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Summary: This paper presents a phenomenological constitutive model for martensite and
austenite in SMAs with a focus on computational efficiency, implementational simplicity and the
model’s eventual use in a control strategy. The model is built around the mathematical descrip-
tion of the typical form present in stress-strain curves in SMAs using closed form, continuous,
differentiable equations and continuity conditions imposed when the strain changes direction.
The parameters are few, physical and easy to identify from a monotonic tensile experiment and
a simple parameter identification process. The model is able to predict the behavior of marten-
site and austenite when exposed to both monotonic as well as cyclic loading and unloading.
Tensile iso-thermal experiments are then performed for validation and the model predictions
are shown to be in good agreement with experimental data. Since the model is based entirely
on continuous analytical equations, it is extremely computationally efficient and, thus, can be
used as a basis towards the development of model-based control algorithms.

1. INTRODUCTION

Shape Memory Alloys (SMAs) display two kinds of shape recovery effects: the one-way-
shape-memory-effect and pseudoelasticity [1]-[5], both of which can be exploited for various
applications such as switches, latches, stents, orthodontic braces, vibration damping etc. [6],
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[7]. These effects arise due to phase transformations between two microscopic SMA phases: a
parent austenitic phase and a martensitic phase. Characterization of both phases is done on the
basis of the phase transformation temperatures: Ms, M f (martensite start and finish) and As, A f
(austenite start and finish), where, generally, M f < Ms < As < A f . At temperatures below M f ,
where the alloy is initially fully martensitic, mechanical loading causes a macroscopic shape
change imposed by variant selection and detwinning, respectively. This shape is stable until
the martensite is heated above A f , triggering a transformation to austenite and a macroscopic
shape recovery. This thermally induced shape recovery is the one-way-shape-memory-effect.
Pseudoelasticity, also coined superelasticity occurs for temperatures above A f , where the alloy
is initially fully austenitic. Mechanical loading above certain critical stresses causes a trans-
formation to martensite and a concurrent macroscopic shape change. Removal of the driving
stress, triggers an (almost) complete reverse transformation from martensite to austenite, and a
respective shape recovery.

Due to these effects, SMAs are attractive materials for a variety of applications and are par-
ticularly promising in the creation of compact and powerful actuators due to their high energy
density and high specific actuation stresses. Additionally, they offer various other advantages
such as high reversible strains, smooth and silent actuation, scalability (down to micrometers)
etc. [7], [6]. SMAs, however, are characterized by extreme non-linear and hysteretic behaviour
and therefore designing actuators for sophisticated applications, e.g. position control, is non-
trivial. One of the approaches used to facilitate the development of control algorithms for SMA
actuators is model-based design, where mathematical models that predict the non-linearities
are directly included online in control strategies. In the past 20 years, models to describe
SMA behaviour have been developed from various perspectives: Thermodynamics [8]-[14],
phenomenological and thermomechanical [15]-[23], micromechanical [24]-[26], Finite element
[27],[28], constitutive [29], [30] etc.

While the aformentioned models are successful to various degrees in describing SMA be-
haviour from various domains, there is a divergence between model accuracy and computational
efficiency i.e. the models that are accurate are computationally expensive and although some nu-
merical solutions exist (e.g. [29]), they are still not conducive to be used in control loops. On the
other hand, the models that are computationally inexpensive are often too elementary and their
implementation, while straightforward is error-prone because of the use of series of conditional
statements (e.g. [23]).

This paper presents a phenomenological constitutive model in section 2 for martensite and
austenite in SMAs with a focus on computational efficiency, implementational simplicity and
the model’s eventual use in a control strategy. The model is built around the mathematical
description of the typical form present in stress-strain curves in SMAs using closed form, con-
tinuous, differentiable equations and continuity conditions imposed when the strain changes
direction. The parameters are few, physical and easy to identify from a monotonic tensile exper-
iment and a simple parameter identification process. The model is able to predict the behavior
of martensite and austenite when exposed to both monotonic as well as cyclic loading and un-
loading. Tensile iso-thermal experiments are then performed in section 3 for validation and the
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Figure 1. Typical stress-strain curves for martensite and austenite: monotonic loading (plots (a)
and (b)), cyclical loading (plots (c) and (d)) [31]

model predictions are shown to be in good agreement with experimental data. Since the model
is based entirely on continuous analytical equations, it is extremely computationally efficient
and, thus, can be used as a basis towards the development of model-based control algorithms. It
is important to note that the developed model focussed on modelling macroscopic phenomena
observed in SMAs, as these are most relevant for actuator development.

