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Summary:  This work deals with a previously proposed piezo-diagnostic methodology based 

on principal component analysis for structural damage detection. Previous works have 

demonstrated the effectiveness of baseline models to distinguish between structural damage 

and undamaged conditions, however, its robustness and reproducibility depends on a proper 

estimation of the principal components from undamaged data matrix measurements. Principal 

components are highly sensitive to the algorithm parameters used to compute the singular 

value decomposition, on the number of experiments collected for building the baseline model 

and on atypical measurements. In this work, the above conditions are studied by including a 

pre-processing state using time feature extraction in order to solve the ill-conditioned 

statistical problem due to the low ratio between undamaged cases and time piezo-electrical 

samples used for building the baseline model. In addition, a comparison between two methods 

(Proper Orthogonal Decomposition Vs NIPALS) used to estimate the principal components is 

done. Average of several experiments is computed to deal with atypical data cases and 

experimental results are obtained from two structures: i.) a carbon steel pipe section and ii.) 

a laboratory tower that mimics a wind turbine. Finally, damages are conditioned in order to 

produce leaks in the pipe section and a crack in one element of the laboratory tower.  
 

 

1 INTRODUCTION 

The high sensitivity of the guided-wave ultrasonic technique has been an advantage for 

structural health monitoring applications [1]. Guided waves have been extensively studied for 

damage detection and characterization in a wide range of industrial applications, including 

transportation and civil engineering [2]. In this sense, it has been demonstrated that guided 

waves can be easily generated by using Lead Zirconate Titanate piezoelectric devices (PZT). 
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Thus, several researches have shown the feasibility of using PZT measurements for condition 

monitoring [3, 4, 5]. 

Singular value decomposition (SVD) is a common procedure to characterize ultrasonic 

elastic waves propagating into a medium. From this technique damage-sensitive orthogonal 

features are extracted to differentiate between damage and undamaged states. Several 

applications have demonstrated its robustness, for example by detecting saw cuts and fatigue 

cracks on aluminum beams [6] and mass scatterer detection in a hot water piping system in 

continuous operation [7], under variable environmental and operational conditions. However, 

this technique consumes high computing resources and requires especial treatment when 

processing big data matrices. 

Thus, in this paper a comparison of three algorithms used to compute orthogonal features 

from experimental piezoelectric pitch–catch records are studied. These orthogonal features 

serve to represent a structural baseline model, which is a mean to obtain structural signature in 

presence or absence of damages. In addition, a preprocessing stage based on time-features 

extraction, from the recorded signals, is achieved to treat the influence of high dimensionality 

and low rank statistical problems. The efficacy of the implemented data driven approach is 

validated using experimental measurements from a steel carbon pipe section and a laboratory 

tower. It is demonstrated that detection of structural leaks and cracks is possible for the studied 

cases. 

2 STRUCTURAL DAMAGE DETECTION ALGORITHM:  PIEZO-DIAGNOSTICS 

BASED ON STATISTICAL INDEXES 

Figure 1 summarizes the general proposed scheme of the piezo-diagnostics approach for 

structural leaks and cracks detection. The effectiveness of this methodology has been 

previously validated for damage detection in aluminum plates, composite structures, aircraft 

sections and pipework structures [8, 9, 10]. 

 

Figure 1: Piezo-diagnostic approach for structural damage identification. 

According to Figure 1, in the piezo-diagnostic approach one or a net of piezo-ceramic 

sensors are used to record elastic wave signals induced by a piezo-actuator. The conceptual 

steps involved for damage detection based on piezo-diagnostic approach are [8]: 

 

i. Collect signals obtained from the pristine condition of the structure (baseline signals) 

in order to arrange a matrix of undamaged records: 
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Figure 2: Undamaged baseline matrix 

ii. Where, M experiment repetitions are conducted for the healthy reference in order to 

consider measurement noise in the baseline records. Therefore, the signals from N PZT 

sensors are unfolded in the undamaged baseline matrix.     

