of damages 1 to 5 (D1 to D5). As excitation, a 50kHz

sinusoidal signal modulated by a hamming window were used. Figure 3 shows the excitation

signal and an example of the signal collected by PZT 1.

Figure 2. The plate is suspended by two elastic ropes in a metallic frame.

2.2 Principal component analysis (PCA): theoretical background

Let us initiate the analysis of a physical process by measuring different variables (sensors)

at a finite number of time instants. In this work, the collected data are arranged in a n× (N ·L)
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matrix as follows:

X =
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(1)

Matrix X ∈ Mn×(N ·L)(R) –where Mn×(N ·L)(R) is the vector space of n × (N · L) matrices

over R– contains data fromN sensors at L discretization instants with respect to n experimental

trials. Consequently, each row vector X(i, :) ∈ R
N ·L, i = 1, . . . , n, represents, for a specific

experimental trial, the measurements from all the sensors at every specific time instant. Equiv-

alently, each column vector X(:, j) ∈ R
n, j = 1, . . . , N ·L, represents measurements from one

sensor at one particular time instant in the whole set of experimental trials.
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Figure 3. Excitation signal (above) and, dynamic response recorded by PZT 1 (below).

The main objective of principal component analysis (PCA) is to distinguish which dynamics

are more relevant in the system, which are redundant and which can be considered as a noise

[14]. This objective is essentially accomplished by defining a new coordinate space to re-

express the original one. This new coordinate space is used to filter noise and redundancies

according to the variance-covariance matrix of the original data. In other words, the objective

is to find a linear transformation orthogonal matrix P ∈ M(N ·L)×(N ·L)(R) that will be used to

transform the original data matrix X according to the following matrix multiplication

T = XP ∈ Mn×(N ·L)(R). (2)

Matrix P is usually called the principal components of the data set or loading matrix and matrix

T is the transformed or projected matrix to the principal component space, also called score

5



Francesc Pozo, Ignacio Arruga, Luis E. Mujica, Elena Podivilova

matrix. Using all the N · L principal components, that is, in the full dimensional case, the

orthogonality of P implies PP
T = I, where I is the (N ·L)×(N ·L) identity matrix. Therefore,

the projection can be inverted to recover the original data as

X = TP
T .

Matrix P can be computed by means of the singular value decomposition (SVD) of the

covariance matrix defined in equation (3). Then, the principal components are defined by the

eigenvectors and eigenvalues of the covariance matrix as follows:

CX =
1

N · L− 1
XTX ∈ M(N ·L)×(N ·L)(R), (3)

CXP = PΛ, (4)

where the columns of P are the eigenvectors of CX. The diagonal terms of matrix Λ are the

eigenvalues λi, i = 1, . . . , N · L, of CX whereas the off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . , N · L

Λij = 0, i, j = 1, . . . , N · L, i 6= j

The eigenvectors pj, j = 1, . . . , N · L, representing the columns of the transformation matrix

P are classified according to the eigenvalues in descending order and they are called the prin-

cipal components of the data set. The eigenvector with the highest eigenvalue, called the first

principal component, represents the most important pattern in the data with the largest quantity

of information.

However, the objective of PCA is, as said before, to reduce the dimensionality of the data

set X by selecting only a limited number ℓ < N · L of principal components, that is, only the

eigenvectors related to the ℓ highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |pℓ) ∈ M(N ·L)×ℓ(R),

matrix T̂ is defined as

T̂ = XP̂ ∈ Mn×ℓ(R).

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to fully

recover X although T̂ can be projected back onto the original (N · L)−dimensional space to

get a data matrix X̂ as follows:

X̂ = T̂P̂
T
∈ Mn×(N ·L)(R). (5)

The difference between the original data matrix X and X̂ is defined as the residual error

matrix E as follows:

E = X − X̂, (6)
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or, equivalenty,

X = X̂ + E = T̂P̂
T
+ E. (7)

The residual error matrix E describes the variability not represented by the data matrix X̂.

Even though the real measures obtained from the sensors as a function of time represent

physical magnitudes, when these measures are projected and the scores are obtained, these

scores no longer represent any physical magnitude [15]. The key point in this approach is that

the scores from different experiments can be compared with the reference pattern to try to detect

a contrasting behavior.

2.3 PCA modelling

For the PCA modelling stage, we carry out a set of experiments as stated in Section 2.1

. For each different phase (PZT1 will act as an actuator in phase 1, PZT2 will act as an actuator

in phase 2 and so on) and considering the signals measured by the sensors, the matrix Xh is

defined and arranged as in equation (1) and scaled as stated in [14]. PCA modelling basically

consists of computing the projection matrix P for each phase as in equation (2). Matrix P,

renamed Pmodel, provides an improved and dimensionally limited representation of the original

data Xh. Pmodel is considered as the model of the healthy structure to be used to detect structural

damage. The modelling stage is graphically represented in Figure 4.

