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Summary: Different approaches have been applied to derive the kinematics of continuum
robots with the assumption of piecewise constant curvature. Despite all these approaches pro-
duce identical results and can be reduced to the homogeneous transformation matrix, a par-
ticular approach could result to be preferable among the others, with respect to the actual
numerical application, thanks to the characteristics of its mathematical formulation. In this
paper the above mentioned kinematics is approached through the use of dual quaternions. The
resulting formulation offers remarkable characteristics of compactness and numerical efficiency
compared with those of the homogeneous transformation matrix.

1. INTRODUCTION

A continuum robot can modify the shape of its elastic structure to grasp an object wrapping
around it [1], to move with dexterity in un-structured environments (e.g. nuclear decontamina-
tion [2], search and rescue [3]), taking advantage of its compliance to interact safely with the
environment (e.g. medical applications [4][5]) and for locomotion [6][7][8].

Piecewise constant curvature approach allowed researchers to apply the mathematical tools
widely used to model rigid-links robots (such as Denavit-Hartenberg parameters and Euler-
Lagrange equations) on continuum robots. Despite the use of these well-established methods
leads continuum robots to inherit experience from a wide literature of applications, the high
complexity of the resulting models (due to the continuum nature of these robots) represents
a significant issue to their actual numerical implementation [9]. Prior to the introduction of
approximations to simplify the model, the possibility of numerical simplification offered by
the use of different mathematical tools has to be investigated. In literature, several approaches
to obtain the homogeneous transformation with the constant curvature hypothesis are present.
These approaches, in particular Denavit-Hartenberg parameters [10], Frenet-Serret frames [10],
Chirikjian and Burdick integral formulation [11], and exponential coordinates [13][14], when
placed in a common coordinate frame, produce identical results for forward kinematics [12].
With the exception of Chirikjian and Burdick integral formulation [11], the results obtained
with these approaches are affected by singularity when the circular arc approaches the zero
curvature configuration [12].
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In this paper the forward kinematic modelling of a continuum backbone with constant cur-
vature is approached with the use of dual quaternions (DQ) in order to obtain a more compact
and efficient kinematic relationship with respect to the homogeneous transformation matrix.

Dual quaternions were introduced by William K. Clifford in 1873 [15] and they are the appli-
cation of dual numbers theory to quaternions. From quaternions, dual quaternions inherit some
important properties. Among all, two are the most interesting. First, dual quaternions are one
of the most compact and efficient form for representing rigid transforms [16] [17]. A transform
with DQ is described by only 8 variables, instead of the 4x4 matrices used by the majority of the
other methods. The composition of more transforms can be achieved through the DQ product
that requires less mathematical operations than the matrix product [17]. Second, dual quater-
nions provide a non-singular representation of rotations. Quaternions, in fact, are frequently
adopted to avoid ”Gimbal lock” singularity. This singularity occurs when two of the three axes
describing the spatial orientation of an object (e.g. Pitch-Roll-Yaw) have the same direction.
In Robotics a similar problem, called ”wrist singularity”, occurs when two links, because of a
particular configuration of the robot, rotate around the same axis. In this condition, the rotation
of the two links produces the same effect (and consequently one degree of freedom is lost),
and movements with high velocity may occur in correspondence of infinitesimal changes of
orientation [16]. Dual quaternions are instead not affected by this singularity [16] [17] [18].

The paper is organized as follows. The application of dual quaternions to the forward kine-
matics of the constant curvature backbone is presented in paragraph 4.. In paragraphs 2.and 3.the
paper provides a brief overview on the piecewise constant curvature approach [12] and on the
dual quaternions’ mathematical definitions to represent rigid transformations[17] respectively.
The resulting dual quaternion formulation is compared with the matrix formulation in terms of
theoretical numerical weight in paragraph 5..

2. PIECEWISE CONSTANT CURVATURE APPROACH

Figure 1: Backbone as a circular arc with variables elongation (`), curvature (κ) and
orientation (φ); head-frame and base-frame coordinate systems of the backbone.

