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Summary: Bi-stability was traditionally achieved in unsymmetrical laminates, where the an-
gle of the fiber path was either constant or varied discretely in the plane of laminae. In this
work, the multi-stable shapes of Variable Stiffness (VS) composites are investigated by means
of semi-analytical approach. The concept of VS was introduced so the fiber can traverse the
plane of the laminae with a continuous angle variation. Although, there are many possibilities
of varying the fiber direction, in this paper a curvilinear fiber variation in plane is used for the
ease of manufacturing. A suitable stiffness tailoring can be possible which results in easy mor-
phing of the flexible part and load carrying capacity for the stiffer part. The semi-analytical
approach is constructed using Rayleigh Ritz method which is implemented into the commercial
package Mathematica where appropriate approximation functions for the displacement field are
used in order to: (i) identify the multiple potential solutions (ii) perform the subsequent stabil-
ity assessment of the obtained solutions. The analysis results provide a relation between the
changing orientation of the fibers and the stable shapes obtained for different VS composite
configurations. Parametric studies are further carried out to determine different stable shapes
attained by changing fiber orientations. Finally, a comparison with the multistable shapes of
straight fiber configurations stiffness laminates is performed.

1. INTRODUCTION

It was 18th century when the clock maker John Harrison [1] first devised one of the simplest
morphing structures: the bimetallic strip. Due to the difference in the thermal coefficient in
the two metals, heating lead to another curved stable configuration. Still, its widely used in
thermostats, thermometers and circuit breaker. Later, Hyer [2] performed experiments on cool-
ing of thin unsymmetrical laminates and had similar observations. On cooling down to room
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temperature, two different stable cylindrical shapes were observed, which were quite different
from what was predicted by classical lamination theory. One cylindrical configuration had a
large curvature in x direction and an unnoticeable curvature in y direction, whereas the other
cylindrical shape had a large curvature in y direction and an unnoticeable curvature in the x
direction (Fig. 1). Classical lamination theory predicted that at the room-temperature shapes of
all unsymmetrical laminates to be saddle. With inclusion of inclusion of geometrical nonlinear-
ities [3], the numerical results revealed not just the two stable shapes but rather an additional
unstable saddle shape, which is not captured in the experimental process.

a) b)

Figure 1. Cured shapes of unsymmetrical [0/90] laminates (Experiment performed at ENS
Cachan)

Relying on these pioneering works [2, 3], and other subsequent paper [4], the multistability
of composite laminates has attracted a great deal of attention in the following years. Several
researchers further contributed in refining the displacement interpolation space [5, 6, 7, 8]. In
this regard, Dang and Tang [7] added more sophisticated polynomial terms in the displacement
function, and later Jun and Jong [5] further used complex variables and trigonometric relations
to simplify the expressions. It was Dano and Hyer [9] who came up with a new model where
they assumed a strain field and derived the displacement field from it rather than a assuming
the displacement field and working out the strains. The advantage was the obtained simplified
terms in the final potential energy as the stresses and the strain field could directly be used in
the total potential energy equation. This work is presently considered as state of art and is used
in this paper to calculate the cured shapes.

Dano and Hyer [9, 10] introduced the effect of adding a external force on the one of the sta-
ble state to predict the snap through behavior to another stable state. They used shape memory
alloys to general end forces producing moments that lead to snap through phenomenon. This
was solved numerically by introducing force terms into Ritz minimization and the resulting
nonlinear equations were solved numerically. This was one of the first attempts to use the mul-
tistable unsymmetrical laminate favorably as morphing structures. The interest in multistable
structure since then has reinvigorated in the research community, as it presents very interesting
applicability in morphing structures. One of the important advantages that distinguishes it from
other morphing techniques is its ability to remain in equilibrium position even after the shape
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change occurs. That means no external force is required to hold the shape of the structure. Just
a snap through force is enough to change the shape from one configuration to another, which
can be achieved using piezo-composites [11, 12, 13, 14] or shape memory alloys [9, 15].