2. MODELLING ALGORITHM

In Figure 1, the expected curves for tensile loading and unloading experiments given a start-
ing point of either 100% twinned martensite or 100% austenite are shown (monotonic loading
- unloading in martensite (a) and austenite (b) and cyclical loading-unloading in martensite (c)
and austenite (d)). The data in the figure shows a repeatable ‘s-shaped’ curve (shown as red dot-
ted curves in Figure 1. Note that in plot (b), two s-shaped curves, one for loading and the other
for unloading behaviour, are present). This curve, plotted by the blue solid line on the stress-
strain (σ−ε) plane in Figure 2(a), is characterised by three slopes connected by two ‘knees’ and
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describes, physically, the evolution of phases in the SMA during an iso-thermal tensile test. For
a test done below M f (100% martensite), twinned martensite is elastically deformed in the first
segment a− b. Detwinning starts at ε1 and proceeds until complete conversion to detwinned
martensite at ε2, after which the detwinned martensite is elatically deformed until plasticity (not
shown) sets in. For a test conducted above A f (100% austenite), in segment a−b, the austenite
is elastically deformed. In segment c− d, austenite to stress-induced-martensite (SIM) trans-
formation proceeds up to ε2. Then, for the rest of e− f , 100% SIM is elastically deformed until
plastic deformation starts.

Figure 2. General characteristic of SMA stress-strain curve (a), derivative of stress vs strain (b)
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Since this curve is ubiquitous in the SMA stress-strain diagrams, the modelling algorithm is
as follows:

1. Mathematical description of the s-shaped curve using a closed-form, differentiable, ana-
lytical equation, the ‘base equation’ (see section 2.1).

2. Identification of required parameters in the base equation (see section 2.2).

3. Imposition of continuity conditions at the points where the strain input changes direction
(see section 2.3).

4. Update of parameters to model loading, unloading and reloading behaviour with the base
equations (see section 2.4).

The next sub-sections describe each of these steps in detail.

2.1 Base equation

In order to mathematically describe the s-shaped curve, the derivative of the stress with
respect to strain (∂σ

∂ε
) is plotted against the strain as shown by the solid blue curve in Fig.

2(b), where E1, E2 and E3 are the slopes of the σ -ε curve in segments a− c, c− d and d− f ,
respectively, ε1 and ε2 are the strains at the ‘knees’ and k1 and k2 describe the curvatures of
the function at the knees. Their values are proportional to ∂ 2σ

∂ε2 , evaluated at ε1 and ε2. This
derivative can be mathematically described using a combination of scaled and shifted sigmoid
functions as shown in (1).

∂σ

∂ε
=

(E1−E2)

1+ ek1(ε−ε1)
+

(E3−E2)

1+ e−k2(ε−ε2)
+ E2 (1)

Taking the integral of (1) yields the ‘base equation’, σbq, in (5) where σ1, σ2 and σ3 in (2),
(3) and (4) describe the function, approximately, in segments a−c, c−d and d− f , respectively.
(εp, σp) are the coordinates of any point on the curve and arise from the integration constants.
In the model, they are specifically set to the coordinates of the end points of the base curve,
although this is mathematically not required. Additionally the starting point of the base curve
is also preserved in the coordinates (εpp, σpp) as shown in Figure 2(a). Equation (5) succeeds
in describing the base curve in a closed form, analytical and differentiable equation that is
extremely simple to implement. The vast majority of existing models use the dash-dotted line in
the top plot of Fig. 2(a) as an approximation. In this case, a plot of ∂σ

∂ε
is piecewise continuous,

the curvatures at the knees in the σ -ε curve are replaced by sharp corners and the base curve,
while linear, is not differentiable, and is described with a series of conditional statements that
are tedious to program and error-prone when considering several loading-unloading cycles.
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σ1 = (E1−E2)

[
ε− εp−

1
k1

ln

(
1+ ek1(ε−ε1)

1+ ek1(εp−ε1)

)]
(2)

