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Summary:  Nowadays, the improvement of smart structures offers great prospective for use 

in advanced aerospace and vehicle applications which are exposed to unavoidable thermal 

environment. This article deals with the optimization of the actuators’ force in a smart 

structure in order to control the deformation caused by a thermal load.  It is assumed that 

prescribed temperature distributions applied to the structure while sixteen actuators are 

placed on the upper surface of a large structure while elastic boundary conditions are 

imposed. The finite element analysis is used to model the structure and the problem is 

simulated with Matlab. The forces for all actuators are optimized using the particle swarm 

optimization technique (PSO) in order to control the maximum deformation induced. In 

addition, the PSO algorithm is improved to solve such optimization problem with unknown 

bounds for the design variables. The obtained results showed that the maximum deformation 

can be sufficiently reduced by the optimum design of the actuators force.  
 

 

1 INTRODUCTION 

One of the predominant loads that space structures receive during space operation is 

thermal load. When a structure is subjected to a uniform or non-uniform temperature field, it 

normally reacts by producing deformations. These deformations are usually undesirable since 

they distort the structure and cause stresses when its component parts expand unequally. 

Moreover, the space structures deformation due to the thermal load can affect the spacecraft 

function [1-5]. A typical example is the thermoelastic distortion of the parabolic antenna, 

which is the main component of Microwave Radiometer Spacecraft and Synthetic Aperture 

Radar [3]. Another famous event occurred is the failure of the Hubble space telescope which 

experienced an unstable vibration and buckling induced by the rapid thermal flux change on 

the solar array.  

Nowadays, smart structures are widely used in advanced aerospace applications, e.g., 

platforms, antennas, and telescopes which unavoidably exposed to a severe thermal 

environment. Important papers on smart structures mainly operating under isothermal 
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conditions were surveyed [6-8]. Tauchert, et al. [9-11] reviewed key papers concerning smart 

structures which have been focused on control problems of a thermal displacement.  

Optimization is an important issue designers faced every day to meet special requirements 

and ensure the best performance of a structure. Several works have been done for the 

optimum design of structure to suppress the thermal displacements/vibrations for example 

[12]. Others studied the optimization of a large structure. Fan and Xiang studied the structure 

optimum design of a large space structure for suppressing the thermal induced vibration [13]. 

However, Further studied on the optimization of a large structure is still needed.  

The population-based optimization algorithms are becoming increasingly popular than 

traditional ones for solving complex optimization problems. The major difference between 

them that the traditional search techniques is start with an initial population, while the 

population-based optimization algorithms start with a single initial guess value. Therefore, 

the population-based optimization efficiently successes in finding global or near global 

optimum solutions while, the final result for the traditional optimization methods depends on 

the initial guess. Moreover, the traditional optimization methods are time consuming in 

solving nonlinear and complex optimization problems. Therefore, the heuristic search 

techniques, such as genetic algorithm, simulated annealing, particle swarm optimization 

algorithm (PSO), immune algorithm, and harmony search algorithms, are more effective than 

the gradient techniques in finding the global optimum. The advantages of PSO over other 

techniques that, it is algorithmically simpler, generally converges faster and more robust [14, 

15]. Thus, PSO encouraged researchers from various backgrounds to use it in solving many 

optimization problems. Elsawaf et al. [16, 17] combined PSO with the simplex method to for 

an optimum structure design of a composite disk with single and multiple piezoelectric layers 

and to control the maximum thermal stress induced in the structural layer. Shabana et al. [18] 

applied PSO to optimize a nontraditional interface profile parameters so that the induced 

thermal stress in the structure was minimized. It was found that the stress can be minimized 

greatly using the obtained optimum values. For other application Metered, et al. [19] 

introduced an investigation into the use of a PSO algorithm to tune the PID controller for a 

semi-active vehicle suspension system incorporating magnetorheological damper improving 

the ride comfort and vehicle stability. 

In this article, the thermal deformations in a large structure are minimized sing the PSO 

technique and applying the finite element analysis. Sixteen actuators are distributed on the 

top surface of the structure while a prescribed thermal load is applied. It is required to 

optimize the force applied to the structure from each actuator in order to suppress the thermal 

deformation to the fullest extent possible. A modification in the PSO algorithm is done to get 

along with the natural of the unknown bounds of the applied force. All numerical simulations 

are carried out using implicit FEM software package ANSYS and Matlab. It is found from 

the numerical results that, the optimized applied forces significantly reduce the deformations 

and hence increase the structural safety and reliability.  