3. DETECTION OF STRUCTURAL CHANGES BASED ON MULTIVARIATE STA-

TISTICAL INFERENCE

A predetermined number of experiments is performed in the structure to be diagnosed and

a new data matrix Xc is constructed with the recorded data, as in equation (1). The number of

experiments is not limited a priori. However, the number of sensors and recorded samples must

correspond with the number of sensors and recorded samples in the PCA modelling stage; more

precisely, the number of columns of Xc and Xh must agree. Matrix Xc will be projected onto

the PCA model as specified in Section 3.1. The projections onto the first components –the so-

called scores– are used for the construction of the multivariate random samples to be compared

and consequently to obtain the structural damage indicator, as it is illustrated in Figure 5.

3.1 Multivariate random variables and multivariate random samples

Let us start this section by specifying what we consider a random variable and how a mul-

tivariate random variable is built. Assume that for a specific actuator phase (for instance, PZTi
as actuator, i = 1, 2, 3, 4) and using the signals measured by the sensors in a fully healthy state

the baseline PCA model (identified as Pi
model) is built as in Sections 2.2and 2.3. Assume also that

an experiment as detailed in section 2.1is further performed. The time responses recorded by

the sensors are first discretized and then arranged in a row vector ri ∈ R
N ·L, where N is the

number of sensors, L is the number of discretization instants and i refers to the current actuator

7
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Figure 4. A PCA model Pmodel is built for each actuator phase using the signals Xh recorded by

sensors during the experiments with the undamaged structure.

phase. The number of sensors and discretization instants must be equal to those that were used

when defining P
i
model. Besides, the size of each column is N · L. Selecting the jth principal

component (j = 1, . . . , ℓ),

P
i
model(:, j) =: vij ∈ R

N ·L,

the projection of the recorded data onto this principal component is the dot product

tij = ri · vij ∈ R, (8)

as in equation (2).

Since the dynamic behaviour of a structure depends on some indeterminacy, its dynamic

response can be considered as a stochastic process and the measurements in ri are also stochas-

tic. On the one hand, tij acquires this stochastic nature and it will be regarded as a random

variable to construct the stochastic approach in this paper. On the other hand, an s-dimensional

random vector can be defined by considering the projections onto several principal components

as follows

t
i
j1,...,js

=
[

tij1 tij2 · · · tijs
]T

∈ R
s, s ∈ N, j1, . . . , js ∈ {1, . . . , ℓ}, jα 6= jβ if α 6= β.

(9)
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Figure 5. The structure to be diagnosed is subjected to a predefined number of experiments and

a data matrix Xc is constructed. This matrix is projected onto the baseline PCA model Pmodel

to obtain the projections onto the first components Tc.

By reiterating this experiment several times on the undamaged structure and using equations

(8)-(9) we have a multivariate random sample of the variable t
i
j1,...,js

that can be viewed as a

baseline. When structural changes on the structure have to be detected, a new set of experiments

should be performed to create the multivariate random sample that will be compared with the

multivariate baseline sample. As an example, in Figure 6 two three-dimensional samples are

represented; one is the three-dimensional baseline sample (left) and the other is referred to dam-

ages 1 to 3 (right). This illustrating example refers to actuator phase 1 and the first, second and

third principal components. More precisely, Figure 6 (right) depicts the values of the multivari-

ate random variable t
1
1,2,3.The diagnosis sample is formed by 20 experiments and the baseline

sample is made by 100 experiments.

3.2 Detection phase

In this work, the framework of multivariate statistical inference is used with the objective

of the classification of structures in healthy or damaged. With this goal, a test for multivariate

normality is first performed. A test for the plausibility of a value for a normal population mean

vector is then performed.
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Figure 6. Baseline sample (left) and sample from the structure to be diagnosed (right).

3.2.1 Testing for multivariate normality

Many statistical tests and graphical approaches are available to check the multivariate nor-

mality assumption [16]. But there is no a single most powerful test and it is recommended to

perform several tests to assess the multivariate normality. Let us consider the three most widely

used multivariate normality tests. That is: (i) Mardia’s; (ii) Henze-Zirkler’s; and (iii) Royston’s

multivariate normality tests. We include a brief explanation of these methods for the sake of

completeness.