With piecewise constant curvature approach, an ideal backbone line that bends always like
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a circular arc is used to describe the displacement of each section of the continuum robot in
space. The kinematics of each section is consequently defined in two steps. The first step is
the specific mapping “fspecific”, that defines the relationship between the actuators’ state q =
[q1, .., qn] (where ”n” is the number of actuators of the section), and the configuration state
κ = [κ, `, φ], where κ is the curvature, ` the length and φ the orientation of the circular arc of
the backbone. Each robot has its ”specific” actuation characteristics, and consequently its own
specific mapping.

ibHih =

[
cos(φ)[cos(κ`)−1]+1 sin(φ) cos(φ)[cos(κ`)−1] cos(φ) sin(κ`) cos(φ)[1−cos(κ`)]1/κ

sin(φ) cos(φ)[cos(κ`)−1] cos(φ)2[1−cos(κ`)]+cos(κ`) sin(φ) sin(κ`) sin(φ)[1−cos(κ`)]1/κ
− cos(φ) sin(κ`) − sin(φ) sin(κ`) cos(κ`) sin(κ`)1/κ

0 0 0 1

]
(1)

Figure 2: Backbone kinematics: specific and general mappings

The second step is the general mapping ”fgeneral”, which provides the position and orien-
tation x = [x, y, z, φx, φy, φz] of each point of the backbone in the space. Figure 2 resumes
the specific and general mapping for the backbone. Describing the kinematics of an ideal line,
this mapping finds general application to all continuum robots modelled with the piecewise con-
stant curvature approach. It consists in the definition of the homogeneous transformation matrix
ibHih(κi) in (1). Through this matrix, it is possible to obtain the change of reference frame of
a vector from head-frame coordinates x(ih) to base-frame coordinates x(ib) of the ith-section as

x(ib) = ibHih x
(ih) (2)

With more serially-linked sections, the base-frame of the ith-section corresponds to the
head-frame of the (i−1)th-section. Therefore the transformation of the reference coordinate
system from ith-section’s head-frame into jth-section’s base-frame is

x(jb) = jbHih x
(ih) (3)

where

jbHih =
i∏

k=j

kbHkh (4)

.
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3. DUAL QUATERNIONS TO REPRESENT RIGID TRANSFORMATIONS

One dual quaternion q̂ is composed by two quaternions

q̂ = q + εqε ,

where q represents the real part quaternion, qε the dual part quaternion and ε the dual factor.
Therefore it consist in the 8-dimensional vectors

q̂ = s+ xi+ yj + zk + ε(sε + xεi+ yεj + zεk) (5)
q̂ = (s, x, y, z, sε, xε, yε, zε) = (s,m, sε,mε). (6)

Both vectors and transformations can be expressed as dual quaternions.
A vector v with components (vx, vy, vz) can be expressed as

q̂v = (1, 0, 0, 0, 0, vx, vy, vz). (7)

A pure rotation of an angle θ around an axis, defined by the unit-vector (vRx, vRy, vRz), is
described by the real part as

q̂r =qr + ε0

q̂r =

(
cos

(
θ

2

)
, sin

(
θ

2

)
[vRx, vRy, vRz], 0, 0, 0, 0

)
(8)

A pure translation represented by a vector (T = [tx, ty, tz]), is described by the dual part, with
an identity as real part

q̂t =1 + ε
T

2

q̂t =

(
1, 0, 0, 0, 0,

tx
2
,
ty
2
,
tz
2

)
. (9)

A rotation and a translation can be combined to define a unique transformation, that is a unique
DQ:

q̂tr =q̂r ⊗̂ q̂t if translation is applied first (10)

q̂rt =q̂t ⊗̂ q̂r if rotation is applied first (11)

where “⊗̂” is the dual quaternion product. The dual quaternion product between two dual
quaternions q̂v1 and q̂v2 is defined as

q̂v1 ⊗̂ q̂v2 = qv1 ⊗ qv2 + ε(qv1 ⊗ qv2ε + qv1ε ⊗ qv2), (12)
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where “⊗” is the quaternion product defined as

q1 ⊗ q2 = s1s2 −m1 ·m2, s1m2 + s2m1 +m1 ∧m2 (13)