iii. Apply Group-Scaling normalization procedure to eliminate bias and scale variance in 

the undamaged baseline matrix. Each data-point ijx
 is scaled by considering changes 

between sensors. The standardization is computed by using the mean of each time 

sample for every experiment and the standard deviation of each sensor sample vector.  

iv. Decompose the normalized undamaged baseline matrix 𝑋̅ into a model part and a noise 

part: 

 

                                     𝑋̅ = 𝑍𝑃𝑇 + 𝐸 = 𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑜𝑖𝑠𝑒                                           (1) 

 

The model 𝑍𝑃𝑇  in (1) corresponds to a new reduced space of coordinates with minimal 

redundancy, based on the variance–covariance of the original data. P is a linear 

transformation matrix that relates the data matrix 𝑋̅ in the new coordinates. P denotes 

the principal components and Z the projected matrix to the reduced space. The noise E-

matrix is the part of 𝑋̅, which is not explained by 𝑍𝑃𝑇 and describes the residual 

variance neglected by the statistical model. The available methods to determine the P 

matrix will be detailed in the next section. 

v. Validate the statistical model (1) with new PZT measurements representing the current 

state of the structure. These measurements are organized in a row vector as it is 

highlighted in Figure 2. This row vector is standardized by applying GroupScaling and 

considering mean values and standard deviations of the undamaged baseline matrix. 

Then, the normalized row vector of new measurements is projected onto the reduced 

space by using the statistical model (1). Differences between baseline model and 

current state are attributed to damage. 

 

INDICES FOR FAULT DIAGNOSIS 

The above piezo-diagnostic approach corresponds to conventional data-driven SHM 

methods based only on measurement analysis. The structural damage detection is achieved by 

differentiating one or more features between the sets of the processed signals. For this purpose, 

two common indexes used in fault diagnosis systems are computed: Hotelling t-square and Q-

statistics.  

The Q-statistic is a lack of fit measure between the analyzed experiment and the statistical 

model (2):  
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                                                                       𝑄 = ∑ (𝑒𝑗)
2

𝑗                                                                  (2) 

Where, je
 is the residual error for each 𝑗 − 𝑡ℎ principal component used to reconstruct the 

experiment signal. 

The Hotelling 𝑇2 statistic indicates how far each measurement is from the center (scores = 

0) of the model: 

                                                                   𝑇2 = 𝑍′𝜆−1𝑍                                                             (3) 

 

Where, 𝜆 are the respective variances within the model. 

𝑄 and 𝑇2 statistics are used to detect abnormal behavior of guided wave signals traveling 

into the structure compared to the baseline model. 

3 TRANSFORMATION MATRIX OBTAINING METHODS  

Principal Component Analysis (PCA) provides a simple way to emphasize relationships 

among patterns. Thus, by using PCA it is possible describe changes of elements in a data-

matrix by mean of a model expressed by (1). Several interpretations of PCA are presented in 

the literature: Karhunen-Loève decomposition (KLV), Proper Orthogonal Decomposition 

(POD) and Singular Value Decomposition (SVD) and in general, it is used to extract dominant 

features from experimental data. Liang et al [11] describe the equivalence of the different PCA 

interpretations. 

Common methods for obtaining the PCA transformation matrix are detailed in this section 

in order to use them in the undamaged baseline matrix processing. It is remarked that 

dimensions of dataset matrix in Figure 2 correspond to n≪m. In this case, n are the experiment 

repetitions (< 200), while m depends of the sample frequency, time length records and the 

number of PZT sensors (> 20.000). 

3.1 Classical procedure 

The classical algorithm to obtain the PCA matrix transformation consists of three main 

steps: 

 

I. Estimate the covariance matrix of the normalized data-matrix 𝑋̅: 

 

                                                    𝐶𝑥̅ =
1

𝑛−1
(𝑋̅)(𝑋̅)𝑇                                                       (4) 

 

II. Calculate the Eigenvectors-Eigenvalues of the covariance matrix. 

III. Select the first eigenvectors as the principal components. The transformation matrix P 

contains column vectors of the selected eigenvectors, while the model variance is 

described by the respective eigenvalues.  