Mardia’s test is based on multivariate extensions of skewness (γ̂1,s) and kurtosis (γ̂2,s) mea-

sures [9, 16]

γ̂1,s =
1

ν2

ν
∑

i=1

ν
∑

j=1

m3
ij ,

γ̂2,s =
1

ν

ν
∑

i=1

m2
ij ,

where mij = (xi − x̄)T S−1 (xj − x̄) , i, j = 1, . . . , ν is the squared Mahalanobis distance, S
is the variance-covariance matrix, s is the number of variables and ν is the sample size. The

test statistic for skewness, (ν/6) γ̂1,s, is approximately χ2 distributed with s (s+ 1) (s+ 2) /6
degrees of freedom. Similarly, the test statistic for kurtosis, γ̂2,s, is approximately normally

distributed with mean s (s+ 2) and variance 8s (s+ 2) /ν. For multivariate normality, both

p-values of skewness and kurtosis statistics should be greater than 0.05.

For small samples, the power and the type I error could be violated. Therefore, Mardia

introduced a correction term into the skewness test statistic [12], usually when ν < 20, in order
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to control type I errors. The corrected skewness statistic for small samples is (νk/6) γ̂1,s, where

k = (s+ 1) (ν + 1) (ν + 3) / (ν (ν + 1) (s+ 1)− 6). This statistic is also χ2 distributed with

s (s+ 1) (s+ 2) /6 degrees of freedom.

The Henze-Zirkler’s test is based on a non-negative functional distance that measures the

distance between two distribution functions [8, 9]. If the data is multivariate normal distributed,

the test statistic HZ in equation (10) is approximately lognormally distributed. It proceeds to

calculate the mean, variance and smoothness parameter. Then, mean and variance are lognor-

malized and the p-value is estimated. The test statistic of Henze-Zirkler’s multivariate normality

test is

HZ =
1

ν

ν
∑

i=1

ν
∑

j=1

e−
β2

2
Dij − 2

(

1 + β2
)− s

2

ν
∑

i=1

e
− β2

2(1+β2)
Di

+ ν
(

1 + β2
)− s

2 (10)

where s is the number of variables, β = 1√
2

(

ν(2s+1)
4

)
1

s+4

,Dij = (xi − xj)
T S−1 (xi − xj) , i, j =

1, . . . , ν and Di = (xi − x̄)T S−1 (xi − x̄) = mii, i = 1, . . . , ν.

Di gives the squared Mahalanobis distance of the ith observation to the centroid and Dij

gives the Mahalanobis distance between the ith and the jth observations. If data are multivariate

normal distributed, the test statistic (HZ) is approximately lognormally distributed with mean

µ and variance σ2 as given below:

µ = 1−
a−

s
2

(

1 + sβ
2

a + s(s+ 2)β4
)

2a2
,

σ2 = 2
(

1 + 4β2
)− s

2 +
2a−s (1 + 2sβ4)

a2
+

3s(s+ 2)β8

4a4
− 4w

− s
2

β

(

1 +
3sβ4

2wβ

+
s(s+ 2)β8

2w2
β

)

,

where a = 1+2β2 and wβ = (1 + β2) (a+ 3β2). Hence, the lognormalized mean and variance

of the HZ statistic can be defined as follows:

µlog = ln

(
√

µ4

σ2 + µ2

)

,

σ2
log = ln

(

σ2 + µ2

σ2

)

.

By using the lognormal distribution parameters, µlog and σ2
log, we can test the significance of

multivariate normality. The Wald test statistic for multivariate normality is given in the follow-

ing equation:

z =
ln (HZ)− µlog

√

σ2
log

. (11)
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Royston’s test uses the Shapiro-Wilk/Shapiro-Francia statistic to test multivariate normality

[9]. If kurtosis of the data is greater than 3, then it uses the Shapiro-Francia test for leptokurtic

distributions. Otherwise, it uses the Shapiro-Wilk test for platykurtic distributions. The Shapiro-

Wilk test statistic is:

W =

(
∑ν

i=1

(

ai · x(i)
))2

∑ν

i=1 (xi − µ)2
,

where x(i) is the ith order statistic, that is, the ith-smallest number in the sample, µ is the mean,

a = m
T V −1

√
mT V −1V −1m

, V is the covariance matrix of the order statistics of a sample of s standard

normal random variables with expectation vector m. Let Wj be the Shapiro-Wilk/Shapiro-

Francia test statistic for the jth variable, j = 1, . . . , s, and Zj be the values obtained from the

normality transformation proposed by [17]:

if 4 ≤ ν ≤ 11 then x = ν and wj = − ln (γ − ln (1−Wj))

if 12 ≤ ν ≤ 2000 then x = ln(ν) and wj = ln (1−Wj) .