σ2 = E2(ε − εp) + σp (3)

σ3 = (E3−E2)

[
ε− εp +

1
k2

ln

(
1+ e−k2(ε−ε2)

1+ e−k2(εp−ε2)

)]
(4)

σbq(E1,2,3,ε1,2,k1,2,(εp,σp),ε) = σ1 + σ2 + σ3 (5)

Further inspection of the experimental data has shown that parabolic loci can occur in either
the first segment (see Figure 1(c), where a parabola is shown exemplary by the green dash-
dotted curve) or in the third segment (see Figure 1(b)). To this end, (5) is augmented with σq
in (6) for a parabola in segment ε2− f (see the red dashed line in Figure 2) or with σq in (7)
for a parabola in segment a− ε1 to model the green dotted line in Figure 2. The parameter q is
the parabolic constant. Consequently, the final base equation is given by (8). Note that should a
parabolic locus be absent, then q = 0, rendering σq = 0 and (8) is identical to (5).

For unloading:

σq = q(ε− ε2)

[
ε− ε2−

1
k2

ln
(

1+ ek2(ε−ε2)
)]

− q(εp− ε2)

[
εp− ε2−

1
k2

ln
(

1+ ek2(εp−ε2)
)]

(6)

For loading:

σq = q(ε− ε1)

[
ε− ε1 +

1
k1

ln
(

1+ ek1(ε1−ε)
)]

− q(εp− ε1)

[
εp− ε1 +

1
k1

ln
(

1+ ek1(ε1−εp)
)]

(7)

σbq(E1,2,3,ε1,2,k1,2,(εp,σp),q,ε) = σ1 +σ2 +σ3 +σq (8)

The parameter identification process is presented in the following section.

2.2 Parameter identification of base equation

Parameter identification is based on experimental data of monotonic loading-unloading ex-
periments on martensite and austenite such as in Figure 1(a) and (b). To describe these curves,
the base equation in (8) is used, with q = 0, since the initial loading curve does not con-
tain parabolic components. The required parameters here are: E1,E2,E3,ε1,ε2,k1,k2,(εp,σp).
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Since (εp,σp) arise from integration constants, they can be set to any value on the curve and for
parameter identification, they are set to (0,0). This is justified because at the beginning of the
loading experiment, the stress and the strain are commonly both 0. The remaining 7 parameters
are identified as follows:

1. E1,E2,E3 are calculated as the slopes of the lines passing through any two points in the
segments a−b, c−d, e− f (see Figure 2), respectively. The lines passing through these
point will be called ab, cd and e f , respectively, and are shown by the dash-dotted lines in
Figure 2.

2. ε1 is calculated as the intersection of line ab with cd and similarly, ε2 is the intersection
of cd with e f .

3. σε1 and σε2 , the stresses at ε1 and ε2, as calculated in the step above, are extracted from
the experimental data.

4. k1,k2 are then calculated with equations (9) and (10) where (εab,σab) and (εe f ,σe f ) are
the coordinates of any point in segment a−b and e− f , respectively.

k1 =−ln(2)
(
−ε1 +

σε1−σab−E2ε1 +E1εab

E1−E2

)−1

(9)

k2 = ln(2)
(
−ε2 +

σε2−σe f −E2(ε1− εe f )

E3−E2

)−1

(10)

Additionally, for austenite, the ‘width’ of the hysteresis loop is required and this value is
indirectly calculated from εuld

1 , the strain at the first unloading knee and Euld
2 , the slope of the

unloading plateau. Both of these parameters are easy to identify from the data. For martensite,
no further parameters are required. In the next section, the continuity conditions are presented.

2.3 Imposition of continuity conditions

Consider that the SMA being tested in the experiment is first in its 100% austenitic state at
no load. Consider a simple tensile experiment with a strain input as shown by the red dashed
curve in Figure 3 i.e. monotonic loading upto 4% strain, unloading to 0% strain and reloading
to 8% strain. Consider a second SMA sample in its 100% twinned martensitic state at no
load and a strain as shown by the solid blue curve in Figure 3 i.e. monotonic loading upto 4%
strain, unloading to 2% strain and reloading to 8% strain. Assume further that identification
experiments as described in section 2.2 above have been carried out and the parameters for both
austenite and martensite are known.