 

For obtaining, the Eigenvectors-Eigenvalues of the step II.) it is necessary to compute the 

singular value decomposition, where an Eigenvector is a nonzero vector that satisfies the 

equation (5): 

 

                                                         𝐴𝑣⃗ = 𝜆𝑣⃗                                                                                                  (5) 

     

Where, A is a square matrix, λ is a scalar, and 𝒗⃗⃗⃗ is the eigenvector. The eigenvalues and 



J. Camacho, M. Ruiz, R. Villamizar, et al 

 

5 

 

eigenvectors can be find by solving a matrix as a linear equations system.  

For the case of data in Figure 2 the covariance matrix is m x m, thus it is necessary to 

determine m eigenvectors and eigenvalues. However, because n≪m only n-1 eigenvalues are 

nonzero, the transformation matrix P consists of n-1 statistically significant principal 

components. The QR algorithm [12] is commonly used to obtain the singular value 

decomposition of a data-matrix expressed in (5). 

3.2 Alternative methods 

Since only 𝑛 − 1 eigenvalues are nonzero, alternative methods can be used to estimate the 

singular value decomposition of a data-matrix. These methods are intended to minimize the 

computational cost, taking advantage of the property 𝑛 ≪ 𝑚. 

 

Proper Orthogonal decomposition (POD) 

Proper orthogonal decomposition method allows describing a process by a low-dimensioned 

model represented by a set of base functions, obtained from the dynamic response. POD is 

based on the singular value decomposition for non-square matrix and recently, it has been used 

for damage detection in structures [13]. By applying POD, the normalized undamaged baseline 

matrix can be decomposed by (6):   

 

                                                                   𝑋̅ = 𝑈Σ𝑉𝑇                                                                                 (6) 

 

Where, 𝑈 and 𝑉 are called the left-singular vectors and right-singular vectors of 𝑋̅, 

respectively and Σ is a diagonal matrix with the nonzero singular values. If the left-singular 

vectors of 𝑋̅ are eigenvectors of 𝑋̅𝑋̅𝑇 and the right-singular vectors of 𝑋̅ are eigenvectors 

of 𝑋̅𝑇𝑋̅, it is possible to establish that: 

 

                                         𝑋̅𝑋̅𝑇 = (𝑈Σ𝑉𝑇)(𝑈Σ𝑉𝑇)𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇U𝑇 = 𝑈Σ2𝑈𝑇                     (7) 

                                         𝑋̅𝑇𝑋̅ = (𝑈Σ𝑉𝑇)𝑇(𝑈Σ𝑉𝑇) = 𝑉Σ𝑇U𝑇 𝑈Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇                                                     

 

According to classical procedure, the transformation matrix P corresponds to the singular 

value decomposition of 𝑋̅𝑋̅𝑇, thus it can be inferred from (7) that 𝑈 = P. By using (6), the 

transformation matrix can be computed as: 

 

                                                              P ≡ 𝑋̅Σ−1𝑉                                                                                     (8) 

 

In addition, it is noted that the non-zero singular values of 𝑋̅ are equal the square roots of 

the non-zero eigenvalues of both 𝑋̅𝑋̅𝑇 and 𝑋̅𝑇𝑋̅. In this sense, it is enough to find the singular 

value decomposition of 𝑋̅𝑇𝑋̅, with dimensions 𝑛 𝑥 𝑛 instead of 𝑋̅𝑋̅𝑇 with dimensions 𝑚 𝑥 𝑚. 

These relations reduce the computational cost required to compute the transformation matrix 

of the statistical model (1). 

 

Non-linear Iterative Partial Least Squares (NIPALS) 

NIPALS algorithm is one of the methods used to compute eigenvectors, where Figure 3 

presents an overview of this algorithm. 
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Figure 3: NIPALS algorithm pseudo-code [14]  

4 TIME FEATURES EXTRACTION STAGE FOR DAMAGE DETECTIONS 

Since the statistical problem for PCA modeling is ill conditioned because the covariance 

matrix is estimated with less samples than variables is necessary to evaluate its influence. Thus, 

in this work a time features extraction procedure is applied by building a new baseline 

undamaged matrix with the next PZT time signals additional features: root mean squared value, 

maximum value, mean value and standard deviation. Then, the statistical model is obtained 

from this new feature matrix, which satisfies the condition n>m. 