In the last few years, this subject has received wider attention and significant amount of
work has been done to show its potential in morphing applications, especially in the aerospace
industry [16, 17, 18, 19, 20]. However, the inherent challenge in all these adaptive structure in
real applications is the obvious trade-off: to be flexible enough to allow large structural changes
and at the same time able to withstand external loading in a controlled manner. If taken a
little historical perspective of morphing structures in aerospace industry, one can always see
the relevance of bio-mimicry while designing such structures. Since the invention of airplane,
efforts have been made to make use of variable geometry as well as material to enhance flight
control more like a bird. Perhaps, it was not the wrong solution but quite ahead of its time.

Today, advanced technology has helped creating structures which was perhaps a dream few
decades ago. The evolution of composites has taken a leap further in the aerospace industry,
with the introduction to VS composites. Automated Fiber Placement(AFP) offers the capability
to place the fibers in a curvilinear path over the area of the lamina. This ability to locally
tailor the fiber orientation provides designer a much wider design space, and allows them to
develop composites with optimal properties. One of the promising solutions that can help us
achieve morphing structure with inherent contradiction of high load carrying capacity and high
deformation abilities posed by morphing can be offered by VS composites. Though there are
manufacturing constraints with angles with sudden variations, but still offers huge design option
than conventional straight fibers.

VS composite similar to those of unsymmetric straight fiber laminates exhibits multistable
shapes when cured from high temperature to room temperature [21]. This can be used in much
larger structures where only certain part could be made of unsymmetrical laminates to impart
bi-stability along with ensuring fiber continuity. Panesar et al. [22] used bistable tow steered
blended laminate to study the behavior of the stable states in trailing edge flap, and also found
the optimum fiber direction for maximum out of plane displacement and maximum angle of
attack. In the optimal results, it was seen that every discrete part of the flap should have a differ-
ent values of fiber orientation. Mattioni [20] used a rectangular section comprising half of it as
symmetrical laminate and the other half as unsymmetrical laminate, though with straight fibers.
This idea was implemented keeping in mind that it could be used as morphing parts in aerospace
structure, where only certain part of the structure is needed to be adaptive. Though this model
had interesting results, but because of fiber discontinuity lead to stress concentration at the point
where the symmetric and the unsymmetrical plates were joined. A similar model was made by
Sousa et al. [23], but instead of using discrete straight fibers, a much smoother fiber continuity
was maintained by using curvilinear fiber trajectories. The geometry of the curing shapes was
obtained by using a simplified finite element model. According to the knowledge of the au-
thors, this is the only work where the multistability of VS laminates have been studied in detail,
though an analytical formulation have not performed yet.

The present paper therefore aims at building a semi-analytic model for VS laminates based
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on Rayleigh Ritz method, to find the thermally induced multistable shapes. The paper builds
on the kinematics given by Dano and Hyer [9] with fiber path defined in Gürdal et al. [24].
The theory is then described to incorporate curvilinear fiber trajectories into the Rayleigh Ritz
formulation to obtain the room temperature shapes. Next, the numerical results for a number
of VS laminates are shown, and discussed in detail. The bending and twisting curvatures of
various VS laminates are compared with the one with straight fibers.

Figure 2. Comparison between straight fiber and variable stiffness fiber configuration

2. Variable Stiffness Laminates

Gurdal and Olmedo [25] defined the fiber orientation with linear variation of angle from
the center to the end of the plate. Based on this, they performed closed form solution for
buckling analysis due to in-plane forces. Later, Waldhart [26] showed that using VS panels,
the buckling performance could be increased due to stiffness variation. Gürdal and Tatting [24]
showed that using for a particular buckling critical load, there might exist a lot of possibilities
with different VS composites, thus allowing a designer to a have more room for tailoring the
stiffness and the same time the critical load of the structure. Figure 2 compares side by side a
composite with straight fibers and the other with varying fiber orientation. It can be very clearly
seen that stiffness is constant throughout the plate for a traditional straight fiber layup, whereas
the concentration of the fibers is more towards the end for the VS laminates, thus leading to
higher stiffness at the ends. These differences in the fiber orientation can lead to different
stiffness properties and thus different structural behavior. Therefore, allowing the fibers can
offer multiple advantages. It must be also noted that this change in fiber orientation can also lead
to alteration of principle load paths, which can be interesting for morphing structures where the
load can be altered toward stiffer part allowing the flexible part to undergo large deformations.