Using the base equation (8) and the parameters identified, the first loading sequence from
0% to 4% can be described mathematically and is shown in plot (a) of Figure 4, where the left
column is for austenite and the right column for martensite. (The red dashed curve is included
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Figure 3. Strain input for simple tensile experiment

only as a reference for the locus of the loading curve). Recall that (εpp,σpp) and (εp,σp) track
the start and end coordinates of the function. At the beginning of loading, both are initialised at
(0,0). At the point where the strain input changes direction i.e. at the end of loading at 4% strain,
the value of (εp,σp) is updated to the end points of the loading curve i.e. (4, 475) for austenite
and (4, 170) for martensite. For the next unloading, sequence, (8) is used again to describe the
next s-shaped curve shown with the red dashed curve Figure 4(b). The parameters required to
describe this curve need to be calculated through a parameter update process as presented in
the next section. The selection of (εp,σp) as the end points of the previous sequence ensures
continuity of the curve. Note that in martensite, although the strain input sinks to 2%, values of
stress below 0 are cut off. When the strain input changes direction again i.e. at the end of the
unloading section, the values of both (εpp,σpp) and (εp,σp) are updated to (4, 475) and (0.1, 0)
for austenite and (4, 170) and (3.4, 0) for martensite in preparation for the reloading sequence.
The reloading curve is described similarly using (8) and once again updated parameters. Note
that only the tracking of the end points in each sequence through (εp,σp) is sufficient to ensure
continuity. (εpp,σpp) is preserved in order to have a record of the loading - unloading history
of the SMA. In the next section, the parameter update process is presented.

2.4 Parameter update

The parameter update algorithm is used to calculate new parameters when the strain input
changes direction. It is based on the parameters identified from the identification process in
section 2.2, the parameters (εpp,σpp) and (εp,σp), which track the history of the SMA during
the course of the experiment as well as phenomena and hypothesis from materials science.
The updated parameters will be appended with the superscript ∗ to differentiate them from
the identified parameters. The update algorithm will be presented separately for loading and
unloading in the following sub-sections.
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Figure 4. Continuity conditions for loading (a), unloading (b), reloading (c) in austenite (right
column) and martensite (left column)
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2.4.1 Unloading

In order to model unloading behaviour, the following parameters need to be calculated:
E∗3 ,ε

∗
1 ,ε
∗
2 ,k
∗
2,q
∗ (see Figure 5). The rest of the parameters remain the same i.e. E∗1 =E1, E∗2 =E2

and k∗1 = k1. For austenite, the value of E∗2 = Euld
2 . Additionally, since unloading behaviour in

both austenite and martensite is characterised by residual strain, an additional parameter, εr, is
introduced. In austenite, the build up of residual strain is attributed, amoung others, to plastic
deformation of SIM, micro-yielding effects and degradation [3, 4]. The amount of residual
strain saturates after about 50 cycles according to a negative exponent (c.f. equation (11),
where n is the number of cycles) due to strain hardening (training effect). This is consistent
with findings available in literature, e.g. in [30].

εr = (0.37)(1− e−0.035(n−2))+0.05 (11)

In martensite, residual strain occurs because no driving force for a reverse transformation is
present, thus the unloading path is characterized by an almost elastic behaviour. To this end, εr
is calculated with (12) where E∗3 is in (16).

εr = εp−
σp

E∗3
(12)
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Figure 5. Parameter update in unloading for austenite (a), martensite (b)

The rest of the parameters are identical for austenite and martensite and are calculated as
follows:

• ε∗2 : This parameter is updated using (13), where εr is the residual strain, calculated with
(11) or (12) and σ1 and σ2 are calculated with equations (2) and (3) respectively, evaluated
at ε = εr and with ε1 = εuld

1 .

ε
∗
2 =

1
k2

ln

 ek2

(
σ1+σ2
E2−E3

+εp−εr

)
−1

e−k2εr − ek2

(
σ1+σ2
E2−E3

−εr

)
 (13)

10



A.Pai et al.