It is possible to apply the generic transformation q̂ to the generic vector in DQ form q̂v1 as

q̂v2 = q̂ ⊗̂ q̂v1 ⊗̂ q̂∗ (14)

where q̂∗ is the dual conjugate of q̂, defined as

q̂∗ = [s,−m,−sε,mε] . (15)

The generic transformation represented by the dual quaternion

q̂tr =

(
rw, rx, ry, rz, 0,

tx
2
,
ty
2
,
tz
2

)
(16)

can be expressed in matrix form as

Htr =

[
r2w + r2x− r2y − r2z 2 rx ry − 2 rw rz 2 rx rz +2 rw ry tx

2 rx ry +2 rw rz r2w − r2x+ r2y − r2z 2 rx rz − 2 rw ry ty

2 rx rz − 2 rw ry 2 ry rz +2 rw rx r2w − r2x− r2y + r2z tz
0 0 0 1

]
(17)

4. DUAL QUATERNIONS - APPLICATION TO CONSTANT CURVATURE MODEL

The convention used for the base-frame is the same used by Webster and Jones [12]: the
positive z-axis (zb) is tangent to the backbone of the section at its base. If the orientation φ is
equal to 0, not null curvature defines bending about +y-axis (yb) so that the backbone touches
the x-axis (xb) after tracing out an angle of π radians [12].
The domain of the variables is chosen as :

κ ≥ 0

φ ∈ (−π, π]
s ∈ (0, `)

The head-frame is also chosen to be tangent to the backbone of the section at its tip. Moreover
the projections of its x-axis (xh) and y-axis (yh) on xb-yb-plane are always parallel to xb and yb
axes respectively.

It is possible to obtain the transformation between base-frame and head-frame through 3
transformations. In the following description of the three transformations, each DQ will have
the superscript ”(i)” to indicate the reference frame-i in which it is defined.
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Figure 3: Transformation I - Rotation of base-frame around zb of the angle φ

4.1 Transformation I

As shown in figure 3, frame-1 is chosen so that its origin is coincident with the origin of the
base-frame, its z-axis z1 is coincident with zb, and its axes x1 and y1 are rotated of the angle φ
around zb. Using (8), the transformation that describes the rotation between the two frames is
therefore

q̂(b)
tr1 =

[
cos

(
φ

2

)
, 0, 0, sin

(
φ

2

)
, 0, 0, 0, 0

]
(18)

4.2 Transformation II

Frame-2 is placed so that it has its origin coincident with the origin of the head-frame, the
axis z2 tangent to the backbone at its tip, and the axis y2 parallel to the axis y1. In figure 4 it can
be noted that with this choice the transformation that makes frame-1 to be coincident to frame-
2 can be defined as a roto-translation around the axis parallel to y1 and passing through the
center of the curvature’s arc. The position of this point varies with the curvature: it translates
on the x1 axis with a distance from the origin of 1/κ, that is the curvature’s radius. The dual
quaternion corresponding to this transformation can be calculated as the product between the
dual quaternion q̂(1)

t2, that represents the translation along x1 with distance r = 1/κ, and the
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Figure 4: Transformation II - Roto-translation of frame-1 around the axis parallel to y1 and
passing through the center of the curvature’s arc

dual quaternion q̂(1)
r2, that represents the rotation around the axis y1:

q̂(1)
tr2 = q̂(1)

t2 ⊗̂ q̂(1)
r2 ⊗̂ q̂(1)∗

t2; (19)

q̂(1)
tr2 =

(
1 +

ε

2
d2

)
⊗̂
(
R2 +

ε

2
0
)
⊗̂
(
1− ε

2
d2

)
(20)

with d2 = [ 0, r, 0, 0 ] (21)

and R2 =

[
cos

(
κ`

2

)
, 0, sin

(
κ`

2

)
, 0

]
. (22)