In addition, an alternative preprocessing stage based on cross correlation analysis is 

explored in order to improve the damage discrimination, by excluding external signals common 

to actuation and sensing elements, and to eliminate noisy data trends. Thus, cross-correlation 

between actuation and sensing piezo-signals is computed, before the PCA analysis. The cross-

correlation function between two signals X(t) and Y(t) is defined by (9). 

                         𝑅𝑋𝑌(𝑡, 𝑡 + 𝜏) = lim
𝑁→∞

1

𝑁
∑ 𝑋𝑘(𝑡)𝑌𝑘(𝑡 + 𝜏)𝑁

𝑘=1 ,                                                (9) 

where N is the number of samples and τ is the lag time interval used to compute the cross-

correlation function. Then, the statistical model is obtained from a cross-correlated PZT signals 

baseline matrix. 

5 EXPERIMENTAL RESULTS 

Two experiments were conducted on two structural lab models in order to evaluate the 

proposed methodology. The first experiment corresponds to detect leaks in a carbon steel pipe 

section and the second one corresponds to detect crack in a laboratory tower. First, the three 

above mentioned algorithms used to compute the transformation matrix were evaluated by 

using experimental data from the pipe section. Then, the best algorithm was used to detect 

cracks in the laboratory tower 

5.1 Excitation signal 

In order to induce guided waves into the test structures a burst type signal (Figure 4), 

generated by means of an AWG PicoScope series 2000, was used to excite the PZT actuator 

around its resonance frequency (~100 KHz, Figure 5) and then it is amplified to ±10 V.  
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Figure 4: Burst type excitation before amplification. 

 

Figure 5: PZT frequency response 

5.2 Carbon steel pipe section 

The first specimen used as test structure is a carbon-steel pipe section of dimensions 100x 

2.54 x0.3 cm (length, diameter, thickness). The pipe section contains bridles at its ends and a 

valve that controls the airflow from a compressor at 80 psi (Figure 6). Four piezoelectric 

devices (PZT) were attached along the structure as sensors, while another one is attached as 

actuator.  

 

 

Figure 6: Experiment configuration 

In order to induce leaks in the test structure, four ¼-inch holes were drilled along the pipe 

section wall with adjustable screws. Table 1 details the leaks combination experimented in this 

work, where for each one 100-experiment repetitions were conducted during 1s of periodic 

excitation signal (undamaged case is labeled ‘UND’). 
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Label 
Holes 

(Red=open) 

Label Holes 

(Red=open) 

D1 H1,H2,H3,H4 D5 H1,H2,H3,H4 

D2 H1,H2,H3,H4 D6 H1,H2,H3, H2 

D3 H1,H2,H3,H4 
D7 

H1,H2,H3,H4 D4 H1,H2,H3,H4 
Table 1: Leaks combination 

 

The principal components were computed by using NIPALS, QR, and POD algorithms, 

where the first and second ones are depicted in Figure 7, after cross-correlation analysis is 

applied.  

  

Figure 7: First and second principal components computed by using different algorithms 

The processed matrix have dimensions 100 x 71444, where the time required to compute all 

the 99 principal components for each algorithm are summarized in Table 2. The algorithms 

were executed in a PC with processor Intel(R) Core(TM) i7-46000U, CPU 2.70 GHz, and 8.0 

GB RAM. According to Figure 7, no meaning visual differences are observed for the first two 

principal components. 

Method Time (s) 
NIPALS 312.2113 

QR 6.4468 
POD 1.2624 

Table 2: Time consuming for computing matrix transformation. 

 

According to Table 2, minimum time is required for POD algorithm and maximum is for 

NIPALS. The time for POD algorithm is lower because a small size transpose matrix is 

processed, while NIPALS algorithm requires maximum 1000 iterations to find each 

component. In addition, for NIPALS algorithm a convergence failure is presented for 

components 19, 61, and 96 with a tolerance value of 1e-4. The root mean squared error for all 

principal components are depicted in Figure 8. 
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Figure 8: Root Mean Squared Error for each principal component 

The non-normalized variances of the model obtained by means of NIPALS, QR and POD 

algorithms are presented in Figure 9a, while Figure 9b presents the variances normalized by its 

maximum value, in order to facilitate a comparison. 