Then transformed values of each random variable can be obtained from the following equation:

Zj =
wj − µ

σ
, (12)

where γ, µ and σ are derived from the polynomial approximations given in equations [17]:

if 4 ≤ ν ≤ 11 γ = −2.273 + 0.459x,

µ = 0.544− 0.39978x+ 0.025054x2 − 0.0006714x3,

ln(σ) = 1.3822− 0.77857x+ 0.062767x2 − 0.0020322x3,

if 12 ≤ ν ≤ 2000 µ = −1.5861− 0.31082x− 0.083751x2 + 0.0038915x3,

ln(σ) = −0.4803− 0.082676x+ 0.0030302x2.

The Royston’s test statistic for multivariate normality as follows:

H =
ε
∑s

j=1 ψj

s
∼ χ2

ε,

where ε is the equivalent degrees of freedom (edf) and Φ(·) is the cumulative distribution func-

tion for standard normal distribution such that,

ε = s/ (1 + (s− 1) c̄) ,

ψj =
(

Φ−1 (Φ (−Zj) /2)
)2
, j = 1, 2, ..., s.

Another extra term c̄ has to be calculated in order to continue with the statistical significance

of Royston’s test statistic. Let R be the correlation matrix and rij be the correlation between ith

12
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and jth variables. Then, the extra term can be found by using equation:

c̄ =
s
∑

i=1

∑

j 6=i

cij
s (s− 1)

, (13)

where

cij = g (rij , ν) (14)

with the boundaries of g(·) as g(0, ν) = 0 and g(1, ν) = 1. The function g(·) is defined as

follows:

g(r, ν) = rλ
(

1−
µ

ξ(ν)
(1− r)µ

)

. (15)

The unknown parameters µ, λ and ξ were estimated from a simulation study conducted by [17].

He found µ = 0.715 and λ = 5 for sample size 10 ≤ ν ≤ 2000 and ξ is a cubic function which

can be obtained as follows:

ξ(ν) = 0.21364 + 0.015124 ln2(ν)− 0.0018034 ln3(ν). (16)

The described tests were performed for all the data. We summarize in Table 1 the results of

the multivariate normality test when considering the first three principal components (PC1-PC3)

for all the actuator phases.

Apart from the multivariate normality tests, some visual representations can also be used to

test for multivariate normality. The quantile-quantile (Q-Q) plot is a widely used graphical ap-

proach to evaluate the agreement between two probability distributions [9, 16]. Each axis refers

to the quantiles of probability distributions to be compared, where one of the axes indicates

theoretical quantiles (hypothesized quantiles) and the other indicates the observed quantiles. If

the observed data fit hypothesized distribution, the points in the Q-Q plot will approximately

lie on the bisectrix y = x. The sample quantiles for the Q-Q plot are obtained as follows. First

we rank the observations y1, y2, . . . , yν and denote the ordered values by y(1), y(2), . . . , y(ν); thus

y(1) ≤ y(2) ≤ · ≤ y(ν). Then the point y(i) is the i/ν sample quantile. The fraction i/ν is often

changed to (i− 0.5)/ν as a continuity correction. With this convention, y(i) is designated as the

(i − 0.5)/ν sample quantile. The population quantiles for the Q-Q plot are similarly defined

corresponding to (i − 0.5)/ν. If we denote these by q1, q2, . . . , qν , then qi is the value below

which a proportion (i− 0.5) /ν of the observations in the population lie; that is, (i− 0.5) /ν is

the probability of getting an observation less than or equal to qi. Formally, qi can be found for

the standard normal random variable Y with distribution N(0, 1) by solving

Φ(qi) = P (Y < qi) =
i− 0.5

ν
(17)

which would require numerical integration or tables of the cumulative standard normal distri-

bution, Φ(x). Another benefit of using (i− 0.5) /ν instead of i/ν is that ν/ν = 1 would make
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Table 1. Results of the multivariate normality tests when considering the first three principal

components (PC1-PC3) in the four actuator phases. "-" means that all the tests rejected mul-

tivariate normality, "+" means that at least one test indicated multivariate normality while the

subindex shows the tests that indicated normality: 1 (Mardia’s test), 2 (Henze-Zirkler’s test) or

3 (Royston’s test).