The calculation of the application of a pure translation to a pure rotation can be simplified [17],
so that (20) becomes

q̂(1)
tr2 =R2 −

ε

2
(R2 ⊗ d2 − d2 ⊗R2) (23)

that results in (see Appendix A)

q̂(1)
tr2 =

[
cos

(
κ`

2

)
, 0, sin

(
κ`

2

)
, 0, 0, 0, 0, r sin

(
κ`

2

)]
.

(24)

4.3 Transformation III

In order to align the frame-2 to the head-frame, transformation III consists in the rotation
around z2 of an angle −φ as shown in figure 5. This corresponds to rotate around the vector
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v3
(2), that is defined with respect to the frame-2, with components[

v(2)
x3, v

(2)
y3, v

(2)
z3

]
= [0, 0, 1] .

The corresponding DQ for this rotation is therefore

q̂(2)
tr3 =

[
cos

(
−φ
2

)
, sin

(
−φ
2

)
[0, 0, 1], 0, 0, 0, 0

]
. (25)

4.4 Composition of the transformations

It is possible to apply the transformations to the generic DQ vector
q̂(h)

v = (1, 0, 0, 0, 0, v(h)
x, v

(h)
y, v

(h)
z) expressed with head-frame coordinates, to find its coun-

terpart in base-frame coordinates as

q̂(b)
v =

ibq̂ih⊗̂ q̂(h)
v ⊗̂ ibq̂∗ih (26)

with:

ibq̂ih = q̂(b)
tr1 ⊗̂ q̂(1)

tr2⊗̂ q̂(2)
tr3 (27)

The transformation expressed by the dual quaternion ibq̂ih is equivalent to the homogeneous
transformation presented in (1). It is important to remark that q̂(2)

tr3 (25) results to be the dual
conjugate of q̂(b)

tr1 (18). From this property and from the equation (14) we can conclude that the
DQ products in (27) is exactly the application of the transformation-1 to the transformation-2.
This demonstrates that the homogeneous transformation is actually the roto-translation of the
base-frame around an axis that lies on the plane xb − yb and that passes through the center of
curvature’s arc of the backbone, as shown in Figure 6. The center of curvature’s arc translates
on the plane xb − yb with the curvature’s radius (r = 1/k) as distance from the origin of the
base-frame axes, and with the angle φ as angular position in the plane.

Computing the DQ products, (27) results in: (see Appendix B)

ibq̂ih =[
cos

(
κ`

2

)
, − sin

(
κ`

2

)
sin(φ), sin

(
κ`

2

)
cos(φ), 0,

− r sin

(
κ`

2

)
sin(φ), 0, 0, r sin

(
κ`

2

)]
(28)

Compared with the homogeneous transformation (1), this is a much more compact representa-
tion of the same information. The singularity in the translational terms is still present: if κ→ 0,
the curvature’s radius r →∞.

In some cases, the head-frame of the section is assumed to be oriented like the frame-2.
Consequently, the transformation between base and head frames is the composition of only

8
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transformation I and II, that results in (see Appendix B):

q̂1−2 =[
cos

(
κ`

2

)
cos

(
φ

2

)
, − sin

(
κ`

2

)
sin

(
φ

2

)
,

sin

(
κ`

2

)
cos

(
φ

2

)
, cos

(
κ`

2

)
sin

(
φ

2

)
,

− r sin

(
κ`

2

)
sin

(
φ

2

)
, 0, 0, r sin

(
κ`

2

)
cos

(
φ

2

)]
(29)

Considering more sections serially linked, the transformation of reference coordinate system
from ith-section’s head-frame into jth-section’s base-frame (with j<i) is obtained with

q̂(jb)
v =

jbq̂ih ⊗̂ q̂(ih)
v ⊗̂ jbq̂∗ih (30)

where

jbq̂ih =
i∏

k=j

kbq̂kh (31)

and with
∏

the DQ-product sequence is intended.