2.1 Fiber path definition

There are several ways to vary the fiber angle however, due to manufacturing constraints, a
linear variation of fiber orientation as proposed by [24] is used in this paper. It is defined as:
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Figure 3. Parameters that define linear fiber angle variation [24]

θ(x′) =


φ+ 2

a
(T1 − T0)x′ + T0 − 2 (T0 − T1) , for − a ≤ x ≤ −a/2

φ+ 2
a

(T0 − T1)x′ + T0, for − a/2 ≤ x ≤ 0

φ+ 2
a

(T1 − T0)x′ + T0, for 0 ≤ x ≤ a/2

φ+ 2
a

(T0 − T1)x′ + T0 − 2 (T0 − T1) , for a/2 ≤ x ≤ a

(1)

where x′ = x cosφ+ x sinφ

The fiber goes from orientation angle T0 at Point A to Point B at a distance d where the
orientation angle linearly varies to T1. The distance d is referred as the characteristic length
(Fig. 3). The local coordinate axes x′ and y′ is rotated by angle φ with respect to the Cartesian
coordinate axes. Fiber orientation is considered to be symmetric along x = 0. In this work,
square plates have been used throughout and thus the characteristic length d is equal to half the
length of the plate (a/2). Therefore, T0 is the fiber orientation at x = 0 and T1 at the plate end,
x = ±a/2 where a is the length of the plate. This linear variation of fiber orientation is given
by Eq. (1). Although the fiber is changing its orientation along x′ direction, if seen from the
reference of x and y axes, the fiber orientation is a function of x and y: θ = θ(x, y).

Through the parameters defined above, different kinds of VS fiber orientation can be de-
fined. The standard notation to depict a VS laminate using the three parameters is: φ〈T0|T1〉.
One can construct laminates by the combination of φ and ±〈T0|T1〉. For example in ±φ ±
〈T0|T1〉 laminate, the composite has in total 8 layers, with four layers ±〈T0|T1〉 oriented in +φ
direction and the other four laminates oriented in −φ direction. ±〈T0|T1〉 depicts adjacent lay-
ers with +〈T0|T1〉 and −〈T0|T1〉 fiber orientation angles. Fig. 2 shows an example of a VS
composite with a configuration: ±〈15|75〉. In case of structures with unequal aspect ratio, the
fiber definition can be further extended with similar pattern as shown in Eq. (1).
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2.2 Theoretical Approach: Extended Classical Lamination Theory

The semi-analytical model used in this paper is based on the Rayleigh Ritz model using
the Extended Classical Lamination theory (ECLT), where the nonlinear Von Kármán strains are
used to incorporate large deflections. Here, ECLT is used to determine the multistable shapes
of the VS composite when cured from a high temperature to room temperature. In this work,
a square plate of length Lx is considered with thickness t. No external mechanical forces and
hygroscopic effects are been considered and therefore the total potential energy of the laminate
is equals to the strain energy. It should be also noted that as the fiber orientation is a function of
x and y, theABD matrix also varies along the coordinates of the plate. This flexibility to change
the stiffness terms of a plate as a function of the coordinates of the composite allows a designer
to have a wide range of tailoring possibilities. The following set of equations systematically
derive the total potential energy from an assumed polynomial displacement field. The kind of
displacement field chosen is discussed in the next section (Section 2.3).

u(x, y, z) = u0(x, y)− z∂w0

∂x
, v(x, y, z) = v0(x, y)− z∂w0

∂y
, w(x, y, z) = w0(x, y) (2)

where the subscript 0 identifies the mid-plane displacements. u, v and w represents the dis-
placements in x, y and z direction respectively. In case of small strains and small rotations, the
strain components take the form:

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

, εyy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

, γxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
(3)

By inserting (3) into (2), the strain relations can be rearranged as

ε =

εxxεyy
γxy

 =

εxxεyy
εxy

+ z

κxxκyy
κxy

 =


∂u0

∂x
+ 1

2

(
∂w0

∂x

)2
∂v0
∂y

+ 1
2

(
∂w0

∂y

)2
∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y

+ z

 −
∂2w0

∂x2

−∂2w0

∂y2

−2∂2w0

∂x∂y

 = ε+ zκ, (4)

where ε and κ represent the in-plane and curvature vectors. The constitutive law for each
layer k that composes the laminate taking into account the thermal effects in the global Cartesian
frame reads as:

σ =

σxxσyy
σxy

(k)

=

Q11(x, y) Q12(x, y) Q16(x, y)
Q12(x, y) Q22(x, y) Q26(x, y)
Q16(x, y) Q26(x, y) Q66(x, y)

(k)

εxxεyy
γxy

−∆T

 αxx

αyy

2αxy

(k)
 (5)

Note that in (5), the constitutive matrix is a function of x and y. Integrating over the thickness
the stress-strain relation, it is possible to rewrite (5) in terms of the force and moments resultants.[

N(x, y)
M(x, y)

]
=

[
A(x, y) B(x, y)
B(x, y) D(x, y)

] [
ε
κ

]
−
[

Nth(x, y)
Mth(x, y)

]
(6)

6



A. Haldar, J. Reinoso, E. Jansen, R. Rolfes

In (6), the resultant quantities with the superscript th denotes the thermal actions. As, the Q
matrix is a function of x and y, coordinate, but independent of the z coordinate A, B and D
matrix was simply calculated as:

Aij(x, y) =

Nply∑
k=1

Q
(k)
ij (x, y) (zk+1 − zk) , Bij(x, y) =

1

2

Nply∑
k=1

Q
(k)
ij (x, y)

(
z2k+1 − z2k

)
Dij(x, y) =

1

3

Nply∑
k=1

Q
(k)
ij (x, y)

(
z3k+1 − z3k

) (7)

The response of the laminated structure is determined by means of the Minimum Poten-
tial Energy Theorem. The potential energy of the structure in absence of external mechanical
actions is given by

Π =

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2

(
1

2

[
ε
κ

]T [A(x, y) B(x, y)
B(x, y) D(x, y)

] [
ε
κ

]
−
[

Nth(x, y)
Mth(x, y)

]T [
ε
κ

])
dx dy (8)

where the superscript T denotes vector transpose. The Rayleigh-Ritz method can be applied
using (8) as starting point, minimizing the potential energy of the structure (δΠ = 0). The
displacements will depend upon a certain number of unknowns denoted as ci (i = 1, nn being
the total number of unknowns) that need to be determined. Then, plugging the dependency of
the kinematic field on these unknowns into (8), one may express the strain energy as:

Π ≈ ΠN(c), c = {ci}, i=1, ..., nn (9)

The strain energy expressed in (9) corresponds to an algebraic equation in terms of the set of
variables c used for the kinematic approximation (where nn refers to the number of parameters
considered). Therefore, the equilibrium configurations of the panel are determined by satisfying
∇ΠN(c) = 0, which leads to the establishment of a set of nonlinear equations.

The stability of the solution is evaluated by means of the construction of the Jacobian matrix
J, that reads:

J =
∂2ΠN

∂ci∂cj
, i,j=1, ..., nn (10)

Hence, an equilibrium configuration is stable if and only if the corresponding Jacobian matrix
(10) is positive definite, and is unstable otherwise. In the context of the present investigation,
the total potential energy of the plate, its symbolic differentiation and the construction of the
Jacobian matrix have been conducted using the software Mathematica. The system of nonlinear
equations (9) are solved using the function NSolve and the stability criterion introduced in (10)
can be computed using the function PositiveDefiniteMatrixQ. At every temperature increment,
the matrix J is computed and checked for its stability.
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2.3 Kinematics

In the related literature, several models have been proposed for the multi-stability analysis
of composite speciments along the cooling down process from curing to room temperature.
Since Hyer [3], several researchers have worked in refining the semi-analytical model for exact
solutions. In this quest, many of those authors have come up with quite a number of models
ranging from quite simple approximations to higher order polynomials. Reinoso et al. [27] have
compared the results given by some of the available established models with Finite Elements
and have discussed the robustness and accuracy.