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) − +2 +2 −

Undamaged (first set to test) − +1,2,3 +2 −

Undamaged (second set to test) +1 +1,2 − −

Undamaged (third set to test) − +2 − +2,3

Undamaged (fourth set to test) − − − +1,2,3

Undamaged (fifth set to test) − − +1 +1,3

D1 +1,2,3 +2 +1,2 +3

D2 +1,2,3 +1,2,3 +1 +1,3

D3 +1,2,3 +2 +1,2 −

D4 +2 +2,3 − +3

D5 +1,2,3 − +1 −

qν = +∞. The population need not have the same mean and variance as the sample, since

changes in mean and variance merely change the slope and intercept of the plotted lie in the

Q-Q plot. Therefore, we use the standard normal distribution, and the qi values can easily be

found from a table of cumulative standard normal probabilities. We then plot the pairs (qi, y(i))
and examine the resulting Q-Q plot for linearity. Some examples of Q-Q plots for the data we

consider in this paper are shown on Figure 7. It can be observed that the points are distributed

closely following the bisectrix, thus indicating the multivariate normality of the data as stated

in Table 1.

In addition to Q-Q plots, creating perspective and contour plots can be also useful [9, 16].

The perspective plot is an extension of the univariate probability distribution curve into a three-

dimensional probability distribution surface related with bivariate distributions. It also gives

information about where data are gathered and how two variables are correlated with each other.

It consists of three dimensions where two dimensions refer to the values of the two variables

and the third dimension, which is likely in univariate cases, is the value of the multivariate

normal probability density function. Another alternative graph, which is called the contour plot,

involves the projection of the perspective plot into a two-dimensional space and this can be used

for checking multivariate normality assumption. Figure 8 shows the contour plot for bivariate
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Figure 7. Q-Q plots corresponding to: (i) fourth set of undamaged data to test, using the first

three principal components (PC1-PC3) in the actuator phase 4 (left) and (ii) damage 2 data,

using the first three principal components (PC1-PC3) in the actuator phase 1 (right). The points

of these Q-Q plots are close to the line y = x thus indicating the multivariate normality of the

data.

normal distribution with mean
(

0 0
)T

∈ R
2 and covariance matrix

(

0.250 0.375
0.375 1.000

)

∈

M2×2(R). For bivariate normally distributed data, we expect to obtain a three-dimensional

bell-shaped graph from the perspective plot. Similarly, in the contour plot, we can observe

a similar pattern. Some examples of contour plots for the data we consider in this paper are

given in Figures 9 and 10. These plots are similar to the contour plot of the bivariate normal

distribution in Figure 8.

Finally, the univariate normality for each principal component and for each actuator phase

is also tested. The results are presented in Table 2. As it can be observed, the univariate data is

normally distributed in most of the cases. However, this do not imply multivariate normality.

3.2.2 Testing a multivariate mean vector

The objective of this paper is to determine whether the distribution of the multivariate ran-

dom samples that are obtained from the structure to be diagnosed (undamaged or not) is con-

nected to the distribution of the baseline. To this end, a test for the plausibility of a value for a

normal population mean vector will be performed. Let s ∈ N be the number of principal com-

ponents that will be considered jointly. We will also consider that: (a) the baseline projection

is a multivariate random sample of a multivariate random variable following a multivariate nor-

mal distribution with known population mean vector µh ∈ R
s and known variance-covariance
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Figure 8. Contour plot for a bivariate normal distribution. The ellipses denote places of equal

probability for the distribution and provide confidence regions with different probabilities.

matrix Σ ∈ Ms×s(R); and (b) the multivariate random sample of the structure to be diagnosed

also follows a multivariate normal distribution with unknown multivariate mean vector µc ∈ R
s

and known variance-covariance matrix Σ ∈ Ms×s(R).
As said previously, the problem that we will consider is to determine whether a given s-

dimensional vector µc is a plausible value for the mean of a multivariate normal distribution

Ns(µh,Σ). This statement leads immediately to a test of the hypothesis

H0 : µc = µh versus

H1 : µc 6= µh,

that is, the null hypothesis is ‘the multivariate random sample of the structure to be diagnosed is

distributed as the baseline projection’ and the alternative hypothesis is ‘the multivariate random

sample of the structure to be diagnosed is not distributed as the baseline projection’. In other

words, if the result of the test is that the null hypothesis is not rejected, the current structure is

categorized as healthy. Otherwise, if the null hypothesis is rejected in favor of the alternative,

this would indicate the presence of some structural changes in the structure.

The test is based on the statistic T 2 –also called Hotelling’s T 2– and it is summarized be-

low. When a multivariate random sample of size ν ∈ N is taken from a multivariate normal
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Figure 9. Contour plot for undamaged case (fourth set to test), PZT4 act., PC1-PC2. The

contour lines are similar to ellipses of normal bivariate distribution from Fig.8 that means that

the distribution in this case is normal.

distribution Ns(µh,Σ), the random variable

T 2 = ν
(

X̄− µh

)T
S
−1
(

X̄− µh

)

is distributed as

T 2 →֒
(ν − 1)s

ν − s
Fs,ν−s,

where Fs,ν−s denotes a random variable with an F -distribution with s and ν − s degrees of

freedom, X̄ is the sample vector mean as a multivariate random variable; and 1
n
S ∈ Ms×s(R)

is the estimated covariance matrix of X̄.