• E∗3 : The value of E∗3 follows the curve in Figure 6, where the x-axis is εp and the y-
axis is E∗3 . What this curve implies is that should unloading occur before the first knee
i.e. εp ≤ ε1, then E∗3 = E1. This is reasonable considering that when εp ≤ ε1, then the
SMA is microscopically either fully austenite or twinned martensite and unloading from
εp is elastic with modulus E1. Consider, however, that the SMA is loaded to a value
εp such that εp ≥ ε2. In this case the material is microscopically either fully SIM or
detwinned martenstite and unloading from εp is also elastic, but with modulus E3. There-
fore, E∗3 = E3. If however, unloading occurs between the knees i.e. ε1 ≤ εp ≤ ε2, then the
microscopic composition of the SMA is either a mixture of austenite and SIM or twinned
and detwinned martensite. The unloading slope, E∗3 , in this case is hypothesised to be a
weighted linear combination of the slopes E1 and E3, where the weight is given by the
volume fraction of SIM or detwinned martensite, v, present in the material. This volume
fraction is given by the relative position of εp to the knees i.e. when εp is at ε1, v = 0 and
when εp is at ε2, v = 1. In between the knees v varies linearly.

𝐸1

𝜀2𝜀1

𝛼 n

𝐸3

𝐸3
*

𝜀p𝜀m

𝐸1 𝐸3
2

_

Figure 6. Update of E3 in unloading

The curve in Figure 6 is mathematically described by (16), where n in (14) is proportional
to the slope of the curve at εm in (15), the midpoint between the knees.

n =
4

ε2− ε1
(14)

εm =
ε2 + ε1

2
(15)

E∗3 =
E3−E1

1+ e−n(εp−εm)
+ E1 (16)

• q∗ and k∗2: In addition to the unloading slope calculated above, the experimental data
shows a parabolic locus. In the SMA, grains of all possible orientations can be expected
to be found. As grain orientation corresponds to critical stress levels for phase transforma-
tion of single grains [32, 4, 1], small volume fractions of the wire might show a premature
and others sluggish phase transformation. As a consequence, unloading is characterized
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by the smooth curvatures depicted. Should this sluggish behaviour be absent, then the
material would unload elastically (and linearly) until ε∗2 in (13). This effect is exploited
to calculate σε∗2

, the expected stress at ε∗2 (see Figure 5(a)) using (17). The calculation
of the parabolic coefficient q∗ then proceeds with the (simplified) quadratic formula in
(18). k∗2 is subsequently calculated with (19) to ensure a smooth transition between the
parabola and the rest of the curve.

σε∗2
= E∗3(ε

∗
2 − εp)+σp (17)

a = (εp− ε
∗
2 )

2; b = σε∗2
−σp−E∗3(ε

∗
2 − εp); c = ln(2)(E∗3 −E∗2)

2

q∗ =
b−
√

b2−ac
2a

(18)

k∗2 =
4q∗

E∗3 −E∗2
(19)

• ε∗1 : With all the other values, ε∗1 is then calculated with equation (20) where σ3, σ2 and
σq are calculated with equations (4), (3) and (6), evaluated at ε = εr and σr = 0.

ε
∗
1 =

1
k1

ln

ek1εp− ek1

(
σr−σ3−σ2−σq

E1−E2
+εp

)
ek1

(
σr−σ3−σ2−σq

E1−E2
+εp−εr

)
−1

 (20)

2.4.2 Reloading

When the SMA is in its austenitic state at no load and the first loading-unloading sequence
is complete i.e. unloading to 0 MPa Stress, as shown in Figure 7(a), then the parameter update
requires no additional calculations and the identified parameters are directly used as the reload-
ing parameters (the ∗ parameters). In the martensite case, the values of ε∗1 , E∗2 and q∗ are the
only parameters that need updating as shown in Figure 7(b). ε∗1 is simply set to the value of
εpp, the point at which the previous unloading took place. E∗2 is only updated when the value of
εp ≥ ε2. In this case, E∗2 = E3 as reloading joins the original loading curve after the plateau as
shown exemplarily in Figure 8 for martensite. The value of q∗ is calculated using equation (21)
with εq = ε∗1 = εpp and σ1, σ2 and σ3 are calculated with equations (2), (3) and (4) evaluated at
ε = εq = εpp.

q∗ =
σ1 +σ2 +σ3

εq− εp
(21)

