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Summary:  In this paper, chaotic excitation is proposed to vibrate the structures. The 
attractors reconstructed from the structural responses are used for the early-stage damage 
detection. After the damage is detected, it is further quantified using the Particle Filter 
technique. Laboratory experiment using a 4-story building subjected to chaotic excitation is 
carried out. The experimental results demonstrated that the proposed approach will be helpful 
for detecting and quantifying damage levels at the early stage for the structural health 
monitoring. 

 
 
1 INTRODUCTION 

The structural health monitoring of civil engineering structures is a fundamental issue for 
structural safety and integrity, due to the fact that they will deteriorate just after they are built 
and put into services. The failure of structures will not only result in severe economic lost but 
may threaten the lives of people. Hence maintaining safety and reliable civil engineering 
structures for daily use is an extremely important issue which has received considerable 
attention in literature in recent years. Deterioration of the structure often refers to the structural 
damage and it can be reflected by the “deterioration” of the structural parameters. In practice, 
damage was defined as the changes introduced into a system which adversely affected its 
current or future performance. Therefore changes in structural parameters have been 
extensively applied as effective tools for damage detection. An overview of some modal-based 
approaches can be found in literatures [1, 2, 3]. However, it is difficult to detect the location of 
damage to structure because the change of those modal features due to damage is minor. 
Besides modal-based methods, auto-regressive approach [4, 5], neural networks [6], wavelet 
analysis have been proposed and successfully applied to various fields for this purpose [7, 8, 
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9]. Among which, the vibration-based damage identification (VBDI) methods draws extensive 
attention and are deeply developed. 

Meahwhile, the deterioration of the civil engineering structures usually begins from the local 
and small damages. Small damages gradually develop and become large damages and at last 
cause failure of the structure. For the consideration of the structural safety and reliability, 
detecting small damages is essential and useful. Therefore, to detect minor damages, 
development of other approaches is necessary, in which chaos attractor-based analysis [10, 11, 
12, 13] seems to be a promising way. The recent study has demonstrated that the damage-
induced change of the attractor is larger than that of the most sensitive frequency of the 
vibrational response of the structure [12]. It should be noted that past researches on attractor-
based approach can successfully identify the damage existence, and some of them can also 
quantify the damage, but damage localization has not been discussed sufficiently although 
localizing damage is very important in SHM.  

A first attempt in this paper is made to explore an attractor-based health monitoring system 
using chaotic excitation for the purpose of the damage localization. In evaluation of 
reconstructed attractor, the recurrence plot is applied to detect damage-induced change. The 
recurrence plots [14] were designed to detect non-stationarity in time series data and can be 
therefore a candidate for detecting damage location from structural response data. However, 
detection alone may not be sufficient for the purpose of damage evaluation and structural 
maintenance. In this case, damage requires to be further quantified.  

The second attempt is made to explore merging particle filter (MPF) for damage 
quantification by identifying structural parameters. The MPF is an improved algorithm of the 
particle filter (PF), in which filtering is performed by merging several particles of a prior 
ensemble, which is rather similar to the genetic algorithm [15]. Thus the structural deterioration 
can be detected and evaluated at the early stage and proper relevant measurement can be 
applied to ensure the safety of the structures.  

2 DAMAGE LOCALIZATION BY RECURRENCE PLOTS 

2.1 Recurrence plots 
The recurrence plot is a graphical technique designed to highlight structure (i.e. 

determinism) in signals. It might be thought of as a global, probabilistic autocorrelation 
function that considers the relative frequencies at which a system returns to a given dynamical 
state. Presuming a dynamical system governed by ̇ =F(x), then based on the response observed 
at T discrete points in time (x(i), i=1,2,…,T) the threshold recurrence plot is formally 
constructed by forming the matrix 