At the α level of significance, we reject H0 in favor of H1 if the observed

t2obs = ν (x̄− µh)
T
S
−1 (x̄− µh)
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Figure 10. Contour plot for case D3, PZT1 act., PC1-PC2. The contour lines are similar to

ellipses of normal bivariate distribution from Fig.8 that means that the distribution in this case

is normal.

is greater than
(ν−1)s
ν−s

Fs,ν−s(α), where Fs,ν−s(α) is the upper (100α)th percentile of the Fs,ν−s

distribution. In other words, the quantity t2obs is the damage indicator and the test is summarized

as follows:

t2obs ≤
(ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Fail to reject H0, (18)

t2obs >
(ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Reject H0, (19)

where Fs,ν−s(α) is such that

P (Fs,ν−s > Fs,ν−s(α)) = α,

where P is a probability measure. More precisely, we fail to reject the null hypothesis if

t2obs ≤ (ν−1)s
ν−s

Fs,ν−s(α), thus indicating that no structural changes in the structure have been

18



Francesc Pozo, Ignacio Arruga, Luis E. Mujica, Elena Podivilova

Table 2. Results of univariate normality tests when considering the first five principal com-

ponents separately in the four actuator phases. “-” means lack of normality while “+” means

normality.

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) −+−++ −++++ −++++ −++−+

Undamaged (first set to test) −−−+− −+++− −++−+ +−+++

Undamaged (second set to test) −++++ −++++ −++++ −++−+

Undamaged (third set to test) −−+++ −++++ −++++ −++++

Undamaged (fourth set to test) −+−++ −++++ −+++− −++−+

Undamaged (fifth set to test) −+−++ −++++ −++++ +++++

D1 −++++ −++−+ −++−− +++++

D2 −++++ −++++ −+++− +++++

D3 +++++ −++++ −++++ +++++

D4 −++++ +++−+ −++++ −++++

D5 ++++− −++++ −+−+− −++++

found. Otherwise, the null hypothesis is rejected in favor of the alternative hypothesis if

t2obs >
(ν−1)s
ν−s

Fs,ν−s(α), thus indicating the existence of some structural changes in the struc-

ture.

4. EXPERIMENTAL RESULTS

4.1 Type I and Type II errors

As said in Section 2.1, the experiments are performed in 4 independent phases: (i) piezoelec-

tric transducer 1 (PZT1) is configured as actuator and the rest of PZTs as sensors; (ii) PZT2 as

actuator; (iii) PZT3 as actuator; and (iv) PZT4 as actuator. In order to analyze the influence of

each set of projections to the PCA model (score), the results of scores 1 to 3 (jointly), scores 1 to

5 (jointly) and scores 1 to 10 (jointly) have been considered. In this way, a total of 12 scenarios

were examined. For each scenario, a total of 50 samples of 20 experiments each one (25 for

the undamaged structure and 5 for the damaged structure with respect to each of the 5 different

types of damages) plus the baseline are used to test for the plausibility of a value for a normal

population mean vector, with a level of significance α = 0.60. Each set of 50 testing samples

are categorized as follows: (i) number of samples from the healthy structure (undamaged sam-

ple) which were classified by the hypothesis test as ‘healthy’ (fail to reject H0); (ii) undamaged

sample classified by the test as ‘damaged’ (reject H0); (iii) samples from the damaged structure
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(damaged sample) classified as ‘healthy’; and (iv) damaged sample classified as ‘damaged’.

The results for the 12 different scenarios presented in Table 4 are organized according to the

scheme in Table 3. It can be stressed from each scenario in Table 4 that the sum of the columns

is constant: 25 samples in the first column (undamaged structure) and 25 more samples in the

second column (damaged structure).

Table 3. Scheme for the presentation of the results in Table 4.

undamaged sample (H0) damaged sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)

Reject H0 Type I error (false alarm) Correct decision

In this table, it is worth noting that two kinds of misclassification are presented which are

denoted as follows:

1. Type I error (or false positive), when the structure is healthy but the null hypothesis is

rejected and therefore classified as damaged.

2. Type II error (or false negative), when the structure is damaged but the null hypothesis is

not rejected and therefore classified as healthy. The probability of committing a type II

error is called β.