The curvatures of the resulting stable solution can be identified from the coefficient of the
out of plane displacement function. The number of unknowns and the approximation used
greatly effects the accuracy of the results obtained. For example, one of the initial models
by Hyer [3], defines the displacement function as where w0 = 1

2
(c3x

2 + c4y
2), c3 identifies the

curvature along the x-direction and c4 denotes the curvature along the y-direction. It can be seen
that the curvatures are predicted to have a constant value throughout the structure, though no
twisting behavior is included in the model. Dang and Tong [7] included twisting terms by adding
more polynomial terms, though ending up in quite complex polynomial functions and used
trigonometric relations to reduce the number of unknowns. Dano and Hyer [9] incorporated
both the bending in x and y direction (κx and κy) as well as a twisting component (κxy) in a
very simple fashion without involving quite higher complex displacement expressions.

In case of VS composites, as a consequence of their complex conceptions, they can undergo
twisting curvatures, and therefore it is important to include reliable approximation function
that can capture these effects in a simple and reliable fashion. Therefore, in this work, the
kinematic field proposed by Dano and Hyer [9] is considered. Though the model, both the
bending curvatures and the twisting curvature can be well captured. Wu [21] also also confirmed
through experimental data asymmetric VS laminates when cured from high to room temperature
exhibits close to cylindrical shapes.

The mid-plane strains are approximated as the following set of complete polynomials:

ε0x = c1 + c2x
2 + c3y

2 + c4xy (11)
ε0y = c5 + c6x

2 + c7y
2 + c8xy (12)

The out of plane displacement is approximated as:

w0(x, y) =
1

2
(c29 + c10y

2 + c11xy) (13)

The coefficients from c1 to c11 are the set of unknowns need to be determined. c9, c10 and
c11 are nothing but the negative curvature in x and y directions and the negative twist curvature.

κxx =
∂2w0

∂x2
= −c9, κyy =

∂2w0

∂y2
= −c10, κxy = 2

∂2w0

∂x∂y
= −c11 (14)
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Analyzing (14, it is quite evident that the curvatures are considered constant. However, Mat-
tioni et al. [20] used non uniform curvatures to model multistable structure where symmetric
and unsymmetrical laminates are joined together and thus doesn’t have a free edge boundary
condition. Such calculations increase the number of coefficient and solving nonlinear system of
equation in the Rayleigh Ritz framework can be difficult.

Using Eq. (13) in the expression for extensional strains ε0x and ε0y (Eq (11)) one can compute
the in-plane displacements:

u0(x, y) =

∫ [
ε0x −

1

2

(
∂w0

∂x

)2
]
dx+ c12y + c13y

3 (15)

v0(x, y) =

∫ [
ε0y −

1

2

(
∂w0

∂y

)2
]
dy + c15x+ c14x

3 (16)

(17)

Here additional unknowns c12, c13, c14 and c15 are needed to be solved too. In order to remove
rigid body motion from the assumed displacement field, the first order terms of the variable x
and y are needed to be equated, which results in c15 = c12. The shear strain can be simply
calculated from the equation below:

γ0 =
∂u0

∂y
+
∂v0

∂x
+
∂w0

∂y

∂w0

∂x
(18)

3. RESULTS

The geometry and material of plate is chosen taking into consideration the model by Dano
and Hyer [9] where the size of the plate is taken as 11.5 × 11.5 in2 and total thickness of the
laminate as 0.040; in. The material properties of a layer of graphite-epoxy were considered as:

E1 = 27.77× 106 psi, E2 = 1.27× 106 psi, G12 = 1.03× 106 psi
ν12 = 0.335, α1 = 0.345× 10−6/◦F, α2 = 15.34× 10−6/◦F

(19)

Specific details concerning the VS composite and the straight fiber configuration herein
analyzed are given in Table 1. Here the composite consists of eight layers, where the fiber
varies from +T0 value from the center to +T1 at the edges for the first four layers, and the next
four layer −T0 in the center to −T1 at the edges, making it an unsymmetric composite. As
discussed in Section 2.2 , after all the unknowns (c1..c14) are found using Rayleigh Ritz, it is
substituted back to Eq. (11) to Eq. (13) to obtain the displacement fields, and the curvatures of
the cured shape.
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VS -3 VS -2 VS -1 