With the algorithm described in the above three sections namely, parameter identification,
imposition of continuity conditions and parameter update, the model is then validated using
experiments. The results are presented in the next section.
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Figure 7. Parameter update in reloading for austenite (a), martensite (b)
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Figure 8. E2 update for reloading beyond ε2

3. EXPERIMENTAL VERIFICATION

3.1 Experimental Set-up

In order to validate the model, tensile experiments were performed on poly-crystalline NiTi
wire samples with a servo-hydaulic testing machine. The wires with 0.5 mm diameter were
cut to a nominal length of about 60 mm. They were then attached to custom built fixing grips
with grooves of appropriate diameter to facilitate alignment and to ease installation within the
testing machine. The experiments were carried out under displacement control and with a
constant cross head displacement of 2 mm/min. The experiments were all conducted at room
temperature. In order to characterise both martensite and austenite, two sets of wires were used:
one set with an A f of−25◦C, meaning that the wire samples from this set were fully austenitic at
room temperature and no load. The other set had an A f of 95◦C, meaning that the wire samples
from this set were fully (twinned) martensitic at room temperature and no load. For both wire
samples, initially, a monotonic experiment was first carried out. The data was then used to
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identify the required parameters according to section 2.2. Subsequently, the same wire sample
was then exposed to a cyclical loading and unloading experiment and the model was used to
predict expected behaviour using the identified parameters, (8), the continuity conditions and
the parameter update process. The following subsections present the experimental data and the
model for austenite and martensite separately.

3.2 Austenite: monotonic experiments and parameter identification

In this experiment, the specimen was a NiTi wire with A f of −25◦C, therefore the wire was
austenitic at room temperature and no load. The wire sample was loaded to with a constant ve-
locity of 2 mm/min to a maximum displacement of 5 mm (approximately 8.5% strain) followed
by an unloading ramp to a force of 5 N. The results are plotted as solid black curves in Figure
9. Using this data, the model parameters are extracted using the steps outlined in section 2.2
and are shown in Table 1 . The model results are plotted as the red dash-dotted curve in Fig-
ure 9. The results show good correlation with experimental data with a root-mean-square-error
(RMS-error) of 6.6 MPa. The model shows good prediction especially at the knees, where other
models tend to have large errors. Note that the austenite unloading curve is characterised by a
‘peak’ at 5.5% strain. These peaks are due to nucleation in the SMA [33] and for simplicity,
they are not accounted for in the model.

E1 E2 E3 ε1 ε2 k1 k2 q Euld
2 εuld

1
GPa GPa GPa % % − − GPa GPa %

Austenite 40 0.7 25 1.13 7.45 3500 1400 0 0 0.34
Table 1. Model parameters for austenite
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Figure 9. Austenite: Monotonic loading,unloading - experiment (solid) and model (dashed)
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3.3 Austenite: cyclical experiments

In this experiment, the same wire sample as in the monotonic experiment above, is exposed
to a displacement input as in Figure 10 i.e. 25 cycles of loading and unloading, where the
maximum displacement of each cycle is increased for 0.2 mm and the minimum displacement
for each cycle is 0 mm. Therefore, the material is loaded up to different strains in each of the
three areas of the s-shaped curve and completely unloaded before the start of the next cycle.

Figure 10. Input displacement versus time

The results are plotted by the solid black curve in Figure 11. Using the parameters in Table 1,
imposition of the continuity conditions each time the strain direction changes and the parameter
update process, the model prediction is shown as the red dash-dotted line in Figure 11. The
model shows good overall correlation with experimental data with an RMS error of 7.4 MPa .
Additionally, the model is able to predict following observed phenomena:

• ‘Shifts’ of the pseudoelastic loop each cycle. This is due to the fact that residual strain
builds up in the material.

• The consecutive decrease of the onset of forward transformation (the critical stress for
SIM formation), which is induced by micro-plasticity in the SMA [3, 4].

Further, the hypothesis that the unloading slope E∗3 is based on the volume fraction of SIM
present in the material at the unloading strain, εp gives good results. It was found that the
lowest RMS error tended to occur when the slope of the curve in Figure 6 is double the amount
that was originally hypothesised i.e. (16) is amended to (22) for austenite.