It can be observed from Table 4 that Type I errors (false alarms) appear only when we

consider scores 1 to 3 (jointly) and scores 1 to 5 (jointly), while in the last case (scores 1 to 10),

all the decisions are correct.

4.2 Sensitivity and specificity

Two more statistical measures can be selected here to study the performance of the test: the

sensitivity and the specificity. The sensitivity, also called as the power of the test, is defined,

in the context of this work, as the proportion of samples from the damaged structure which are

correctly identified as such. Thus, the sensitivity can be computed as 1 − β. The specificity

of the test is defined, also in this context, as the proportion of samples from the undamaged

structure that are correctly identified and can be expressed as 1− α.

The sensitivity and the specificity of the test with respect to the 50 samples in each scenario

have been included in Table 6. For each scenario in this table, the results are organized as shown

in Table 5.

It is worth noting that type I errors are frequently considered to be more serious than type

II errors. However, in this application a type II error is related to a missing fault whereas a

type I error is related to a false alarm. In consequence, type II errors should be minimized.

Therefore a small level of significance of 1%, 5% or even 10% would lead to a reduced number
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Table 4. Categorization of the samples with respect to presence or absence of damage and the

result of the test, for each of the four phases and considering the first score, the second score,

scores 1 to 3 (jointly), scores 1 to 5 (jointly) and scores 1 to 10 (jointly).

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 22 13 21 7 18 13 22 12

Reject H0 3 12 4 18 7 12 3 13

Score 2

Fail to reject H0 21 2 24 18 18 5 22 14

Reject H0 4 23 1 7 7 20 3 11

Scores 1 to 3

Fail to reject H0 24 0 24 13 25 9 24 4

Reject H0 1 25 1 12 0 16 1 21

Scores 1 to 5

Fail to reject H0 21 0 23 0 21 0 20 0

Reject H0 4 25 2 25 4 25 5 25

Scores 1 to 10

Fail to reject H0 25 0 25 0 25 0 25 0

Reject H0 0 25 0 25 0 25 0 25

Table 5. Relationship between type I and type II errors.

undamaged sample (H0) damaged sample (H1)

Fail to reject H0 specificity (1− α) false negative rate (β)

Reject H0 false positive rate (α) sensitivity (1− β)

of false alarms but to a higher rate of missing faults. That is the reason of the choice of a level

of significance of 60% in the hypothesis test.

The results show that the sensitivity of the test 1 − β is close to 100%, as desired, with an

average value of 78%. The sensitivity with respect to Score 1 to 5 and Score 1 to 10 is increased,
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Table 6. Sensitivity and specificity of the test for each scenario.

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.88 0.52 0.84 0.28 0.72 0.52 0.88 0.48

Reject H0 0.12 0.48 0.16 0.72 0.28 0.48 0.12 0.52

Score 2

Fail to reject H0 0.84 0.08 0.96 0.72 0.72 0.20 0.88 0.56

Reject H0 0.16 0.92 0.04 0.28 0.28 0.80 0.12 0.44

Scores 1 to 3

Fail to reject H0 0.96 0.00 0.96 0.52 1.00 0.36 0.96 0.16

Reject H0 0.04 1.00 0.04 0.48 0.00 0.64 0.04 0.84

Scores 1 to 5

Fail to reject H0 0.84 0.00 0.92 0.00 0.84 0.00 0.80 0.00

Reject H0 0.16 1.00 0.08 1.00 0.16 1.00 0.20 1.00

Scores 1 to 10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

in mean, to a 100%. The average value of the specificity is 90%.

4.3 Reliability of the results

The results in Table 8 are computed using the scheme in Table 7. This table is based on

the Bayes’ theorem [1], where P (H1|accept H0) is the proportion of samples from the dam-

aged structure that have been incorrectly classified as healthy (true rate of false negatives) and

P (H0|accept H1) is the proportion of samples from the undamaged structure that have been

incorrectly classified as damaged (true rate of false positives).

4.4 The receiver operating characteristic (ROC) curves

An additional study has been developed based on the ROC curves to determine the overall

accuracy of the proposed method. These curves represent the trade-off between the false pos-
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Table 7. Relationship between proportion of false negative and false positives.

undamaged sample (H0) damaged sample (H1)

Fail to reject H0 P (H0|acceptH0)
true rate of false negatives

P (H1|accept H0)

Reject H0

true rate of false positives

P (H0|accept H1)
P (H1|acceptH1)

Table 8. True rate of false positives and false negatives.