5. COMPARISON BETWEEN DQ and HT IN TERMS OF NUMERICAL WEIGHT

In Table 1 dual quaternions and matrix transformations presented in the previous paragraphs
are compared in terms of theoretical numerical weight of the calculations. The effort to evaluate
the elements of the homogeneous transformation matrix (1) with respect to its DQ counterpart
(28) is first evaluated. In case of n-sections serially linked, the product of n-homogeneous
transformation is needed. Therefore the second comparison considers the effort to evaluate this
product through matrices with (4) and through DQs with (31). The last comparison is made on
the effort to apply the generic homogeneous transformation to the generic vector. With both
formulations these products could be

6. Conclusion

The application of the dual quaternions to the kinematic modelling of the constant curvature
backbone has led to positive results with respect the compactness and efficiency of the repre-
sentation of the transformations. With its five variables among the eight constitutive elements,
the dual quaternion (28) is a much more compact representation of the homogeneous transfor-
mation with respect to the matrix (1) of twelve variables. Major benefits due this representation
are inherited by the differential kinematic problem, where the derivative of the homogeneous
transformation with respect to the three configuration space variables are defined by three dual

9
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Type
of
calculation

Form Expression Add
&Sub

Mult Cos
&Sin

Tot Diff Storage Diff

Homogeneous
transformation

Matrix ibHih 8 17 25 50 16
DQ ibq̂ih 0 13 8 21 -29 8 −50%

Product of n
Homogeneous
transformations
(with m = n− 1)

Matrix
n∏
k=1

kbHkh m ∗ 36 m ∗ 60 0 m ∗ 96 m ∗ 16

DQ
n∏
k=1

kbq̂kh m ∗ 40 m ∗ 48 0 m ∗ 88 −m ∗ 8 m ∗ 8 −50%

Transformation
applyied to
a vector

Matrix jbHih ∗ v(ih) 12 16 0 28 8

DQ jbq̂ih ⊗̂ q̂
(ih)
v ⊗̂ jbq̂∗ih 80 96 0 176 +148 16 +50%

Table 1: Theoretical numerical weight of DQ and matrix formulations

quaternions instead of a matrix with dimensions 4x4x3 of much more complex terms. As ta-
ble 1 shows, improvements on the theoretical numerical weight of the kinematic modelling are
related only to the calculation of the homogeneous transformations and the products between
them. Therefore, once all the necessary operations between them are computed, the resulting
dual quaternions have to be transformed into the matrix form with the relation (17), to avoid
the inefficiency of the application of DQtransformations to DQ vectors. Lastly, the spatial rep-
resentation of the entire kinematic transformation has been identified as consisting of a single
transformation around a well-defined axis (Figure 6).

A CALCULATION OF q̂(1)
tr2

q̂(1)
tr2 = R2 −

ε

2
(R2 ⊗ d2 − d2 ⊗R2) (32)

with:

d2 = [0, r, 0, 0]; (33)

R2 =

[
cos

(
κ`

2

)
, 0, sin

(
κ`

2

)
, 0

]
. (34)

Evaluating the two quaternion pruducts in (32)

R2 ⊗ d2 =(
0− 0,

[
r cos

(
κ`

2

)
, 0, 0

]
+

[
0, 0,−r sin

(
κ`

2

)])
; (35)

d2 ⊗R2 =(
0− 0,

[
r cos

(
κ`

2

)
, 0, 0

]
+

[
0, 0,+r sin

(
κ`

2

)])
. (36)

10
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Therefore it results

R2 ⊗ d2 − d2 ⊗R2 =

(
0, 0, 0,−2r sin

(
κ`

2

))
; (37)

q̂tr2 =

[
cos

(
κ`

2

)
, 0, sin

(
κ`

2

)
, 0, 0, 0, 0, r sin

(
κ`

2

)]
. (38)