),)()((
,

ji
ji

R xx  (1) 

where ε is a threshold value representing the specific length scale of focus and ‖x(i)-x(j)‖ takes 
the Euclidean distance of the m-dimensional vector. Using the Heaviside function Θ, the values 
of Ri,j are 1 or 0, respectively depending on whether the distance between points x(i) and x(j) 
is less than or greater than a threshold value ε. A plot of the recurrence matrix is designated as 
the recurrence plot. For a single observed variable x(i) the familiar delay coordinate approach 
can also be used. Delay coordinate reconstruction is the standard first step in most non-linear 
time series analysis and proceeds by forming the reconstructed dynamics 

))1((...,),(),()( TmnxTnxnxnx  (2) 
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with delay T and embedding dimension m. 
Recurrence plots were designed to detect non-stationarity in time series data. They are 

therefore candidates for detecting damage-induced change in structural response data. In 
previous applications, analysis of recurrence plots has demonstrated superior performance to 
linear-based approaches in time series data [16]. In this study, features to detect damage-
induced change of structural response are extracted from the recurrence matrix Ri,j. 

2.2 Percent recurrence 
Percent recurrence is simply the percentage of darkened points. For a T point time series, 

this measure is given simply as 

2
1 1 ,

%
T

T

i

T

j jiR

recurrence . (3) 

This particular metric reflects the frequency that a given trajectory will visit a local region 
of phase space defined by ε. Figure 1 presents examples of recurrence plots for outputs of 
Lorenz system and a Gaussian noise.  

 

  
(a) Recurrence plots of Gaussian noise                   (b) Recurrence plots of Lorenz system 

Figure 1. Examples of Recurrence plots. 

As shown in Fig. 1(a), from recurrence points of Gaussian noise, no kind of deterministic 
structure can be seen because near points at time i are not near at time i+1. However, the 
diagonal line structures are apparent in the results of recurrence plots for Lorenz system, as 
depicted in Fig. 1(b). The diagonal lines are representative of deterministic dynamics. The 
chaotic processes typically exhibit usually short diagonal structures of length related to the 
inverse of the positive Lyapunov exponent because the Lyapunov exponents evaluate the local 
exponential divergence or convergence of nearby trajectories. Trajectories remain near for a 
short time before diverging because of the sensitive dependence on initial conditions. 

2.3 Damage localization by percent recurrence 
In attractor-based approach using chaotic input is extremely important to excite the structure 

in a way that the dimension of the response is sufficiently low to allow robust detection of 
feature which quantifies the damage. As pointed in reports of recent studies [10, 11, 12], 
chaotic excitation must be tuned properly according to the structure’s Lyapunov exponent 
spectrum, which is expressed with the modal damping rate observed from eigenvalues. 
However, in the case in which a structure which has a very low damping ratio at each mode is 
monitored with this approach, a chaotic signal with very low-frequency band must be tuned 
and is input into the structure. In such case, it is considered that the amplitude of vibration of 
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the structure become very low, which causes some difficulties on evaluation of response data. 
The procedure of damage localization is presented in Table 1.  
 

Step 1 Input Chaotic signal to Structure and Observe relative story 
acceleration 

Step 2 Extraction of the first mode vibration at all measurement points 
Step 3 Reconstruction of Attractor 
Step 4 Observation of Baseline data 

(a) Calculation of %recurrence (%REC) using Threshold value εown 
and εith 
εown: 10% of standard deviation of wavelet coefficients at the own 
sensor. 
εith: 10% of standard deviation of wavelet coefficients at the sensor i 
 
%RECown(s), %REC1st(s), %RECith(s), are observed.  (i, s: sensor 
number) 
(b) Normalization of %REC 

NREC1st(s) = %RECown(s) / %REClst(s) 
NREC2nd(s) = %RECown(s) / %REC2nd(s) 
NRECith(s) = %RECown(s) / %RECith(s) … 

Step 5 Input Chaotic signal used in Step 1 to the damaged structure and 
Steps 2–4 are performed. 

Step 6 Calculation of Damage Index 

DI(s) = max ( )
( ) , … , ( )

( )   

 
DI(s) = 1.0: Intact 
DI(s) ≠ 1.0: Damage 

Table 1. Procedure of damage localization. 