2 PROBLEM STATEMENT AND FILITE ELEMENT MODEL 

Based on thermo-elastic deformation theory and finite element analysis software ANSYS, 

numerical analysis method are applied to resolve and analyze thermal-structural coupling 

deformation of the structure. The structure of length 𝑎, width 𝑏, and thickness ℎ with a 

Cartesian coordinate system (𝑂XYZ) having the origin 𝑂 is considered in this study as shown 

in figure 1. For the finite element mesh, the element used is 20-node quadratic element and 

the number of elements is 270 and hence the total number of nodes is 1911 for the model.   
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Figure 1: Finite element model with the applied forces. 

 
Figure 2: 20- nodes element. 

 

 
Figure 3: Temperature distribution applied acts on the finite element model (
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The 20-node element is shown in figure 2 and each node have three degrees of freedom; 

translations in X, Y and Z directions. Some of the elements’ nodes are fixed along the X, Y 

and Z directions as for the elastic boundary conditions. The 16 applied forces (Fy1~ Fy16) are 

distributed on the upper surface nodes as illustrated in figure 1. A detailed explanation about 

the formulation of the three dimensional finite element with Ansys software package can be 

found in [20].  

For the loading conditions, the temperature boundary conditions (260,380,690 
o
C) acts at 

the position (I, II, III) respectively, and the corresponding temperature distributions are 

shown in figure 3. Due to the applied thermal load, thermal deformations will arise in each 

node and it is required to minimize these deformations for the safety of the structure. 

3 OPTIMIZATION PROBLEM 

Let us determine the forces (Fy1~ Fy16) applied to all the sixteen nodes illustrated in Figure 

1, so that the maximum thermal deformation found form the 1911 nodes in the structure layer 

is minimized. This optimization problem is defined by 

1 2 16find =( , ,• • ••, )

to minimize ( ) max | |  for =1~1911

y y y

obj i

F F F

f u i




 

W

W
 

(1) 

where ( )objf W  is the objective function, W  is the design variables required to be optimized 

and iu  is the thermal deformation at the node i in the Y direction. Since there are many local 

optima in the solution space, the particle swarm optimization (PSO) is employed to solve this 

problem. 

3.1 PSO algorithm 

PSO is one of the evolutionary optimization algorithms that took its inspiration from the 

biological examples and other social organisms’ behavior originally contributed by Kennedy 

et. al, [21]. PSO algorithm optimizes a problem using a population (swarm) of candidate 

solutions (particles). The particles have their own positions and velocities, and fly around the 

problem space in swarms looking for best fitness value. Upper and lower bounds (UB and 

LB) of the design variables are predefined so that the particle will not fly beyond those 

bounds in the solution space. The particles are initially scattered in the solution space with 

initial positions within the predefined bounds and velocities. The position  ( )

  and velocity 

( )v 

  of a particle  at the generation  are iteratively enhanced in the solution space towards 

the optimum solution. Each movement of a particle is influenced by its local position ( )b 

  

and the overall best position ( )g  obtained from the candidates in the solution space. When 

the process repeated for sufficient number, the best solutions eventually will be found. Eq. 

(2), shown the mathematical formula used for updating the positions and the velocities of the 

particles [22]; 
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( ) ( ) ( )

1 1
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2 2
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(2) 
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  is the constriction coefficient, 1acc  and 2acc  are acceleration coefficients, 1rand and 

2rand  are random numbers between 0 and 1. The above mention optimization procedures 

with the PSO algorithm for the problem described in Eq. (1) are shown in figure 4. 

3.2 Improvement on the PSO algorithm  

As mentioned above the particles initial and the iteratively updated position are limited to 

the predefined UB and LB. If the updated particle’s position has a value more than the UB 

then will modified to have the UB value instead. If the updated position has a value lower 

than the LB then it return to the LB value. The predefined UB and LB have a great influence 

in finding the optimum solution hence, it should be set probably. However, for some 

optimization problems the UB and LB are set wrongly due to the unawareness of the problem 

searching space and that would affect the quality of the solution. 

In the studied problem the upper and lower bounds of the design variables (applied forces) 

of the optimization problem are difficult to define. Therefore, the UB and LB are modified to 

be flexible with no limitation on the updated particle’s position as follows; 

UB and LB are initially predefined then during the iteration process those bounds are 

updated according to the information transferred form the particles. If any of the particles 

find a best fitness value during the iteration process beyond the UB and LB, the particle is 

allowed to fly beyond those initial bounds and the UB and LB are modified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Optimization procedure flow chart. 
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4 NUMERICAL RESULTS AND DISCUSSIONS  

The aim of this study is to minimize the deformation occurred in the structure due to the 

prescribed thermal load for the safety of the structure. This can be done by optimizing the 

applied forces on the upper surface of to the structure which was described in Eq. (1). The 

Ansys software package and the Matlab software are used for modeling and simulating the 

structure behavior of the structure. As mentioned previously the structure is meshed up to 

270 elements with the 20-node quadratic element and the total number of nodes for the 

structure is 1191 nodes. It will be unreadable to show the deformation of the structure 

refereeing to those nodes. Therefore the deformations of the structure are shown with respect 

to the Cartesian coordinates. The length × width × height for the structure are 4(m) × 0.5(m) 

× 0.5(m). The deformations in the Y direction are only considered in this study.  