  

Figure 9: Model variances. Left: Original variances. Rigth: Normalized variances. 

According to Figure 9b, the variances computed by using NIPALS and QR algorithms have 

the same trend in a different scale, but those computed by POD despite to describe similar 

trends an error is presented.  

The evolution of the first and second component for the different leaks combination, 

computed by using POD, NIPALS and QR algorithms, are depicted in Figure 10. It is observed 

that the evolution of the scores computed by means of POD and NIPALS algorithms are very 

similar, while those computed by means of QR have similar trends in opposite direction.  
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Figure 10: Graphical of two first scores for leak damages computed by: Left: QR algorithm. Right: NIPALS and 
POD algorithms 

The Q and T2 statistical indices are shown in Figure 11. It is observed a well defined 

separation for different leaks combinations, thus it can be concluded that the error presented in 

the estimation of principal components, for any of the three algorithms, do not affect the 

calculation of T2 and Q statistical indexes. Also, the principal component directions do not 

influence on the statistical indices computation because their squared nature. Therefore, for 

this experimental case, this low error is imperceptible and clear boundaries can be identified 

by using any of the three studied algorithms. 

  

 

Figure 11: Statistical indexes for leak damage detection 

Figure 12 presents experimental results by applying the preprocessing stage based on time 

features and the QR algorithm. It can be observed that better boundaries for leak damages are 
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obtained when the statistical model is computed with cross-correlated signals instead of using 

time features. 

 

Figure 12: Damage identification by means of time features 

5.3 Laboratory tower 

The second test structure is a tower model, representing a wind turbine model previously 

studied for damage detection [15]. The structure (2.7 m high) is composed by three components 

(Figure 13a):  jacket, tower and nacelle. A modal shaker simulates the nacelle mass and it is 

used to produce external 100 Hz white noise in the structure, which mimic the modal dynamics 

of an offshore wind turbine. Damage in the tower was induced by replacing one of the 

undamaged section in the jacket with a 5 mm cracked section (Figure 13b). Five PZT sensors 

were installed in the jacket (Figure 13a, red markers correspond to PZT devices) in order to 

record 50-experiment repetitions from guided wave structural responses produced by the PZT 

actuator. 
 

 

Figure 13: Laboratory tower structure. 

Figure 14 presents the piezo-electrical response obtained from one of the PZT sensors by 

using a sample time Ts = 32.0 [ns]. It is observed a noise trend due to the modal shaker, which 
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Figure 14: PZT response. Left: Actuator signal before amplification. Right: PZT Sensor measurement  

 

Figure 15: Noise removing from PZT response  

Figure 16 depicts the model variances obtained by means of QR algorithm after processing 

the undamaged baseline matrix (50x156285). 

 

Figure 16: Statistical model variances. 
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Figure 17 presents the Q and T2 statistical indexes for structural crack detection. It is 

observed meaning differences regarding to the undamaged state and a low dispersion for all 

experiments. 

 

 

Figure 17: Statistical indexes for structural crack detection 

6 CONCLUSIONS 

The experimental results of the proposed algorithm based on PCA model shows capability 

for discriminate structural cracks and leaks. Three different algorithms to compute the 

transformation matrix were experimentally validated with no meaning differences to discern 

structural damages. Therefore, any of the algorithms can be implemented for damage detection 
purposes. 

The low time computing resources, without convergence failures, reported when POD 

algorithm is applied, shows its suitability for implementing embedded codes. Additional 

features as memory usage and real-time performance should be studied in order to select a 
proper algorithm for continuous condition monitoring. 

The robustness of PCA modelling to the ill-conditioned statistical problem was 

experimentally demonstrated for structural crack and leaks detection cases. However, a more 

extent experimentation is required in order to determine a minimum number of experiments to 
build the statistical model. 
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