Figure 4. Fiber orientation of the numerical example

Type φ T0 T1 Layup
VS-1 0 ±0 ±45 [0〈0|45〉4/0〈0| − 45〉4]T
VS-2 0 ±15 ±45 [0〈15|45〉4/0〈−15| − 45〉4]T
VS-3 0 ±30 ±45 [30〈0|45〉4/0〈−30| − 45〉4]T
Straight 0 ±45 ±45 [−454/454]T

Table 1. Fiber orientation and layup data for the VS and straight laminates

3.1 Room temperature configurations for variable stiffness composite

In this section, the multistable shapes for the VS composite found out are discussed in detail.
All the VS laminates are constructed on the basis of straight fiber configuration: [−454/454]T.
As shown in the Table 1, the value of fiber orientation at the edge of plate i.e. T1 is taken as
±45◦ for all the VS laminates studied, which is equal to the fiber orientation of the straight fiber
laminate. The fiber orientation from the center of the plate to the end varies significantly for all
the VS laminates. As seen in Figure 4, the value of fiber orientation for VS-1 varies from 0◦ at
the center to 45◦ at the edge. Similar, for VS-3, the value of fiber orientation for VS-1 varies
from 0◦ at the center to 45◦ at the edge. It can be seen that the amount of fiber steering increases
from VS-3 to VS-1. Extreme deviations are not taken in this study as such fiber orientation pose
difficulty in manufacturing process.

It is also interesting to note how the stiffness of the plate varies on changing the three param-
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eters needed to define VS composites. For example, in VS-1 the fibers are more concentrated
at the edges and density of fibers is quite less in the center. This amount of freedom to tailor
the stiffness plays an important role in obtaining multistable structure with different structural
behavior.

The curvature- temperature relationship obtained from the developed theory for each VS
composite are illustrated in Fig.5. The straight fiber results are obtained simply by putting the
values of T0 and T1 equal, in this case (±45◦). The values obtained are also validated with the
model with straight fibers by Dano and Hye [9].

In Fig. 5, the important points are marked as A, B, C, D and E. All these points are marked
for the straight fiber laminate. However, the phenomenon occurring at these points can be seen
as well for the VS laminates. The labeling of these points for all the VS laminates are not done
to avoid cluttering.

Point A (stress free state) depicts the curing temperature, where the temperature differ-
ence from the room temperature is 280◦F, and at this point the plate is considered flat. With
slight cooling down, it is seen that twisting curvature κxy begins to develop while the bending
curvatures (κx, κy) still remain zero. As the temperature is decreased further to point B, the
bifurcation point is encountered. From this point, the structure follows either of the paths: BC,
BE or BD.

In Fig. 5, the points near the bifurcation points for all the laminates have been zoomed to
give a better illustration of the phenomenon. It can be seen that the bifurcation point occurs
later for all the VS laminates. In case of VS-3, the bifurcation point (∆T ≈ 40◦F) is quite
near to bifurcation point of straight fiber configuration (∆T ≈ 35◦F). For VS-1 laminate, the
bifurcation occurs much later (∆T ≈ 104◦F), and till that state only twisting curvatures are
developed.

Point C and D refers to the stable equilibrium states, and for T1 = ±45◦, both path BC
and BD are similar. In case of the plot between κx and ∆T , it is interesting to note that VS-3
which has T0 = ±30, attains more curvature than the straight fiber laminate once it reaches the
room temperature. Both of them have the same κx at around 190◦F, but the rate of κx is higher
for VS-3. For other VS laminates, the curvature increases in a much slower rate, and develops
smaller curvature in room temperature.

Dano [28] have showed for the family of [−θ4/θ4] in straight fiber laminates, the values of
κx and κy are equal with θ = ±45◦, but other fiber orientation tends to have unequal values of
κx and κy. Unlike the straight fiber [−454/454], the VS laminates have unequal values of κx and
κy. It can be seen from the figure 5 that the rate of curvature for VS-3 and VS-2 are higher than
the straight fiber. After the cool down to room temperature, for all the VS laminates addressed
have curvature in y direction (κy) more than the curvature in x direction (κx). The reason for
such behavior can be explained by variation of coefficient of thermal expansion (CTE) in x and
y direction due to different fiber orientations. In order to understand this behavior let’s see first
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Figure 5. Temperature-curvature relationship for various VS laminates and a straight laminate,
right hand side shows the zoomed version near the bifurcation point

how the CTE varies with fiber angles:

αxx = α11 cos2 θ + α22 sin2 θ (20)
αyy = α11 sin2 θ + α22 cos2 θ (21)
αxy = 2 sin θ cos θ(α11 − α22) (22)
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 At point C  At point E

 At point D

Figure 6. Stable and unstable shapes of VS-3 laminate at room temperature

In our study, as all the VS laminates hold the condition T0 < T1, which means that fiber
angles are decreasing from edge to center. Therefore, we can say the cos θ component is the
one increasing from edge of the plate to center, for VS laminate. So, the value of αxx is primary
increased in the layer by the component α11 cos2 θ and the value of αyy by α22 cos2 θ. As, the
value of α22 > α11, the difference in the coefficient of thermal expansion is more in the y
direction, leading to higher curvatures values κy for VS composites.

Point E represents the curvature at room temperature for the unstable equilibrium, which is
never observed in experiments. With path BE, the curvature in the x and y axis remains zero
for straight as well VS laminates. However, there is non-zero twist curvature developed though
the rate of curvature increase is much smaller than the other two stable paths.

Figure 6 shows all the multistable shapes for VS laminate: VS-3. The other laminates have
similar shapes with just with different magnitude, and thus not shown separately. Figure 7(a)
compares the out of plane displacement with x coordinate over the plane y = 0 and Figure 7(b)
compares the out of plane displacement with y coordinates over the plane x = 0. This gives a
clear picture of how the out of plane displacement varies along the x and y axis in different VS
composites. It can be seen that with decrease in T0 values, the final out of plane displacement
also reduces at the plane y = 0. It is interesting to note that the final out of plane displacement
values for the VS-2 laminates are higher than the straight fiber laminate at the plane x = 0.
Both the stable shapes are seen to have the same out of plane displacement at the plane x = 0
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Figure 7. Comparison of out of plane displacement of VS laminates and straight laminate at
x = 0 and y = 0: a) Stable state 1 and b) Stable state 2

and y = 0 with just opposite curvatures.

4. CONCLUSION

In this work, a theory to predict the multistable shapes for VS composite is presented. The
framework of the theory is based on the Extended Classical Lamination Theory (ECLT), which
assumes in-plane strains and out of plane displacement fields with polynomial functions, and
uses the Rayleigh Ritz method to calculate the unknowns of the strain fields and the displace-
ment field. The fiber angle of the VS composite used in this work is assumed to vary linearly
from the center of the plate to the edge. It is interesting to note that with decrease in temper-
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ature, the VS laminates produced more curvatures in y direction than x direction (κy > κy).
The reason was explained with how the coefficient of thermal expansion depends on the fiber
orientation angle. Before the bifurcation point was reached, the VS laminates is seen to have
only twisting curvatures. It was seen that with decrease in fiber orientation angle at the center
lead to decrease in the out of plane displacement at the section y = 0. It was also noted that
at the plane x = 0, the final out of the plane displacements were higher than the straight fiber
configuration. After the bifurcation point, there were three possible branches, in which two of
them were stable and other unstable. Shapes of both the stable shapes were similar with op-
posite curvatures. For all the VS laminates, the bifurcation point occurred much later than the
straight fibers. The ∆T at which bifurcation occurred was maximum for T0 = 0◦ and reduced
with increase in T0.

Despite the lack of experimental results for a thermal curing process of an unsymmetric
VS laminates, the results reported seems quite interesting and encouraging for further research.
It would be interesting to see how the finite element results look now that the semi-analytical
formulation has been made. Finite Element analysis would only produce the stable shape, when
an initial imperfection is imposed into the model. The determination of such imperfection lies
in qualitative information derived from the semi-analytical analysis.

It is also important to note that Rayleigh Ritz being analytic in nature provides a global
sense of the structural behavior, and can be used as good approximate solution for complex
geometries. However, local phenomenon occurring like the effect near the edges or corner might
not be so accurately modeled using Rayleigh Ritz. For more complex geometries and material
properties, finite elements can be suitable option once we have estimation of the multistable
shapes found using the semi-analytical theory presented in this paper.
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