Two materials have been studied for the structural which are steel and aluminum with the 

following properties: 
 

 Young’s modulus 

(Pa) 

Possion’s ratio 

(-) 

Thermal expansion 

(1/K) 

Thermal conductivity 

(W/m/K) 

Steel 2.1e11 0.3 18.1e-6 33 

Aluminum 0.7e11 0.35 23.1e-6 237 

Table 1: Material properties of the structure (unit). 

The thermal conductivity is considered to be equal in all directions. For, the elastic 

boundary conditions, the following nodes’ positions are fixed from translation movement in 

the X, Y and Z directions given as in Table 2. 

 
X Y Z 

0 ~ 0.5 0 0 ~ 0.5 

0 0.05 0 

0 0.05 0.1667 

0 0.05 0.333 

0 0.05 0.5 

0 0.1 0 ~ 0.5 

Table 2: Fixed nodes in the X, Y and Z directions.  

The initial UB and LB for the applied forces for both the cases of Aluminum and Steel are 

-100 (KN) and 100 (KN). The applied forces optimum values obtained by solving the 

optimization problem for both the structure with the St. and Al. are given in Table 3.   

  
 Fy1 Fy2 Fy3 Fy4 Fy5 Fy6 Fy7 Fy8 Fy9 Fy10 Fy11 Fy12 Fy13 Fy14 Fy15 Fy16 

Al 69.9 77.7 18.9 -33.2 24.4 -88.7 77.7 -81.8 63.0 64.7 -68.6 40.5 -8.0 -59.6 27.6 19.0 

St 56.2 80.3 -86.9 -80.4 -26.4 3.6 -41.6 -39.9 48.7 -80.4 153.0 -28.0 41.9 42.1 25.5 -88.5 

Table 3: Optimum forces obtained for St. and Al. 

For convenience in presentation of numerical results, the numerical results obtained from 

solving the optimization problem given in Eq. (1) are shown at different positions as in the 

following figures. 

It is seen that the optimum applied forces obtained are not restricted to the initial 

predefined bounds values. 
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4.1 Aluminum structure optimization 

Figure 5 shows the structure deformations in the Y direction (ui) before optimization (BO) 

and after applying the optimized force (AO) for different selected positions with Al structure.  
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Figure 5: Structure deformations before optimization (BO) and after optimization (AO) for Al. 
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4.2 Steel structure optimization 

The optimization problem given in Eq. (1) have been also solved when the structure 

material is St. The numerical result for the structure deformations in the Y direction (ui) BO 

and AO optimization in other different positions than chosen for Al are shown in figure 6.  
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Figure 6: Structure deformations before optimization (BO) and after optimization (AO) for St. 

Figures 5 and 6 show the structure deformations for all nodes in different positions for Al and 
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St respectively. The values of maximum thermal deformations before optimization (max |ui| 

BO) and after optimization (max |ui| AO) are written for each position. It is clearly seen from 

all the positions that those values have been effectively decreased.  

9 CONCLUSIONS 

In this paper, the optimization of sixteen actuators’ force applied to a large smart structure 

in order to suppress the maximum thermal deformation induced from a prescribed load has 

been addressed. The finite element analysis is used to model the structure using the Ansys 

software package with 1911 nodes. The particle swarm optimization technique is employed 

for solving the optimization problem to search about the optimum values of the sixteen 

actuators force distributed on the upper surface of the structure. The particle swarm 

optimization algorithm was improved to overcome the unknown searching bounds for the 

actuators’ force. The optimum values for the actuators’ force were obtained for two different 

structure materials, used in this study, which is Aluminum and Steel. The numerical results 

showed that the maximum thermal deformations for different locations on the structure have 

been sufficiently reduced for all the positions and the two materials.   

 

ACKNOWLEDGMENTS 

This publication was supported by the European social fund within the frame work of 

realizing the project "Support of inter-sectoral mobility and quality enhancement of research 

teams at Czech Technical University in Prague", CZ.1.07/2.3.00/30.0034. Period of the 

project’s realization 1.12.2012 – 30.6.2015. 

 

REFERENCES 

[1] O. Song, I. Yoon, and L. Librescu, Thermally Induced Bending Vibration of Composite 

Spacecraft Booms Subjected to Solar Heating. Journal of Thermal Stresses, 26, 829–

843, 2003. 