In the first step (Step 1) of this study, a normal chaotic signal, which is not tuned properly, 
is input into the structure and relative story acceleration is measured at each sensor. When an 
untuned chaotic signal is input into the structure, high dimensional response with several 
vibration modes is regarded as excited. Results of our past studies confirmed that damage 
location cannot be detected precisely by merely evaluating an attractor reconstructed from 
response with several vibration modes. In this study, we attempt to extract the first mode 
vibration from the response data in Step 2 and to evaluate the reconstructed attractor from the 
first mode vibration in Step 3. The first mode impulse vibration can be detected easily using 
experimental modal analysis. However, parameters of some kinds such as initial values of 
modal damping, and the weight matrix might vary the results. Using the proposed method, 
wavelet coefficients corresponding to the first mode vibration are extracted by application of 
continuous wavelet transform. 

In the Step 4, baseline data are acquired by calculating several %RECs from reconstructed 
attractor and normalizing them. Usually, the result of %REC is dependent on the threshold 
values, ε, in Eq. (1). %RECown(s) in Table 1 is the result of auto percent recurrence observed at 
the sensor s, in which 10% value of the standard deviation of wavelet coefficients calculated 
from own response at the sensor s is set as threshold value, εown. In other words, %RECown(s) 
is the result obtained using one’s own statistical information as the threshold value, εown. 
Meanwhile, %RECith(s) is also the result of auto percent recurrence observed at the sensor s. 



First A. Author, Second B. Author, Third C. Author 

 

5 
 

At this time, threshold value εith is calculated from the standard deviation of wavelet 
coefficients observed from the sensor i. In short, %RECith(s) is calculated at the sensor s using 
statistical information observed at different sensor. 

In this study, %REC is calculated individually in each intact situation and damage situation 
without calculating cross-percent recurrence, and the normalized value, NRECith (=%RECown 
/ %RECith), is compared before and after damage to detect the location of damage to the 
structure. NRECith denotes the relative relation of %RECown at each measurement point in intact 
and damage situations. If the dynamics of the test attractor are altered because of damage, then 
it is clear that the relative relation of %RECown will be altered according to the change. 

In step 6, the Damage Index (DI), which is expressed as a maximum value of 
NRECith

damage/NRECith
intact is evaluated to detect the damage location to the structure. If DI(s) 

is shown to be about 1.0, then it can be considered that the structural condition at the story with 
sensor s remains unchanged after damages and is intact. However, if DI(s) ≠ 1, then it can be 
considered that the structural condition of the story with sensor s has some abnormality or that 
it is damage. Through these steps, the proposed method can extract a difference between 
damaged location and intact location. 

3 DAMAGE QUANTIFICATION BY RELAXATION METHOD OF PERTICLE 
FILTER 

3.1 Particle filter 
Particle filter technique (PF) is one of recursive filtering techniques composed of the 

prediction and observation updating processes [17, 18].  
The general state space model is described by the state transfer and observation equations as 
follows: 

         = ( , ) 
(4) = ( , ) 

in which,  is the discrete time step,  the state vector,  the observation vector,  the 
system noise vector and  the observation noise vector which is assumed to be expressed by 

= ( , ) = ( , ). (5) 

The particle filter (PF) can be applied even if the state space model is non-linear and non-
Gaussian. In the PF, the probability density function of the state vector is expressed by many 
realizations, called particles and of which time marching behavior is calculated step by step. 
The PF is therefore an algorithm to identify particles which express the conditional probability 
density function ( | )  instead of identifying the state vector  directly. 