E∗3 =
E3−E1

1+ e−2n(εp−εm)
+ E1 (22)

3.4 Martensite: monotonic experiments and parameter identification

In this experiment, the wire specimen was a NiTi wire with A f of 95◦C, therefore the wire
was martensitic at room temperature. Prior to the experiment the wire sample was placed in a
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Figure 11. Austenite complete cyclical loading - experiment (solid) and model (dashed)

furnace at 400◦C for 10 seconds and allowed cool to room temperature to remove all residual
strains and to ensure that the martensite was 100% twinned martensite at no load. The exper-
iment was carried out exactly as in the monotonic austenite case in section 3.2 above. The
results are plotted as solid black curves in Figure 12. Using this data, the model parameters are
extracted using the steps outlined in section 2.2 and are shown in Table 2 . The model results
are plotted as the red dash-dotted curve in Figure 12. The results show excellent correlation
with experimental data with an RMS-error of 1.9 MPa.

E1 E2 E3 ε1 ε2 k1 k2 q
GPa GPa GPa % % − − GPa

Martensite 29 0.39 15.8 0.58 6.43 580 170 0
Table 2. Model parameters for martensite

3.5 Martensite: cyclical experiments

In this experiment, the same wire sample as in the monotonic experiment above was used.
Before the start of the experiment, the wire was placed in a furnace at 400◦C for 10 seconds and
allowed cool to room temperature to remove the residual strain from the monotonic experiment.
The rest of the testing procedure and input displacement is identical to that of cyclical loading in
austenite as in section 3.3. The experiment results are plotted as the solid black curves in Figure
13 and show, as expected, an increasing residual strain at every cycle. Further, the unloading
and reloading cycles are characterised by minor hysteresis loops (see inset in Figure 13). Using
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Figure 12. Martensite monotonic loading - unloading: experiment (solid) and model (dashed)

the parameters in Table 2, imposition of the continuity conditions each time the strain direction
changes and the parameter update process, the model prediction is shown as the red dashed line
in Figure 13. The model shows good overall correlation with experimental data with an RMS
error of 5.5 MPa . Note that the inclusion of parabolic loci for the unloading and loading curves
allows the model to automatically predict the minor hysteresis loops. Additionally, similar to
the austenite case, the hypothesis that the unloading slope E∗3 is based on the volume fraction
of detwinned martensite present in the material at the unloading strain, εp gives good results. It
was found that the lowest RMS error tended to occur when (23) is used instead of (16).

E∗3 =
2E3−E1

1+ e−n(εp−εm)
+ E1 (23)

4. CONCLUSIONS

This paper presents a novel phenomenological constitutive model that can be used to predict
the behaviour of either martensite or austenite subjected to monotonic or cyclical loading and
unloading cycles. The model is based on the mathematical description of a ubiquitous s-shaped
curve present in typical stress-strain uniaxial tensile experiments on martensite and austen-
ite with an analytical, continuous and differentiable equation without the use of conditional
statements. The model parameters are few, physical and easy to identify and the parameter
identification process has to be carried out only once using a simple monotonic loading and un-
loading experiments for both austenite and martensite. The modelling of loading and unloading
behaviour is achieved through the imposition of continuity conditions and a parameter update
algorithm that uses the parameters identified in the identification algorithm and the tensile his-
tory of the SMA in the experiment. In addition to accurately modelling the curvature at the
knees, the model includes experimentally observed phenomena such as quadratic loci for ma-
jor and minor loops in both phases, the variation of the unloading slopes based on the volume
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Figure 13. Martensite cyclical loading - experiment (solid) and model (dashed)

fraction of the phases present, load history effects such as the build up of residual strain and the
presence of minor hysteresis loops in cyclical martensite experiments. The model’s simplicity
guarantees computational efficiency without compromising accuracy in predicting observed be-
haviour, as was verified with monotonic and cyclic loading-unloading experiments. The model
can therefore form the basis for the development of real-time control algorithms for SMA ac-
tuators. Further, although the experimental verification was carried out using NiTi wires, the
phenomena that are modelled are universal for all other SMAs such as iron based, copper based
alloys etc. To model the behaviour of these alternative SMAs, only the parameter identification
step is required. Future work will concentrate, amongst others, on improving current accuracy,
extension of the model to partial cyclical loading cases and extension of the model to intermedi-
ate temperatures, where the SMA material in the unloaded condition (zero stress), is composed
of martensite and austenite simultaneously.
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