[2] M. Murozono and E. A. Thornton, Buckling and Quasistatic Thermal-Structural 

Response of Asymmetric Rolled-Up Solar Array, Journal of Spacecraft and Rockets, 35, 

147–155, 1998. 

[3] E. A. Thornton and D. B. Paul, Thermal-Structure Analysis of Large Space Structures: 

An Assessment of Recent Advances. Journal of Spacecraft, 22, 385–393, 1985. 

[4] E. A. Thornton and Y. K. Kim, Thermally Induced Bending Vibrations of a Flexible 

Rolled-Up Solar Array. Journal of Spacecraft and Rockets, 30, 438–448, 1993. 

[5] O. Rand and D. Givoli, Thermal Analysis of Space Trusses Including Three-

Dimensional Effects. International Journal of Numerical Methods for Heat and Fluid 

Flow, 2, 115–125, 1992. 

[6] S. S. Rao, and M. Sunar, Piezoelectricity and Its Use in Disturbance Sensing and Control 

of Flexible Structures: A Survey. Trans. ASME, Applied Mechanics Reviews, 47, 113-

123, 1994. 

[7] M. Sunar, and S. S. Rao, Recent Advances in Sensing and Control of Flexible Structures 

via Piezoelectric Materials Technology. Trans. ASME, Applied Mechanics Reviews, 52, 

1-16, 1999. 

[8] H. Irschik, A Review on Static and Dynamic Shape Control of Structures by 

Piezoelectric Actuation. Engineering Structures, 24, 5-11, 2002. 



A. Elsawaf, T. Vampola 

12 

 

[9] T. R. Tauchert, F. Ashida, and N. Noda , Recent Developments in Piezothermoelasticity: 

Inverse Problems Relevant to Smart Structures. JSME International Journal, Series A, 

42, 452-458, 1999. 

[10]  T. R. Tauchert, F. Ashida, N. Noda, S. Adali, and V. Verijenko, Developments in 

Thermopiezoelasticity with Relevance to Smart Composite Structures. Composite 

Structures, 48, 31-38, 2000. 

[11] T. R. Tauchert, and, F. Ashida, Control of Transient Response in Intelligent 

Piezothermoelastic Structures. Journal of Thermal Stresses, 26, 559-582, 2003. 

[12] F. Ashida, T. R. Tauchert, S. Sakata, and S. Yoshida, Optimum Design of a Piezo-

Composite Disk for Control of Thermoelastic Displacement Distribution. Journal of 

Thermal Stresses, 30, 559-586, 2007. 

[13] L-J. Fan, Z-H. Xiang, Suppressing the Thermally Induced Vibration of Large-Scale 

Space Structures via Structural Optimization. Journal of Thermal Stresses, 38, 1-21, 

2015.  

[14] M. Sunwoo, K.C. Cheok, and N. J. Huang, Model reference adaptive control for vehicle 

active suspension systems. IEEE Trans Ind Electron, 38, 217–222, 1991. 

[15] M. Omran, Particle swarm optimization methods for pattern recognition and image 

processing. PhD Dissertation, University of Pretoria, 2005. 

[16] A. Elsawaf, F. Ashida, and S. Sakata, Hybrid constrained optimization for design of a 

piezoelectric composite disk controlling thermal stress. Journal of Theoretical and 

Applied Mechanics Japan, 60, 145-154, 2012.  

[17] A. Elsawaf, F. Ashida, and S. Sakata, Optimum Structure Design of a Multilayer Piezo-

Composite Disk for Control of Thermal Stress. J. Thermal Stresses, 35, 805–819, 2012. 

[18] Y. M. Shabana, E. I. Morgan, A. Elsawaf, Optimization of layer composites with 

nontraditional interfaces for minimizing stresse. 2nd International Conference of 

Engineering and Technology (ICET), Cairo, Egypt, 2014. 

[19] H. Metered, A. Elsawaf, T. Vampola, T. and Z. Šika, Vibration control of MR-damped 

vehicle suspension system using PID controller tuned by particle swarm optimization.  

SAE Int. J. Passeng. Cars - Mech. Syst., 8, 2015. 

[20] S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS, Pearson 

Education. Inc. New Jersey, 2003. 

[21] J. Kennedy, and R. Eberhart, Particle Swarm Optimization. Proceedings of IEEE 

International Conference on Neural Networks, 1942–1948, 1995.  

[22] M. Clerc, and J. Kennedy, The particle swarm: Explosion, stability, and convergence in a 

multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 

58-73, 2002. 

http://www.tandfonline.com/toc/uths20/38/1
http://www.tandfonline.com/toc/uths20/38/1