= { , ,⋯ , }  is the assemble of observation vectors. We called ( | )  as the 
prediction distribution and ( | ) as the filter distribution, and each probability density 
function (PDF) is approximated by  realizations as follows: 

|( )   ~  ( | )   = 1,2,⋯ ,  (6) 

Cumulative distribution of can be approximated by 

( | ) = 1 − |( )  (7) 
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where  is the step function. The approximated PDF of the state vector at ( − 1)th time step 
is given by the derivation of cumulative distribution function with respect to , 

( | ) = ∑ − |( ) , (8) 

where  is the Dirac delta function. The particles of th step before observation updating are 
obtained by simply substituting ( − 1)th time step particlees into the state transfer equation, 

 |( ) = |( ) , ( ) . (9) 

The approximated PDF of the state vector before updating at th time step is estimated by 
particle realizations 

( | ) = 1 − |( )  (10) 

The PDF of the state vector after updated by adding observation data  is obtained through 
Bayesian theorem 

( | ) = ( | , ) = ( , | )( | ) = ( | , ) ( | )
∫ ( | , ) ( | )  (11) 

Substituting Eq.(11) into Eq.(12) we have 

( | ) = ( | , ) 1∑ − |( )  
∫ ( | , ) 1∑ − |( )   (12) 

Integration appearing in the denominator can be performed and we obtain 

( | ) = ( )
∑ ( ) − |( ) = ( ) − |( )  (13) 

where 

( ) = | |( )  (14) 

( ) = ( )
∑ ( ) . (15) 

( ) is the likelihood of |( )  after the observation data  is given. 

3.2 Relaxation method of particle filter 
A significant problem with the basic particle filter algorithm is degeneration. To overcome 

this problem, the merging particle filter (MPF) is used in this study, as a relaxation method of 
particle filter. In MPF, each member of a filtered ensemble is generated from a weighted sum 
of multiple samples (nm) from the predicted ensembles (n) such that the mean and covariance 
of the filtered distribution are approximately preserved. When the number of particles to be 
merged is assumed to be nm, we draw nm×n samples from the prediction particles with the 
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weight of likelihood. The algorithm of MPF is defined by the following steps, as shown in 
Table 2. 

 
Step 1 Generate n initial particles x0|0

(j) (j=1, 2, …, n) . 
Step 2 Set t = 1 and repeat the following steps until the end of time 

step. 
(a) Calculate the prediction particles according to the Time 
updating process,  

xt|t-1
(j) = F(xt-1|t-1

(j), wt-1
(j)). 

(b) Calculate the likelihood, ( ) = | |( )  
(c) Obtain an ensemble 

{ |( , ), … , |( , ), … , |( , ), … , |( , )}, according to 
qt

(j)/∑n
m=1{qt

(m)}. 
(d) Generate new particles xt|t

(j) as a weighted sum of nm 
samples. 

   |( ) = |( , ) 
Table 2. Procedure of merging particle filter 

In order to ensure that the newly generated ensemble preserves the mean and covariance of 
the filtered PDF for n→∞, the merging weights βk are set to satisfy following equations. 

∑ = 1, ∑ = 1 (16) 

In this study, the particle (state vector) x is composed of the motions of all the nodes and 
unknown parameters; 

= (  )        = ( ̈  ̇  )′ (17) 

where xb represents unknown parameters. In this study, the case in which the mass, stiffness 
and damping ratio at the 1st and 2nd modes of the structure are all unknown s investigated. The 
state equation is given by 

xa,t = F(xa,t-1, xb,t-1)+wa,t, xb,t = xb,t-1+wb,t.  (18) 

The F(x) is the function that represents one-step prediction of structural vibration. Through 
comparisons between actual response acceleration and predicted one, likelihood of each 
particle is calculated. However, newly generated ensembles have the potential to not satisfy 
exactly the equation of motion because the information of response (motions of all the nodes) 
are generated from the weighted sum as well. Moreover, it was found in this study that all but 
one particle may have negligible weights while repeating update process of new ensemble even 
by using MPF. In this study, we examine a suitable time step to generate new ensemble instead 
of updating ensemble at all the time step. 

4 LABORATORY EXPERIMENTS 
To demonstrate the efficiency of the proposed method, laboratory experiments are 

conducted. Figure 2 shows the structural model. The S1, S2, …, S8 of this figure are the 
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accelerometers. The columns of C1 is removed or replaced with other column element to 
introduce damage situations. In intact situation, all columns have the width of 40 mm. 
Observation of acceleration is conducted for 45s at sampled at 100 Hz. Chaotic excitation in 
this study is given as the first state vector z1 of the chaotic Lorenz oscillator. 