B Calculation of ibq̂ih

ibq̂ih = q̂(0)
tr1 ⊗̂ q̂(1)

tr2⊗̂ q̂(2)
tr3 . (39)

Computing the first DQ product as:

q̂1−2 = q̂(0)
tr1 ⊗̂ q̂(1)

tr2 (40)

with:

q̂(0)
tr1 =

[
cos

(
φ

2

)
, 0, 0, sin

(
φ

2

)
, 0, 0, 0, 0

]
; (41)

q̂(1)
tr2 =

[
cos

(
κ`

2

)
, 0, sin

(
κ`

2

)
, 0, 0, 0, 0, rsin

(
κ`

2

)]
(42)

(40) results in:

q̂1−2 =[
cos

(
κ`

2

)
cos

(
φ

2

)
, − sin

(
κ`

2

)
sin

(
φ

2

)
,

sin

(
κ`

2

)
cos

(
φ

2

)
, cos

(
κ`

2

)
sin

(
φ

2

)
,

− r sin

(
κ`

2

)
sin

(
φ

2

)
, 0, 0, r sin

(
κ`

2

)
cos

(
φ

2

)]
. (43)

Now computing the second DQ product as:

ibq̂ih = q̂1−2 ⊗̂ q̂(2)
tr3 (44)

where

q̂(2)
tr3 =

[
cos

(
−φ
2

)
, sin

(
−φ
2

)
[0, 0, 1], 0, 0, 0, 0

]
(45)

11
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(44) results in

ibq̂ih(1) = cos

(
κ`

2

)(
cos2

(
φ

2

)
+ sin2

(
φ

2

))
(46)

ibq̂ih(2) = − sin

(
κ`

2

)(
2 cos

(
φ

2

)
sin

(
φ

2

))
(47)

ibq̂ih(3) = sin

(
κ`

2

)(
1− 2 sin2

(
φ

2

))
(48)

ibq̂ih(4) = cos

(
κ`

2

)(
(1− 1) cos

(
φ

2

)
sin

(
φ

2

))
(49)

ibq̂ih(5) = −r sin

(
κ`

2

)(
2 cos

(
φ

2

)
sin

(
φ

2

))
(50)

ibq̂ih(6) = 0 (51)
ibq̂ih(7) = 0 (52)

ibq̂ih(8) = r sin

(
κ`

2

)(
cos2

(
φ

2

)
+ sin2

(
φ

2

))
(53)

Using the trigonometric properties:

1− 2 sin
φ

2

2

= cosφ (54)

2 sin
φ

2
cos

φ

2
= sinφ (55)

(46) to (53) result in

ibq̂ih =[
cos

(
κ`

2

)
, − sin

(
κ`

2

)
sin(φ), sin

(
κ`

2

)
cos(φ), 0,

− r sin

(
κ`

2

)
sin(φ), 0, 0, r sin

(
κ`

2

)]
(56)
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C EQUATIONS

A displayed equation is automatically numbered, using Arabic numbers in parentheses. The
following example is a single line equation:

Ax = b (57)

The next example is a multi-line equation:

Ax = b

Ax = b
(58)

D TABLES

All tables are automatically numbered consecutively and captioned.

C11 C12 C13
C21 C22 C23
C31 C32 C33
C41 C42 C43
C51 C52 C53

Table 2: Example of the construction of a table.

E FORMAT OF REFERENCES

References should be quoted in the text by numbers [1, 2] and grouped together at the end
of the Abstract in numerical order as shown in these instructions. Use the unsrt style either
with the BibTeX or the \bibitem format.

14



Lorenzo Toscano, Gabriele Cazzulani, Francesco Braghin

F CONCLUSIONS

We look forward to receive your contributions for this conference.
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Figure 5: Transformation III - Rotation of frame-2 around z2 of an angle −φ

Figure 6: Homogeneous transformation as roto-translation around an axis passing through the
center of curvature’s radius and lying on the plane xb-yb.
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