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.63 0.37 0.75 0.25 0.58 0.42 0.65 0.35

Reject H0 0.20 0.80 0.18 0.82 0.37 0.63 0.19 0.81

Score 2

Fail to reject H0 0.91 0.09 0.57 0.43 0.78 0.22 0.61 0.39

Reject H0 0.15 0.85 0.13 0.88 0.26 0.74 0.21 0.79

Scores 1 to 3

Fail to reject H0 1.00 0.00 0.65 0.35 0.74 0.26 0.86 0.14

Reject H0 0.04 0.96 0.08 0.92 0.00 1.00 0.05 0.95

Scores 1 to 5

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.14 0.86 0.07 0.93 0.14 0.86 0.17 0.83

Scores 1 to 10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

itive rate and the sensitivity in Table 5 for different values of the level of significance that is

used in the statistical hypothesis testing. Note that the false positive rate is defined as the com-

plementary of the specificity, and therefore these curves can also be used to visualize the close

relationship between specificity and sensitivity. It can also be remarked that the sensitivity is

also called true positive rate or probability of detection [20]. More precisely, for each scenario
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and for a given level of significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1]× [0, 1] ⊂ R
2 (20)

is plotted. We have considered 99 levels of significance within the range [0.01, 0.99] and with

a difference of 0.01. Therefore, for each scenario 99 connected points are depicted, as can be

seen in Figures 11-13 when we consider scores 1 to 3 (jointly), scores 1 to 5 (jointly) and scores

1 to 10 (respectively).
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Figure 11. The receiver operating characteristic (ROC) curves for the scores 1 to 3 (jointly) in

the four actuator phases.

The placement of these points can be interpreted as follows. Since we are interested in

minimizing the number of false positives while we maximize the number of true positives,

these points must be placed in the upper-left corner as much as possible. However, this is not

always possible because there is also a relationship between the level of significance and the

false positive rate. Therefore, a method can be considered acceptable if those points lie within

the upper-left half-plane.

As said before, the ROC curves for the 12 possible scenarios are depicted in Figures 11-13.

The best performance is achieved for the case of scores 1 to 3 in phase 1 (Figure 11) because
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Figure 12. The receiver operating characteristic (ROC) curves for the scores 1 to 5 (jointly) in

the four actuator phases.

all of the points are placed in the upper-left corner. In phases 2-4, the points lie in the upper left

half-plain but not in the corner, which represents a very good behavior of the proposed method.

When we consider the case of scores 1 to 5 (jointly) in Figure 12 and the case of scores 1 to 10

(jointly) in Figure 13 it can be observed that the area under the ROC curves is close to 1 in all

of the actuator phases thus representing an excellent test.

Finally, we can say that the ROC curves provide a statistical assessment of the efficacy of a

method and can be used to visualize and compare the performance of multiple scenarios.

4.5 Analysis and discussion

Multivariate tests allow to get better results in damage detection than univariate tests. This

is perfectly illustrated in Figure 14 where a correct or wrong detections is represented as a

function of the level of significance α used in the test. We can clearly characterize four different

regions:

• 0 < α ≤ 0.13. In this region, all the five univariate tests and the multivariate statistical

inference pass (correct decision).
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Figure 13. The receiver operating characteristic (ROC) curves for the scores 1 to 10 (jointly) in

the four actuator phases.

• 0.13 < α ≤ 0.62. In this region, some of the five univariate tests fail (wrong decision)

while the multivariate statistical inference pass (correct decision).

• 0.62 < α ≤ 0.71. In this region, all the five univariate tests fail (wrong decision) while

the multivariate statistical inference pass (correct decision).

• 0.71 < α < 1. In this region, all the five univariate tests and the multivariate statistical

inference fail (wrong decision).

It is worth noting that in the region 0.62 < α ≤ 0.71, that is, when the level of significance

lies within the range (0.62, 0.71] the multivariate statistical inference using scores 1 to 5 (jointly)

is able to offer a correct decision even though all of the univariate tests make a wrong decision.

The scenarios with the best results are those that considers scores 1 to 10, because the false

negative rate is 0% and the false positive rate is 0% for all the actuator phases. The results for

scores 1 to 5 (jointly) are quite good, because the false negative rate is 0% for all actuators and

the false positive rate is 7− 17%.
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Figure 14. Multivariate test allow to get better results in damage detection that univariate tests.

A correct or wrong detection is represented as a function of the level of significance where four

regions can be identified.

5. CONCLUDING REMARKS

This paper has been focused on the development of a damage detection indicator that com-

bines a data driven baseline model (reference pattern obtained from the healthy structure) based

on principal component analysis (PCA) and multivariate hypothesis testing. A test for the plau-

sibility of a value for a normal population mean vector has been performed. The results indicate

that the test is able to accurately classify random samples as healthy or not.
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