,

)(

321
31

3121
21

21
11

zzz
dt

dz

zzzz
dt

dz

zz
dt
dz

 (19) 

In those equations, α=16, β=40, γ=4, and η are parameters to speed up or slow the oscillation. 
The initial conditions of z1, z2, and z3 are set respectively to 1.0, 1.0 and 1.0. Through an exciter 
located at the top story chaotic signal is given to the structure. 

Figure 3 shows the time history and Fourier amplitude of the signal input to the structure. 
The excitation exhibits a linear decay in Fourier amplitude with frequency, a characteristic of 
the Lorenz oscillator. 

S7 S8

S5 S6

S3 S4

S2S1

C1
 

Figure 2. Structural model and exciter. 

Scenario 1 Replace column C1 with a column having the width of 30mm 
Scenario 2 Remove column C1 

Table 3. Damage scenario. 

 
(a) Time history of chaotic excitation.                 (b) Fourier amplitude of chaotic excitation. 

Figure 3. Time history and Fourier amplitude of input signal. 
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Damage scenarios described in Table 3 are used. When a 40mm-wide column is replaced 
with a 30mm-wide column, a 6.25% reduction in inter-story stiffness occurs at the story. In 
this case, the change of modal parameter before and after damage is very minor. In damage 
scenario 1, the change of the first mode frequency is about 1.8%. The most sensitive frequency 
change was found to be about 2.1% (intact 4.761 Hz, damaged 4.663 Hz) at the second mode 
from the response acceleration. In this case, it is difficult for modal-based methods to localize 
the damage because of the small change. On the other hand, when a column is removed, a 25% 
reduction in inter-story stiffness occurs at the story.  

Regarding the attractor reconstruction, an embedded dimension of m = 3 is used for this 
study. A time delay of L = 1 was determined to be optimal for the attractor reconstruction of 
the response acceleration obtained at all measurement points. 

Figure 4 shows the time history and Fourier amplitude of response data observed at the 
sensor S1. From the Fourier amplitude, results show that several vibration modes are excited 
because of the chaotic input signal.  

 

 
(a) Time history of response .         (b) Fourier amplitude of response. 

Figure 4. Time history and FFT results of Response 

Figure 5 shows the time history and Fourier amplitude of wavelet coefficients corresponding 
to the first mode vibration. The Fourier amplitude in Fig. 5(b) is observed at Sensor S1. The 
amplitude of wavelet coefficients observed from the lower story with sensor S1 to the higher 
story with sensor S7 indicates the linear increase trend, as shown in Fig. 5(a). Also, Figs. 4(b) 
and 5(b) show that the components of the first mode vibration can be extracted accurately from 
the response data, although wavelet coefficients are not the actual first mode vibration. 

When applying the MPF for the identification of dynamical parameters, the number of 
merged particles was set to nm=3 in Eq.(16), and the weights βk were set as follows: 

= 34 , = √13 + 18 , = −√13 − 18  (20) 

As for the time interval of updating ensemble, we consider 2cases of 5 step interval and 10 
step interval.  
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(a) Time history of wavelet coef.           (b) Fourier amplitude of wavelet coef. 

Figure 5. Time history and FFT results of wavelet coef. 

4.1 Results of damage localization by recurrence plots 
The result of damage scenario 1, where a column C1 at the first story is replaced with a 

30mm-wide column, is depicted in Fig. 6. In this case, a 6.25% reduction in inter-story stiffness 
occurs at the damage story. Damage Index (DI) obtained from the sensors S1 and S2, which 
are on the damaged story, show larger values among all cases and exhibit about 18% increase. 
However, at stories immediately after the damage story, DI indicates about 1.0 in each and the 
average amount of the change in DI is about 3%. Therefore, the intact stories have not been 
affected by the damage. From these results, it can be predicted that the first story has something 
abnormal or that it has damage. 

Figure 7 presents results obtained under the situation of damage scenario 2 in which a 
column at the first story is removed. As portrayed in Fig. 7, the DI at the S1 and S2, which are 
located at the first story, indicates larger values among other sensors. It can be therefore 
predicted that the first story has something abnormal. Meanwhile, at other stories such as the 
second, third, and fourth stories, results show that their sensors indicate about 1.0, meaning 
that their stories remained unchanged before and after damage and that they are intact. It can 
be predicted from these results that only the first story has damage. Furthermore, also, from 
the comparison of the results of damage scenario 1 where a column C1 at the first story is 
replaced with a 30mm-width column, it is considered that DI obtained from damage story 
increases according to the damage magnitude. 

 

     
Figure 6. Results for damage scenario 1.                  Figure 7. Results for damage scenario 2. 

4.2 Results of Damage quantification by merging particle filter 
Table 4 shows the results of identification observed by using MPF for damage scenario 1.In 

this case, ensemble was updated at the 5 step interval. It was found from the results that the 
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identified structural parameters are close to the real model parameters, especially for the 
stiffness K and the mass M. However, the stiffness at the 1st story with damage was 
overestimated, which means that further improvements to identify the structural parameters are 
needed for a practical tool. 

Table 5 shows the identification results for damage scenario 2. In this case, ensemble was 
updated at the 10 step interval. It was also observed from the results that the identified structural 
parameters are close to the real model parameters; however, the stiffness at the 1st story with 
severe damage was also overestimated as well. 

The time histories of the identified parameters are shown in Figures 8 and 9. It is found from 
the figures that each parameter converged at an early stage. This early convergence is 
considered to be caused by degeneration. The further improvement to avoid this problem is 
needed as one of future works. 
 

 Mass(kg) 
True/Estimate, (error) 

Stiffness(N/m) 
True/ Estimate, (error: %) 

1st story 2.441/2.309, (-5.42%) 2730.6/2486.9, (-14.61%) 
2nd story 2.441/2.256, (-7.59%) 2912.6/2956.0, (1.49%) 
3rd story 2.441/2.347, (-3.83%) 2912.6/2860.9, (-1.78%) 
4th story 8.353/8.308, (-0.53%) 2912.6/2909.7, (-0.10%) 

Table 4. Expected values at final step (scenario 1). 

 Mass(kg) 
True/Estimate, (error: %) 

Stiffness(N/m) 
True/ Estimate, (error: %) 

1st story 2.441/2.468, (1.11%) 2184.4／1823.1, (-16.54%) 
2nd story 2.441/2.323, (-4.83%) 2912.6／2841.2, (-2.45%) 
3rd story 2.441/2.248, (-7.91%) 2912.6／3020.1, (3.69%) 
4th story 8.353/8.214, (-1.66%) 2912.6／2969.6, (1.96%) 

Table 5. Expected values at final step (scenario 2). 

 
(a) The mass (scenario 1)                                     (b) The stiffness (scenario 1) 

Figure 8. Identification results by MPF for damage scenario 1 
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(a) The mass (scenario 1)                                     (b) The stiffness (scenario 1) 

Figure 9. Identification results by MPF for damage scenario 1 

5 CONCLUSIONS 
A first attempt was made in this study to explore an attractor-based health monitoring 

system using chaotic excitation for damage localization. In evaluation of the reconstructed 
attractor, recurrence quantification analysis was introduced to detect damage-induced change. 
In this study, the wavelet coefficient detected from the response data was analyzed to locate 
the damage, where several threshold values were set to calculate the %REC. Laboratory 
experiments demonstrated that the proposed method can enable detection of the damage 
location accurately by evaluating the normalized %REC of the wavelet coefficient 
corresponding to the first mode vibration before and after damage. 

Second attempt was made to explore merging particle filter for damage quantification. It 
was found from the experimental results that the identified structural parameters were close to 
the real model parameters, especially for the stiffness K and the mass M. However, the stiffness 
at the 1st story with damage was overestimated in both damage scenario cases, which means 
that further improvements to identify the structural parameters are needed for a practical tool. 
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